請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93871完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁宗蘇 | zh_TW |
| dc.contributor.advisor | Tzung-Su Ding | en |
| dc.contributor.author | 劉孟賢 | zh_TW |
| dc.contributor.author | Meng-Hsien Liu | en |
| dc.date.accessioned | 2024-08-08T16:40:42Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-04 | - |
| dc.identifier.citation | 丁宗蘇、吳森雄、吳建龍、阮錦松、林瑞興、楊玉祥、蔡乙榮。2023。2023 年臺灣鳥類名錄。中華民國野鳥學會。臺北,臺灣。
大彰化西南離岸風力發電股份有限公司籌備處(2017)大彰化西南離岸風力發電計畫環境影響說明書。彰化縣:大彰化西南離岸風力發電股份有限公司籌備處。 大彰化西南離岸風力發電股份有限公司籌備處(2019)大彰化西南離岸風力發電計畫環境影響調查報告書(鳥類調查報告)。彰化縣:大彰化西南離岸風力發電股份有限公司籌備處。 大彰化西南離岸風力發電股份有限公司籌備處(2021)大彰化西南-110年第三季環境監測報告。彰化縣:大彰化西南離岸風力發電股份有限公司籌備處。 大彰化東北離岸風力發電股份有限公司籌備處(2023)大彰化西北-112年第一季環境監測報告。彰化縣:大彰化東北離岸風力發電股份有限公司籌備處。 大彰化東南離岸風力發電股份有限公司(2024)大彰化東南離岸風力發電計畫環境影響調查報告書〔含具體可行之風機降轉(停機)機制〕。彰化縣:大彰化東南離岸風力發電股份有限公司。 大彰化東南離岸風力發電股份有限公司籌備處(2017)大彰化東南離岸風力發電計畫環境影響說明書。彰化縣:大彰化東南離岸風力發電股份有限公司。 大彰化東南離岸風力發電股份有限公司籌備處(2019)大彰化東南-108年第二季環境監測報告。彰化縣:大彰化東南離岸風力發電股份有限公司。 大彰化東南離岸風力發電股份有限公司籌備處(2020)大彰化東南離岸風力發電計畫環境影響調查報告書(鳥類調查報告)。彰化縣:大彰化東南離岸風力發電股份有限公司。 大彰化東南離岸風力發電股份有限公司籌備處(2021)大彰化東南-110年第三季環境監測報告。彰化縣:大彰化東南離岸風力發電股份有限公司。 工業技術研究院率能與環境研究所(2024)2024年再生能源裝置容量統計月資料。再生能源資訊網。https://www.re.org.tw/information/statistics.aspx 允能風力發電股份有限公司(2019)雲林離岸風力發電廠興建計畫環境影響說明書環境影響調查報告書。臺北市:允能風力發電股份有限公司。 允能風力發電股份有限公司(2020)雲林離岸風力發電廠興建計畫環境影響說明書環境影響調查報告書。臺北市:允能風力發電股份有限公司。 允能風力發電股份有限公司(2024)雲林離岸風力發電廠興建計畫環境影響調查報告書〔含具體可行之風機降轉(停機)機制〕。臺北市:允能風力發電股份有限公司。 允能風力發電股份有限公司籌備處(2017)雲林離岸風力發電廠興建計畫環境影響說明書。臺北市:允能風力發電股份有限公司。 白梅玲、連裕益(2023)鳥類與風機之撞擊風險模式介紹。新北市:福爾摩沙自然史資訊有限公司。 竹風風力發電股份有限公司籌備處(2020)新竹苗栗地區離岸式風力發電計畫環境影響調查報告書。臺北市:竹風風力發電股份有限公司籌備處。 行政院農業委員會林務局(2015)台灣重要野鳥棲地手冊第二版 行政院環境保護署(2022)離岸風力發電開發計畫生態調查方法參考指引。 行政院環境保護署氣候變遷辦公室(2023)立法院三讀修正通過氣候變遷因應法啟動落實淨零排放。https://enews.epa. gov.tw/Page/3B3C62C78849F32F/c7407c7d70b6-48a0-ab2d-852f3067 a556 西島風力發電股份有限公司(2018)西島風場2018年3-5月環境監測報告。彰化縣:西島風力發電股份有限公司。 西島風力發電股份有限公司(2019)西島風場2018年12月-2019年2月環境監測報告。彰化縣:西島風力發電股份有限公司。 西島風力發電股份有限公司(2019)彰化西島離岸風力發電計畫環境影響說明書變更內容對照表(變更環境保護對策及施工前環境監測計畫)。彰化縣:西島風力發電股份有限公司。 西島風力發電股份有限公司(2020)西島風場2019年12月-2020年2月環境監測報告。彰化縣:西島風力發電股份有限公司。 西島風力發電股份有限公司(2020)彰化西島離岸風力發電計畫環境影響說明書環境影響調查報告書。彰化縣:西島風力發電股份有限公司。 西島風力發電股份有限公司(2021)西島風場2021年9-11月環境監測報告。彰化縣:西島風力發電股份有限公司。 西島風力發電股份有限公司(2022)西島風場2021年12月-2022年2月環境監測報告。彰化縣:西島風力發電股份有限公司。 西島風力發電股份有限公司(2022)西島風場2022年3-5月環境監測報告。彰化縣:西島風力發電股份有限公司。 西島風力發電股份有限公司(2022)西島風場2022年9-11月環境監測報告。彰化縣:西島風力發電股份有限公司。 西島風力發電股份有限公司籌備處(2018)彰化西島離岸風力發電計畫環境影響說明書。彰化縣:西島風力發電股份有限公司。 余政達、陳銑浩、陳麒元(2017)嘉義沿海區域風力發電潛力與環境評估。環境與管理研究,18(1),1-20。 沃旭能源(2024)亞太最大 900 MW大彰化東南及西南第一階段離岸風場完工併聯。https://orsted.tw/zh/news/2024/04/chw1and2a_inaguration 林大利、呂翊維、潘森識、吳建龍(2020)臺灣國家鳥類報告。行政院農業委員會特有生物研究保育中心、社團法人中華民國野鳥學會。 林俶寬、張上君、黃振愷、劉晉堯(2014)台灣地區離岸風場選址技術之探討。中華技術,103,62-71。 施月英(2008)海岸風力發電機對鳥類群聚的影響-彰濱工業區崙尾風力場為例。靜宜大學生態學研究所,臺中市。 柯奕志(2024)黑面琵鷺(Platalea minor)迴避陸域風場和風機的行為。國立屏東科技大學,屏東縣。 徐文科、駱明麟、葉仲基(2015)風力發電機聲音特性與法規研究。應用聲學與振動學刊,7(1),47-58。 海洋風力發電股份有限公司(2013)海洋竹南離岸式風力發電計畫環境影響說明書。臺北市:海洋風力發電股份有限公司。 海能風力發電股份有限公司(2020)海能離岸風力發電計畫環境影響說明書環境影響調查報告書。臺中市:海能風力發電股份有限公司。 海能風力發電股份有限公司(2023)海能離岸風力發電計畫環境影響調查報告書〔含具體可行之風機降轉(停機)機制〕。臺中市:海能風力發電股份有限公司。 海能風力發電股份有限公司籌備處(2017)海能離岸風力發電計畫環境影響說明書。臺中市:海能風力發電股份有限公司。 涂聰賢、游培堯、唐文元、鍾秋峰(2016)風力發電機噪音調查技術與探討。應用聲學與振動學刊,8(1&2),27-32。 馬小康、唐敏(2005)我國風力發電技術之評估及建議。工業污染防治,94,85-116。 國立臺灣大學生物多樣性研究中心(2021)「110 年度臺灣保育類海鳥開發衝擊因應措施評估計畫」案成果報告書。海洋委員會海洋保育署。 國家發展委員會經濟發展處(2022)。臺灣淨零排放路徑關鍵戰略。台灣經濟論衡,20(3),4-7。 張安瑜、呂翊維、陳宛均(2018)利用eBird線上賞鳥資料庫重新界定臺灣重要水鳥棲地。自然保育季刊,(104),4-15。 陳彥豪、劉兆歡、簡于萱、林輝政、左峻德(2015)台灣離岸風力及海洋能源技術產業發展展望。臺灣經濟研究月刊,38(12),61-72。 陳美蘭、胡哲魁(2014)台灣地區風能評估與離岸風電開發潛能分析。中華技術,103,38-49。 經濟部能源局(2014)。〈風力發電單一服務窗口〉。https://www.twtpo.org.tw/offshore_show.aspx?id=18。2024/04/08檢索。 經濟部能源局(2016)2016年能源產業技術白皮書。 經濟部能源局(2021)離岸風力發電區塊開發場址容量分配作業要點。 經濟部能源署(2024)能源統計月報4-02 再生能源裝(設)置容量。 鄒逸錚、陳俞婷(2023)從全球綠能發展契機,展望我國綠電市場發展及產業布局。臺灣經濟研究月刊,46(3),62-72。 彰化雲林外海離岸風電計畫16家開發單位(2019)彰化雲林地區離岸式風力發電計畫環境影響調查報告。 彰化雲林外海離岸風電計畫16家開發單位(2020)彰化雲林地區離岸式風力發電計畫環境影響調查報告書。 彰芳風力發電股份有限公司(2018)彰芳風場2022年9-11月環境監測報告。彰化縣:彰芳風力發電股份有限公司。 彰芳風力發電股份有限公司(2019)彰化彰芳離岸風力發電計畫環境影響說明書變更內容對照表(變更環境保護對策及施工前環境監測計畫)。彰化縣:彰芳風力發電股份有限公司。 彰芳風力發電股份有限公司(2019)彰芳風場2019年6-8月環境監測報告。彰化縣:彰芳風力發電股份有限公司。 彰芳風力發電股份有限公司(2020)彰化彰芳離岸風力發電計畫環境影響說明書環境影響調查報告書。彰化縣:彰芳風力發電股份有限公司。 彰芳風力發電股份有限公司(2020)彰化彰芳離岸風力發電計畫環境影響調查報告書。彰化縣:彰芳風力發電股份有限公司。 彰芳風力發電股份有限公司(2022)彰芳風場2022年3-5月環境監測報告。彰化縣:彰芳風力發電股份有限公司。 彰芳風力發電股份有限公司籌備處(2018)彰化彰芳離岸風力發電計畫環境影響說明書。彰化縣:彰芳風力發電股份有限公司。 彰芳暨西島離岸風場(2023)彰芳暨西島風場完成全數62座水下基礎安裝作業。https://www.cfxd.com.tw/news.php?lang=tw&idx=101 蕭木吉、李政霖。2021。臺灣野鳥手繪圖鑑。農委會林務局。臺北,臺灣。 4C Offshore (2014) Global Wind Speed Rankings. http://www.4coffshore.com/windfarms/windspeeds.aspx Adedoyin, F. F., Ozturk, I., Agboola, M. O., Agboola, P. O., Festus, V. B. (2021) The implications of renewable and non-renewable energy generating in Sub-Saharan Africa: The role of economic policy uncertainties. Energy Policy, 150(C). Adger, W. N. (2006) Vulnerability. Global Environmental Change, 16(3): 268-281. Ainley, D. G., Porzig, E., Zajanc, D., Spear, L. B. (2015) Seabird flight behavior and height in response to altered wind strength and direction. Marine Ornithology, 43: 25-36. Alerstam, T., Rosén M., Bäckman, J., Ericson, P. G. P, Hellgren, O. (2007) Flight Speeds among Bird Species: Allometric and Phylogenetic Effects. PLoS Biology, 5(8): e197. Alexana, C., Smetzer, J. R., Welch, L., Baker, E. (2017) A Markov model for planning and permitting offshore wind energy: A case study of radio-tracked terns in the Gulf of Maine, USA. Journal of Environmental Management, 193: 400-409. Bailey, H., Brookes, K. L., Thompson, P. M. (2014) Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquatic Biosystem, 10(8). Bamford, M., Watkins, D., Bancroft, W., Tischler, G., Wahl, J. (2008) Migratory Shorebirds of the East Asian-Australasian Flyway; Population Estimates and Internationally Important Sites. Canberra, Australia: Wetlands International - Oceania. Band, B. (2012) Using a Collision Risk Model to Assess Bird Collision Risks for Offshore Wind Farms. SOSS report, The Crown Estate. Band, W. (2000) Windfarms and Birds: Calculating a Theoretical Collision Risk Assuming No Avoiding Action. Scottish Natural Heritage. Band, W., Madders, M., Whitfield, D.P. (2007) Developing Field and Analytical Methods to Assess Avian Collision Risk at Wind Farms. Birds and Wind Power, 259-275. Baroni, G., Tarantola, S. (2014) A general probabilistic framework for uncertainty and global sensitivity analysis of deterministic models: a hydrological case study. Environmental Modelling & Software, 51: 26-34. Beven, K. (1993) Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resource, 16: 41-51. Bishop, J., McKay, H., Parrott, D., Allan, J. (2003) Review of international research literature regarding the effectiveness of auditory bird scaring techniques and potential alternatives. Food and rural affairs, 1-53. Broadbent, I. D., Nixon, C. L. B. (2019) Refusal of planning consent for the docking shoal offshore wind farm: stakeholder perspectives and lessons learned. Marine Policy, 110, Article103529. Bruderer, B., Boldt, A. (2001) Flight characteristics of birds, Ibis, 143: 178-204. Brundtland, G. H. (1987) Our Common Future: Report of the World Commission on Environment and Development. Geneva, UN-Document A/42/427. Burger, J., Gordon, C., Lawrence, J., Newman, J., Forcey, G., Vlietstra, L. (2011) Risk evaluation for federally listed (roseate tern, piping plover) or candidate (red knot) bird species in offshore waters: A first step for managing the potential impacts of wind facility development on the Atlantic Outer Continental Shelf. Renewable Energy, 36(1): 338-351. Burger, J., Niles, L. J., Porter, R. R., Dey, A. D., Koch, S., Gordon, C. (2012) Using a shore bird (red knot) fitted with geolocators to evaluate a conceptual risk model focusing on offshore wind. Renewable Energy, 43: 370-377. Busch, M., Garthe, S. (2016) Approaching population thresholds in presence of uncertainty: Assessing displacement of seabirds from offshore wind farms. Environmental Impact Assessment Review, 56: 31-42. Busch, M., Garthe, S. (2017) Looking at the bigger picture: the importance of considering annual cycles in impact assessments illustrated in a migratory seabird species. ICES Journal of Marine Science, 75(2): 690-700. Busch, M., Kannen, A., Garthe, S., Jessopp, M. (2013) Consequences of a cumulative perspective on marine environmental impacts: Offshore wind farming and seabirds at North Sea scale in context of the EU Marine Strategy Framework Directive. Ocean & Coastal Management, 71: 213-224. Butler, M. P., Reed, P. M., Fisher-Vanden, K., Keller, K., Wagener, T. (2014) Identifying parametric controls and dependencies in integrated assessment models using global sensitivity analysis. Environmental Modelling and Software, 59: 10-29. Camphuysen, C., Fox, A., Leopold, M., Petersen, Ib. (2004) Towards standardised seabirds at sea census techniques in connection with environmental impact assessments for offshore wind farms in the U.K. Royal Netherlands Institute for Sea Research. Chamberlain, D. E., Rehfisch, M. R., Fox, A. D., Desholm, M., Anthony, S. J. (2006) The effect of avoidance rates on bird mortality predictions made by wind turbine collision risk models. Ibis, 148, 198-202. Christie, D., Urquhart , B. (2015) A refinement of the Band spreadsheet for wind turbine collision risk allowing for oblique entry. New Zealand Journal of Zoology, 42(4): 290-297. Cook, A. S. C. P., Burton, N. H. K., Humphreys, E. M., Masden, E. A. (2014) The Avoidance Rates of Collision Between Birds and Offshore Turbines. Scottish Marine and Freshwater Science, 5(16). Edinburgh: Scottish Government, 247p. Cook, A. S. C. P., Humphreys, E. M., Bennet, F., Masden, E. A., Burton, N. H.K. (2018) Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps. Marine Environmental Research, 140: 278-288. Cook, A., Johnston, A., Wright, L., Burton, N. (2012) A Review of Flight Heights and Avoidance Rates of Birds in Relation to Offshore Wind Farms. BTO Research Report, 618: 1-61. Cornell Lab (2024) All About Birds Common Tern. https://www.allaboutbirds.org/guide/Common_Tern/id Cornell Lab (2024) All About Birds Herring Gull. https://www.allaboutbirds.org/guide/Herring_Gull/id Cramp, S., Simmons, K. E. L. (1983) “Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic. Vol III. Waders to Gulls. Oxford University Press, Oxford. Dai, K., Bergot, A., Liang, C., Xiang, W. N., Huang, Z. (2015) Environmental issues associated with wind energy– a review Renewable Energy, 75: 911-921. de Lucas, M., Ferrer, M., Bechard, M. J., Muñoz, A. R. (2012) Griffon vulture mortality at wind farms in southern Spain: Distribution of fatalities and active mitigation measures Biological Conservation, 147(1): 184-189. de Lucas, M., Janss, G. F. E., Whitfield, D. P., Ferrer, M. (2008) Collision fatality of raptors in wind farms does not depend on raptor abundance. Journal of Applied Ecology, 45(6): 1695-1703. Demaria, E. M., Nijssen, B., Wagener, T. (2007) Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model. Journal of Geophysical Research: Atmospheres, 112(D11): D11113. Desholm, M. (2009) Avian sensitivity to mortality: Prioritising migratory bird species for assessment at proposed wind farms. Journal of Environmental Management, 90(8): 2672-2679. Desholm, M., Kahlert, J. (2005) Avian collision risk at an offshore wind farm. Biology Letters, 1(3): 296-298. Detect and track birds in 3D (configurable direction) Robin radar systems (2022) https://www.robinradar.com/3d-flex-radar-system-360-degrees Devenish, B. P. N., Johnson, F. B. T., Sparks, R. S. J., Thomson, D. J. (2012) Sensitivity analysis of dispersion modeling of volcanic ash from Eyjafjallajokull in May 2010. Journal of Geophysical Research: Atmospheres, 117(D20): D00U21. DHI (2022) MUSE. DHI Group. https://www.dhigroup.com/technologies/muse Dierschke, V., Furness, R. W., Garthe, S. (2016) Seabirds and offshore wind farms in European waters: Avoidance and attraction. Biological Conservation, 202: 59-68. Ding, T., Fu, S. (2024) A traits database of 454 bird species in Taiwan. Version 1.59. Taiwan Forestry Research Institute. Checklist dataset https://doi.org/10.15468/52qr34 Disney, H. I. (1974) “Topography, colours and measurements” in Bird in the Hand, Sydney: Bird Banders' Association of Australia, pp. 5-6. Douglas, D. J. T., Follestad, A., Langston, R. H. W., Pearce-Higgins, J. W. (2012) Modelled sensitivity of avian collision rate at wind turbines varies with number of hours of flight activity input data. Ibis, 154: 858-861. Drewitt, A. L., Langston, R. H. W. (2006) Assessing the impacts of wind farms on birds. Ibis, 148(1): 29-42. Eichhorn, M., Johst, K., Seppelt, R., Drechsler, M. (2012) Model-based estimation of collision risks of predatory birds with wind turbines. Ecology and Society, 17(2): 1-12. Everaert J., Lommelen E., Carmen R., Loos J., Van De Walle M., Verstraete H. (2022). Onderzoeksprogramma 2021-2025 voor het uitvoeren van radaronderzoek naar de effecten van windturbines op vogels en vleermuizen. Resultaten van het verkennend onderzoek in 2021. Rapporten van het Instituut voor Natuur- en Bosonderzoek 2022 (12). Brussel: Instituut voor Natuuren Bosonderzoek. Everaert, J. (2014) Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study, 61(2): 220-230. Everaert, J., Stienen, E. W. M. (2006) Impact of wind turbines on birds in Zeebrugge (Belgium). Biodiversity and Conservation in Europe, 7: 103-117. Ferrer, M., Alloing, A., Baumbush, R., Morandini, V. (2022) Significant decline of griffon vulture collision mortality in wind farms during 13-year of a selective turbine stopping protocol. Global Ecology and Conservation, 38(13): e02203. Fox, A. D., Desholm, M., Kahlert, J., Christensen, T. K., Petersen, IB Krag. (2006) Information needs to support environmental impact assessment of the effects of European marine offshore wind farms on birds. Ibis, 148(s1): 129-144. Furness, R. W., Garthe, S., Trinder, M., Matthiopoulos, J., Wanless, S., Jeglinski, J. (2018) Nocturnal flight activity of Northern Gannets Morus bassanus and implications for modelling collision risk at offshore wind farms. Environmental Impact Assessment Review, 73:1-6. Furness, R. W., Wade, H. M., Masden, E. A. (2013) Assessing vulnerability of marine bird populations to offshore wind farms. Journal of Environmental Management, 119: 56-66. Garcia-Rosa, P. B., Tande, J. O. G. (2023) Mitigation measures for preventing collision of birds with wind turbines. Journal of Physics: Conference Series, 2626 012072 Garthe, S., Hüppop, O. (2004) Scaling possible adverse effects of marine wind farms on seabirds: developing and applying a vulnerability index. The Journal of Applied Ecology, 41: 724-734. Gill, J. P., Sales, D., Pullinger, M., Durward, J. (2002) The Potential Ornithological Impact of the Proposed Kentish Flats Offshore Wind farm. Ornithological Technical Addendum. Report to GREP UK Marine Ltd. Edinburgh, UK: Environmentally Sustainable Systems. Goodale, M. W., Milman, A. (2016) Cumulative adverse effects of offshore wind energy development on wildlife. Journal of Environmental Planning and Management, 59(1): 1-21. Grznár, P., Gregor, M., Mozol, Š., Mozolová, L., Krump, H., Mizerák, M., Trojan, J. (2024) A Comprehensive Analysis of Sensitivity in Simulation Models for Enhanced System Understanding and Optimisation. Processes, 12(4): 716. Gupta, H. V., Wagener, T., Liu, Y. (2008) Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes, 22(18): 3802-3813. Gustin, M., Giglio, G., Pellegrino, S. C., Frassanito, A., Ferrarini, A. (2018) Nocturnal flights lead to collision risk with power lines and wind farms in Lesser Kestrels: A preliminary assessment through GPS tracking. Computational Ecology and Software, 8: 15-22. Hamm, N. J., Anderson, H. M. (2006) Variance-based sensitivity analysis of the probability of hydrologically induced slope instability. Computers and Geosciences, 32(6): 803-817. Hanif, I., Aziz, B., Chaudhry, I. S. (2019) Carbon emissions across the spectrum of renewable and nonrenewable energy use in developing economies of Asia. Renewable Energy, 143: 586-595. Harper, E., Stella, J. C., Fremier, A. (2011) Global sensitivity analysis for complex ecological models: a case study of riparian cottonwood population dynamics. Ecological Applications, 21(4): 1225-1240. Harrison, P. (1983) Seabirds an identification guide. Houton Muffin Company, 488pp. Hedenström, A., Åkesson, S. (2016) Ecology of tern flight in relation to wind, topography and aerodynamic theory. Philosophical Transactions of the Royal Society B, 371(1704) Hedenström, A., Alerstam, T. (1992) Climbing Performance of Migrating Birds as A Basis for Estimating Limits for Fuel-Carrying Capacity and Muscle Work. The Journal of Experimental Biology, 164 (1): 19-38. Heinänen, S., Žydelis, R., Kleinschmidt, B., Dorsch, M., Burger, C., Morkūnas, J., Quillfeldt, P., Nehls, G. (2020) Satellite telemetry and digital aerial surveys show strong displacement of red-throated divers (Gavia stellata) from offshore wind farms. Marine Environmental Research 160: 104989. Hitachi (2024) HTW5.2-127 HTW5.2-136。https://www.hitachi.com.tw/products/business/industrial/wind-turbine/products/htw5000_126/index.html Hodos, W. (2003) Minimization of motion smear: Reducing avian collisions with wind turbines. National Renewable Energy Laboratory, NREL/SR-500-33249 Holmstrom, L., Hamer, T., Colclazier, E., Denis, N., Verschuyl, J. P., Ruche, D. (2011) Assessing avian–wind turbine collision risk: an approach angle dependent model. Wind Engineering, 35: 289-312. Howard, R. (1988) Decision analysis: practice and promise. Management Science, 34(6): 679-695. iNaturalist (2024) Common Tern. https://www.inaturalist.org/guide_taxa/858961 Janik, S., Szabo, P.. Mlkva, M., Marecek-Kolibisky, M. (2022) Effective Data Utilization in the Context of Industry 4.0 Technology Integration. Applied Science., 12, 10517. Johnston, A., Cook, A. S. C. P., Wright, L. J., Humphreys, E. M., Burton, N. H. K. (2014) Modelling flight heights of marine birds to more accurately assess collision risk with offshore wind turbines. Journal of Applied Ecology, 51(1): 31-41. Jongbloed, R. H. (2016) Flight Height of Seabirds. A Literature Study. Report C024/16. IMARES. Kelsey, E. C., Felis, J., Czapanskiy, J. M., Pereksta, D. M., Adams, J. (2018) Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf. Journal of Environmental Management, 227: 229-247. King, S., Maclean, I. M. D., Norman, T., Prior, A. (2009) Developing Guidance on Ornithological Cumulative Impact Assessment for Offshore Wind Farm Developers. Report for Collaborative Offshore Wind Research into the Environment (COWRIE) CIBIRD. Krijgsveld, K. L., Akershoek, K., Schenk, F., Dijk, F., Dirksen, S. (2009) Collision Risk of Birds with Modern Large Wind Turbines. Ardea, 97 (3): 357-366. Lane, J. V., Jeavons, R., Deakin, Z., Sherley, R. B., Pollock, C. J., Wanless, R. J., Hamer, K. C. (2020) Vulnerability of northern gannets to offshore wind farms; seasonal and sex-specific collision risk and demographic consequences. Marine Environmental Research, 162: 105196. Langston, R. H. W., Pullan, J. D. (2003) Windfarms and Birds : An analysis of the effects of windfarms on birds, and guidance on environmental assessment criteria and site selection issues. Convention on the conservation of European wildlife and natural habitats Standing Committee. Larsen, J. K., Madsen, J. (2000) Effects of wind turbines and other physical landscape elements on field utilization by pink-footed geese (Anser brachyrhynchus): A landscape perspective. Landscape Ecology, 15: 755-764. Lempert, R. S., Bankes, P. S. (2003) Shaping the Next One Hundred Years: New Methods for Quantitative, Long-term Policy Analysis. Monograph Reports MR-1626-RPC RAND Corp., Santa Monica, USA. Liddy, J. (1990) Wing length, wingspan and body length measurements of five birds at banding stations. Corella, 14(5): 148-155. Loss, S. R. (2016) Avian interactions with energy infrastructure in the context of other anthropogenic threats. The Condor, 118(2): 424-432. Madders, M. (2004) Proposed Wind Farms at Ben Aketil Edinbane, a Quantitative Collision Risk Model for Golden Eagle. BTO Research Report No. 401. Marden, J. H. (1987) Maximum Lift Production During Takeoff in Flying Animals. Journal of Experimental Biology, 130(1): 235-258. Marques, A. T., Batalha, H., Rodrigues, S., Costa, H., Pereira, M. J. R., Fonseca, C., Bernardino, J. (2014). Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biological Conservation, 179, 40-52. Masden, E. (2015) Developing an avian collision risk model to incorporate variability and uncertainty. Scottish Marine and Freshwater Science, 6(14): 43pp. Masden, E. A., Cook, A. S. C. P. (2016) Avian collision risk models for wind energy impact assessments. Environmental Impact Assessment Review, 56: 43-49. Masden, E. A., Cook, A. S. C. P., McCluskie, A., Bouten, W., Burton, N. H. K., Thaxter, C. B. (2021) When speed matters: The importance of flight speed in an avian collision risk model. Environmental Impact Assessment Review, 90: 106622. Masden, E. A., Haydon, D. T., Fox, A. D., Furness, R. W. (2010) Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds. Marine Pollution Bulletin, 60(7): 1085-1091. Masden, E. A., Haydon, D. T., Fox, A. D., Furness, R. W., Bullman, R., and Desholm, M. (2009) Barriers to movement: impacts of wind farms on migrating birds. ICES Journal of Marine Science, 66: 746-753. Masden, E. A., McCluskie, A., Owen, E., Langston, R. H. W. (2015) Renewable energy developments in an uncertain world: The case of offshore wind and birds in the UK. Marine Policy, 51: 169-172. May, R., Nygård, T., Falkdalen, U., Åström, J., Hamre, Ø., Stokke, B. G. (2020) Paint it black: Efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities. Ecology and Evolution, 10(16): 8927-8935. May, R., Reitan, O., Bevanger, K., Lorentsen, S. H., Nygård, T. (2015) Mitigating wind-turbine induced avian mortality: Sensory, aerodynamic and cognitive constraints and options. Renewable and Sustainable Energy Reviews, 42: 170-181. McAdam, B. J. (2005) A Monte-Carlo Model for Bird / Wind Turbine Collisions. Master of Science. University of Aberdeen. McClure, C. J. W., Rolek, B. W., Dunn, L., McCabe, J. D., Martinson, L., Katzner, T. (2021) Eagle fatalities are reduced by automated curtailment of wind turbines. Journal of Applied Ecology, 58(3): 446-452. McClure, C. J., Martinson, L., Allison, T. D. (2018) Automated monitoring for birds in flight: Proof of concept with eagles at a wind power facility. Biological Conservation, 224: 26-33. McGregor, R. M., King, S., Donovan, C. R., Caneco, B., Webb, A. (2018) A Stochastic Collision Risk Model for Seabirds in Flight. Marine Scotland, 61pp. Mendel, B., Schwemmer, P., Peschko, V., Müller, S., Schwemmer, H., Mercker, M., Garthe, S. (2019) Operational offshore wind farms and associated ship traffic cause profound changes in distribution patterns of Loons (Gavia spp.). Journal of Environmental Management, 231: 429-438. Mercker, M., Dierschke, V., Camphuysen, K., Kreutle, A., Markones, N., Vanermen, N., Garthe, S. (2021) An indicator for assessing the status of marine-bird habitats affected by multiple human activities: A novel statistical approach. Ecological Indicators, 130: 108036. Michigan State University (2024) Sterna hirundo Common tern. https://mnfi.anr.msu.edu/species/description/11039/Sterna-hirundo Mikael, K. (1990) Breeding biology of the Herring Gull Larus argentatus in the northern Baltic. Ornis Fennica, 67: 130-140. Mikami, K., Kazama, K., Kazama, M. T., Watanuki, Y. (2022) Mapping the collision risk between two gull species and offshore wind turbines: Modelling and validation. Journal of Environmental Management, 316: 115220. Moriarty, P., Honnery, D. (2012) What is the global potential for renewable energy? Renewable and Sustainable Energy Reviews, 16(1): 244-252. National Geographic (2024) Herring Gull. https://www.nationalgeographic.com/animals/birds/facts/herring-gull Nature Gate (2024) Common Tern. https://luontoportti.com/en/t/658/common-tern Nature Gate (2024) Herring Gull. https://luontoportti.com/en/t/495/herring-gull Nguyen, T., de Kok, J. (2007) Systematic testing of an integrated systems model for coastal zone management using sensitivity and uncertainty analyses. Environmental Modelling & Software, 22(11): 1572-1587. Nord University (2024) Bird ID Herring Gull (Larus argentatus). https://www.birdid.no/bird/eBook.php?specieID=1230 Norman, T., Truelsen, C., Heron, B., Kubitschek, R. (2015) Offshore Wind Expert environmental and engineering consultancy services. NIRAS. https://www.niras.com/media/bhqccslh/niras_offshore_wind_brochure_2021_small.pdf O'Brien, S. H., Cook, A. S. C. P., Robinson, R. A. (2017) Implicit assumptions underlying simple harvest models of marine bird populations can mislead environmental management decisions. Journal of Environmental Management, 201: 163-171. Painter, S., Little, B., Lawrence, S. (1999) Continuation of Bird Studies at Blyth Harbour Wind Farm and the Implications for Offshore Wind Farms. United Kingdom: DTI. Panwar, N. L., Kaushik, S. C., Kothari, S. (2011) Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3): 1513-1524. Pastres, R., Chan, K., Solidoro, C., Dejak, C. (1999) Global sensitivity analysis of a shallow-water 3D eutrophication model. Computer Physics Communications, 117: 62-74. Paton, F. L., Maier, H. R., Dandy, G. C. (2013) Relative magnitudes of sources of uncertainty in assessing climate change impacts on water supply security for the southern Adelaide water supply system. Water Resource Research, 49(3): 1643-1667. Pennycuick, C. J., Åkesson, S., Hedenström, A. (2013) Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory. Journal of the Royal Society Interface, 10(86): 20130419. Percival S. (2005) Birds and windfarms: What are the real issues? British Birds, 98(4): 194-204. Pescador, M., Gómez Ramírez, J. I., Peris, S. J. (2019) Effectiveness of a mitigation measure for the lesser kestrel (Falco naumanni) in wind farms in Spain. Journal of Environmental Management, 231: 919-925. Peschko, V., Mendel, B., Müller, S., Markones, N., Mercker, M., Garthe, S. (2020) Effects of offshore windfarms on seabird abundance: Strong effects in spring and in the breeding season. Marine Environmental Research, 162: 105157. Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., Wagener, T. (2016) Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79: 214-232. Pollock, C., Lane, J. J., Buckingham, V. L., Garthe, S., Jeavons, R., Furness, R. W., Hamer, K. C. (2021) Risks to different populations and age classes of gannets from impacts of offshore wind farms in the southern North Sea. Marine Environmental Research, 171: 105457. Saltelli, A., D'Hombres, B. (2010) Sensitivity analysis didn't help. A practitioner's critique of the stern review. Global Environmental Change, 20(2): 298-302. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S. (2008) Global Sensitivity Analysis. The Primer. Chichester (England): Wiley. Schaub, T., Klaasen, R. H. G., Bouten, W., Schlaich, A. E., Koks, B. J. (2020) Collision risk of Montagu’s Harriers Circus pygargus with wind turbines derived from high - resolution GPS tracking. Ibis, 162: 520-534. Scottish Natural Heritage (2005) Survey Methods for Use in Assessing the Impacts of Onshore Windfarms on Bird Communities. Edinburgh: Scottish Natural Heritage. Scottish Natural Heritage (2014) Flight Speeds and Biometrics for Collision Risk Modelling. Scottish Natural Heritage. https://www.nature.scot/doc/wind-farm-impacts-birds-flight-speeds-and-biometrics-collision-risk-modelling Scottish Wildlife Trust (2024) Herring Gull. https://scottishwildlifetrust.org.uk/species/herring-gull/ Sen, S., Ganguly, S. (2017) Opportunities, barriers and issues with renewable energy development – A discussion. Renewable and Sustainable Energy Reviews, 69: 1170-1181. Sen, S., Ganguly, S., Das, A., Sen, J., Dey, S. (2016) Renewable energy scenario in India: Opportunities and challenges. Journal of African Earth Science, 122: 25-31. Shang, Y., Sang, S., Tiwari, A. K., Khan, S., Zhao, X. (2024) Impacts of renewable energy on climate risk: A global perspective for energy transition in a climate adaptation framework. Applied Energy, 362, 122994. Shin, M. J., Guillaume, J. H., Croke, B. F., Jakeman, A. J. (2013) Addressing ten questions about conceptual rainfall–runoff models with global sensitivity analyses in R. Journal of Hydrology, 503: 135-152. Shiu, H. J. (1996) Summary Report on the Morphological Measurements of Bird Banding Studies Performed by the Chinese Wild Bird Federation between 1987 and 1995. Taiwania, 50(2): 80-92 Sieber, A., Uhlenbrook, S. (2005) Sensitivity analyses of a distributed catchment model to verify the model structure. Journal of Hydrology, 310(1–4): 216-235. Siebertz, K., van Bebber, D., Hochkirchen, T. (2010) Statistische Versuchsplanung—Design of Experiments (DoE). Springer: 341. Siemens Gamesa (2022) SWT-DD-120 Technical specifications. https://www.siemensgamesa.com/-/media/siemensgamesa/downloads/en/products-and-services/onshore/data-sheets/siemens-gamesa-onshore-wind-turbine-swt-dd-120-en.pdf Siemens Gamesa (2024) SG 8.0-167 DD Offshore wind turbine. https://www.siemensgamesa.com/products-and-services/offshore/wind-turbine-sg-8-0-167-dd Singh, R., Wagener, T., Crane, R., Mann, M., Ning, E. L. (2014) A vulnerability driven approach to identify adverse climate and land use change combinations for critical hydrologic indicator thresholds: application to a watershed in Pennsylvania, USA. Water Resources Research, 50: 3409-3427. Smales, I., Muir, S., Meredith, C., Baird, R. (2013) A description of the Biosis model to assess risk of bird collisions with wind turbines. Wildlife Society Bulletin, 37(1): 59-65. Smith, A., Vidao, J., Villar, S., Quillen, J., Davenport, J. (2011) Evaluation of a long range acoustic device (LRAD) for bird dispersal at el Pino Wind Farm, Spain. In: Proceedings of the Conference on Wind Energy and Wildlife Impacts, 2–5 May 2011, Trondheim, Norway. Södersved, J (2019) How Bird Radar Protects Endangered Birds at Finnish Offshore Wind Farm. Robin radar system. https://www.robinradar.com/blog/how-radar-protects-endangered-birds-at-finnish-offshore-wind-farm Sorooshian, S., Farid, A. (1982) Response surface parameter sensitivity analysis methods for postcalibration studies. Water Resources Research, 18(5): 1531-1538. Stienen, E. W. M., van Waeyenberge, J., Kuijken, E., Seys, J. (2007) Trapped within the corridor of the southern North Sea: The potential impact of offshore wind farms on seabirds. Institute of Nature Conservation, 25: 71-80. Stokke, B. G., Nygård, T., Falkdalen, U., Pedersen, H. C., May, R. (2020) Effect of tower base painting on willow ptarmigan collision rates with wind turbines. Ecology and Evolution, 10(12): 5670-5679. Sugimoto, H., Matsuda, H. (2011) Collision risk of white-fronted geese with wind turbines. Ornithological Science, 10(1): 61-71. Thai National Parks (2024) Common Tern. https://www.thainationalparks.com/species/common-tern Thaxter, C. B., Buchanan, G. M., Carr, J., Butchart, S. H. M., Newbold, T., Green, R. E., Tobias, J. A., Foden, W. B., O'Brien, S., Pearce-Higgins, J. W. (2017) Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proceedings of the Royal Society B: Biological Sciences, 284(1862): 20170829. Thaxter, C. B., Ross-Smith, V. H., Bouten, W., Clark, N. A., Conway, G. J., Rehfisch, M. M., Burton, N. H. K. (2015) Seabird–wind farm interactions during the breeding season vary within and between years: A case study of lesser black-backed gull Larus fuscus in the UK. Biological Conservation, 186: 347-358. The Royal Society for the Protection of Birds (2024) Common Tern. https://www.rspb.org.uk/birds-and-wildlife/common-tern The Royal Society for the Protection of Birds (2024) Herring Gull. https://www.rspb.org.uk/birds-and-wildlife/herring-gull The Wind Power (2018) SWT-6.0-154. https://www.thewindpower.net/turbine_en_807_siemens_swt-6.0-154.php Therkildsen, O. R., Balsby, T. J. S., Kjeldsen, J. P., Nielsen, R. D., Bladt, J., Fox, A. D. (2021) Changes in flight paths of large-bodied birds after construction of large terrestrial wind turbines. Journal of Environmental Management, 290: 112647. Tien Li Offshore Wind Technology (2024) V174-9.5MW. https://www.tien-li.com/v174-9-5mw/ Tucker, V. A. (1996). Using a Collision Model to Design Safer Wind Turbine Rotors for Birds. Journal of Solor Energy Engineering, 118(4): 263-269. Usman, M., Balsalobre-Lorente, D. (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Energy Policy, 162. van Werkhoven, K., Wagener, T., Reed, P., Tang, Y. (2009) Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models. Advances in Water Resources, 32(8), 1154-1169. Vanermen, N., Onkelinx, T., Courtens, W., de walle, M. V., Verstraete, H., Stienen, E. W. M. (2015) Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia, 756: 51-61. Veasey, J., Metcalfe, N., Houston, D. (1998) A reassessment of the effect of body mass upon flight speed and predation risk in birds. Animal Behaviour, 56(4): 883-889. Wang, S., Wang, S., Smith, P. (2015) Ecological impacts of wind farms on birds: Questions, hypotheses, and research needs. Renewable and Sustainable Energy Reviews, 44: 599-607. Wilby, R. L., Dessai, S. (2010) Robust adaptation to climate change. Weather, 65(7): 180-185. Winkelman, J. E. (1992) The Impact of the Sep Wind Park Near Oosterblerum , Friesland, the Netherlands, on Birds. RIN report no. 92/2. Yong, D. L., Jain, A., Liu, Y., Iqbal, M., Choi, C. Y., Crockford, N. J., Millington, S., Provencher, J. (2018) Challenges and opportunities for transboundary conservation of migratory birds in the East Asian-Australasian flyway. Conservation Biology, 32(3): 740-743. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93871 | - |
| dc.description.abstract | 離岸風電為臺灣政府大力支持的再生能源開發計畫之一,然而臺灣海峽也是全球重要候鳥遷徙路線,離岸風電將有可能對遷徙候鳥與本地海鳥帶來撞擊風險之威脅。在環境影響評估中常利用Band Model撞擊風險模型推估潛在鳥類撞擊數量。由於許多輸入參數收集不易,資料上的不確定性將影響評估結果之可信度。因此,本研究針對Band Model撞擊風險模型之基礎模型Option2以及擴展模型Option3進行敏感性分析,並以臺灣海峽之過境鳥普通燕鷗(Sterna hirundo)與冬候鳥銀鷗(Larus argentatus)為例,分別以單因子敏感性分析(One At a Time)以及全因子敏感性分析(All At a Time)對提升撞擊風險模型之方向調整Band Model撞擊風險模型之輸入數值10%,並分析參數調整前後相對於未經調整之變化程度。研究結果發現Band Model撞擊風險模型對於鳥類迴避率最為敏感。在基礎模型中,當迴避率僅調降10%,普通燕鷗撞擊風險模型輸出結果相對於未經調整前改變為1024.96%,銀鷗撞擊風險變異程度更高達2545.00%。此外,扇葉掃掠範圍低點高程(非掃掠範圍輪轂高度)、風機運轉時間比例以及鳥類密度亦對於Band Model撞擊風險模型極具影響力。綜上所述,本研究建議未來應盡速對本地鳥種進行詳實之鳥類調查,並針對迴避率、鳥類飛行高度、夜間飛行活動比例等輸入建置本地鳥類行為之資料集。另建議避免使用固定之迴避率輸入數值,使環境生態影響評估能納入資料變異所造成的不確定性,力求反映臺灣海峽鳥類撞擊風險之真實情形。 | zh_TW |
| dc.description.abstract | Offshore wind power is one of the renewable energy development projects strongly supported by the Taiwan government. However, the Taiwan Strait is also a crucial migratory route for birds globally, and offshore wind power may pose a threat to migrating birds and local seabirds. According to environmental impact assessments in Taiwan, the Band Model has often been used to estimate the potential risk of bird collisions. However, the input parameters used in the collision risk model were often difficult to obtain, and uncertainties might affect the accuracy of the assessment results. Therefore, this study conducted a sensitivity analysis of the Band Model's basic model (Option 2) and extended model (Option 3), using Common Tern (Sterna hirundo), a transient species , and Herring Gull (Larus argentatus), a wintering species in the Taiwan Strait, as examples. This study adjusted the input parameters of the Band Model using the One At a Time (OAT) and All At a Time (AAT) methods, and analyzed the relative changes of collision risk before and after parameter adjustments compared to the output of the original model.The results of the study found that the Band Model is most sensitive to avoidance rate. In the basic model, when the avoidance rate was reduced by only 10%, the output results of the Common Tern collision risk changed by 1024.96%, and the Herring Gull collision risk changed even more dramatically by 2545.00%. Additionally, factors such as the Hub Height Add (the height of the lower tip of the turbine blade), turbine operational time, and bird density significantly impacted the Band Model's collision risk estimates. In summary, this study recommends conducting detailed bird surveys for local bird assemblage and establishing datasets on local bird behaviors, especially avoidance rates, flight heights, and nocturnal activities. Furthermore, it is advised to avoid using fixed avoidance rate, so that environmental impact assessments can incorporate the uncertainties caused by data variations, striving to reflect the true collision risks for birds in the Taiwan Strait. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:40:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:40:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 一、前言 1
二、材料與方法 8 (一)研究區域 8 1. 臺灣海峽 8 2. 風場選擇 9 (二)Band Model撞擊風險模型 12 1. Band Model撞擊風險模型之分類 12 2. Band Model之計算 13 (三)鳥類介紹 24 1. 普通燕鷗 24 2.銀鷗 25 (四)撞擊風險模型輸入參數 26 1. 鳥類輸入參數 26 2. 風機輸入參數 38 (五)敏感性分析 45 1. 敏感性分析介紹 45 2. 敏感性分析執行步驟 46 三、結果 48 (一)單因子敏感性分析 48 1.普通燕鷗 48 2.銀鷗 50 3. 迴避率輸入數值調整幅度與輸出結果變異程度之關聯性 54 (二)全因子敏感性分析 58 1.普通燕鷗 58 2.銀鷗 66 四、討論 75 (一)單因子敏感性分析結果探討 75 (二)基礎模型與擴展模型之差異探討 79 (三)參數間交互作用 81 (四)普通燕鷗與銀鷗之比較差異 83 (五)輸入數值調整幅度與輸出結果變異程度之關聯性 85 (六)當前用於離岸風場環境之避免撞擊緩衝策略 87 (七)離岸風場對於鳥類生態之綜合影響 89 (八)本研究當前限制 91 五、結論 94 六、引用文獻 96 附錄 113 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 再生能源 | zh_TW |
| dc.subject | 迴避行為 | zh_TW |
| dc.subject | 環境影響評估 | zh_TW |
| dc.subject | 撞擊風險 | zh_TW |
| dc.subject | 海鳥 | zh_TW |
| dc.subject | 離岸風場 | zh_TW |
| dc.subject | environmental impact assessment | en |
| dc.subject | offshore wind farm | en |
| dc.subject | collision risk | en |
| dc.subject | renewable energy | en |
| dc.subject | seabirds | en |
| dc.subject | avoidance behavior | en |
| dc.title | 臺灣離岸風場鳥類撞擊風險模型之敏感性分析 | zh_TW |
| dc.title | Sensitivity Analyses of Bird Collision Risk Models in Taiwanese Offshore Wind Farms | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林瑞興;李培芬;許富雄;孫元勳 | zh_TW |
| dc.contributor.oralexamcommittee | Ruey-Shing Lin;Pei-Fen Lee;Fu-Hsiung Hsu;Yuan-Hsun Sun | en |
| dc.subject.keyword | 迴避行為,海鳥,再生能源,撞擊風險,離岸風場,環境影響評估, | zh_TW |
| dc.subject.keyword | avoidance behavior,seabirds,renewable energy,collision risk,offshore wind farm,environmental impact assessment, | en |
| dc.relation.page | 122 | - |
| dc.identifier.doi | 10.6342/NTU202403095 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 3.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
