請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93869
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林啟萬 | zh_TW |
dc.contributor.advisor | Chii-Wann Lin | en |
dc.contributor.author | 陳竣森 | zh_TW |
dc.contributor.author | Jun-Sen Chen | en |
dc.date.accessioned | 2024-08-08T16:39:55Z | - |
dc.date.available | 2024-08-09 | - |
dc.date.copyright | 2024-08-08 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-04 | - |
dc.identifier.citation | 1. Cardiovascular diseases. 2021: World Health Organization.
2. What is Cardiovascular Disease? American Heart Association, 2024. 3. About Heart Disease, D.f.H.D.a.S.P. National Center for Chronic Disease Prevention and Health Promotion Editor. 2023. 4. Atrial Fibrillation What Is Atrial Fibrillation? National Heart, Lung, and Blood Institute, 2022. 5. Brundel, B.J.J.M., et al., Atrial fibrillation. Nature Reviews Disease Primers, 2022. 8(1): p. 21. 6. 陳儒逸 The impact of atrial fibrillation on public health (prevalence and embolic stroke rate). 臺灣醫學會, 2018. 7. 三軍總醫院 心房震動簡介. 三軍總醫院. 8. Romero, I., S. Nedios, and C. Kriatselis, Diagnosis and Management of Atrial Fibrillation: An Overview. Cardiovascular Therapeutics, 2014. 32(5): p. 242-252. 9. Jamison, D.T., et al., Disease Control Priorities in Developing Countries, 2nd edition. 2006: Oxford University Press. 10. Arrhythmia. American Heart Association, 2022. 11. What Is an Arrhythmia? National Heart, Lung, and Blood Institute, 2022. 12. Fu, D.G., Cardiac Arrhythmias: Diagnosis, Symptoms, and Treatments. Cell Biochem Biophys, 2015. 73(2): p. 291-296. 13. Blood Tests. National Heart, Lung, and Blood Institute, 2022. 14. Omerovic, S. and A. Jain, Echocardiogram. 2023, StatPearls [Internet]. 15. Tseng, W.Y., M.Y. Su, and Y.H. Tseng, Introduction to Cardiovascular Magnetic Resonance: Technical Principles and Clinical Applications. Acta Cardiol Sin, 2016. 32(2): p. 129-44. 16. Fenton, F.H., E.M. Cherry, and L. Glass, Cardiac arrhythmia. Scholarpedia, 2008. 3(7): p. 1665. 17. Desai, D.S. and S. Hajouli, Arrhythmia. 2023, StatPearls [Internet]. 18. Camm, A.J., et al., Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Europace, 2010. 12(10): p. 1360-420. 19. Wyndham, C.R., Atrial fibrillation: the most common arrhythmia. Tex Heart Inst J, 2000. 27(3): p. 257-67. 20. What is Atrial Fibrillation? American Heart Association, 2023. 21. Svennberg, E., How to Treat Patients With First-Diagnosed Atrial Fibrillation. Journal of the American College of Cardiology, 2022. 80(4): p. 296-298. 22. Atrial Fibrillation. 2022: Centers for Disease Control and Prevention. 23. Nesheiwat, Z., A. Goyal, and M. Jagtap, Atrial Fibrillation. 2023, StatPearls [Internet]. 24. Ludhwani, D. and J.S. Wieters, Paroxysmal Atrial Fibrillation. 2023, StatPearls [Internet]. 25. 心房顫動 Atrial fibrillation, Af. 醫學紀實, 2018. 26. Einthoven, W., Ueber die Form des menschlichen Electrocardiogramms. Pflügers Archiv European Journal of Physiology, 1895. 60(3): p. 101-123. 27. Einthoven, W., The telecardiogramme. Arch Int Physiol, 1906. 4: p. 132-141. 28. Saini, S.K. and R. Gupta, Artificial intelligence methods for analysis of electrocardiogram signals for cardiac abnormalities: State-of-the-art and future challenges. Artificial Intelligence Review, 2022. 55(2): p. 1519-1565. 29. Rahul, J. and L.D. Sharma, Automatic cardiac arrhythmia classification based on hybrid 1-D CNN and Bi-LSTM model. Biocybernetics and Biomedical Engineering, 2022. 42(1): p. 312-324. 30. Luz, E.J., et al., ECG-based heartbeat classification for arrhythmia detection: A survey. Comput Methods Programs Biomed, 2016. 127: p. 144-64. 31. Chen, W., Electrocardiogram, in Seamless Healthcare Monitoring. 2018. p. 3-44. 32. Sattar, Y. and L. Chhabra, Electrocardiogram. 2023, StatPearls [Internet]. 33. Drew, B.J., et al., Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS One, 2014. 9(10): p. e110274. 34. Serhal, H., et al., Overview on prediction, detection, and classification of atrial fibrillation using wavelets and AI on ECG. Comput Biol Med, 2022. 142: p. 105168. 35. Islam, T., et al., Analysis of Arrhythmia Classification on ECG Dataset, in 2022 IEEE 7th International conference for Convergence in Technology (I2CT). 2022. p. 1-6. 36. Parvaneh, S., et al., Cardiac arrhythmia detection using deep learning: A review. J Electrocardiol, 2019. 57S: p. S70-S74. 37. Ebrahimi, Z., et al., A review on deep learning methods for ECG arrhythmia classification. Expert Systems with Applications: X, 2020. 7. 38. AbdElminaam, D.S., et al., DeepECG :Building an Efficient Framework for Automatic Arrhythmia classification model, in 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). 2022. p. 203-209. 39. Adasuriya, G. and S. Haldar, Next Generation ECG: The Impact of Artificial Intelligence and Machine Learning. Current Cardiovascular Risk Reports, 2023. 17(8): p. 143-154. 40. Harmon, D.M., et al., Artificial Intelligence for the Detection and Treatment of Atrial Fibrillation. Arrhythm Electrophysiol Rev, 2023. 12: p. e12. 41. Khan, A., et al., A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 2020. 53(8): p. 5455-5516. 42. Li, Z., et al., A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans Neural Netw Learn Syst, 2022. 33(12): p. 6999-7019. 43. Yildirim, O., et al., Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med, 2018. 102: p. 411-420. 44. He, R., et al., Automatic Detection of Atrial Fibrillation Based on Continuous Wavelet Transform and 2D Convolutional Neural Networks. Front Physiol, 2018. 9: p. 1206. 45. Abdalla, F.Y.O., et al., Deep convolutional neural network application to classify the ECG arrhythmia. Signal, Image and Video Processing, 2020. 14(7): p. 1431-1439. 46. Ahmed, A.A., et al., Classifying Cardiac Arrhythmia from ECG Signal Using 1D CNN Deep Learning Model. Mathematics, 2023. 11(3). 47. Chen, T.M., et al., Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model. iScience, 2020. 23(3): p. 100886. 48. Moody, G.B. and R.G. Mark, The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag, 2001. 20(3): p. 45-50. 49. Khalaf, A.J. and S.J. Mohammed, Verification and comparison of MIT-BIH arrhythmia database based on number of beats. International Journal of Electrical and Computer Engineering (IJECE), 2021. 11(6). 50. FDA Software as a Medical Device (SaMD). Food and Drug Administration, 2024. 51. FDA Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. Food and Drug Administration, 2024. 52. FDA, Eko Low Ejection Fraction Tool, F. Food and Drug Administration, Editor. 2024. 53. A Breakthrough in Low EF Detection. Eko Health, 2024. 54. FDA, medium-term adjunctive predictive cardiovascular indicator, F. Food and Drug Administration, Editor. 2024. 55. CLEW Medical receives FDA approval for AI-based tech to support adult ICU patient assessment. Clew Medical 2024. 56. FDA, LINQ II Insertable Cardiac Monitor, F. Food and Drug Administration, Editor. 2024. 57. LINQ II™ insertable cardiac monitor for cardiac monitoring. Medtronic, 2024. 58. Neha, et al., Arrhythmia detection and classification using ECG and PPG techniques: a review. Phys Eng Sci Med, 2021. 44(4): p. 1027-1048. 59. Alian, A.A. and K.H. Shelley, Photoplethysmography. Best Practice & Research Clinical Anaesthesiology, 2014. 28(4): p. 395-406. 60. Elgendi, M., et al., The use of photoplethysmography for assessing hypertension. NPJ digital medicine, 2019. 2(1): p. 60. 61. Phan, K.D., T.T. Luu, and D.A. Huynh, PPG Signal and application in the medical field. Science & Technology Development Journal - Engineering and Technology, 2023. 62. Wu, J.X., et al., Bilateral photoplethysmography for peripheral arterial disease screening in haemodialysis patients using astable multivibrator and machine learning classifier. IET Science, Measurement & Technology, 2019. 13(9): p. 1277-1286. 63. Williams, G.J., et al., Wearable technology and the cardiovascular system: the future of patient assessment. Lancet Digit Health, 2023. 5(7): p. e467-e476. 64. Jing, H. How Convolutional Layers Work in Deep Learning Neural Networks? 65. Hapke, H., C. Howard, and H. Lane, Natural Language Processing in Action: Understanding, analyzing, and generating text with Python. 2019: Simon and Schuster. 66. Khan, A.A., et al., Crowd anomaly detection in video frames using fine-tuned AlexNet model. Electronics, 2022. 11(19): p. 3105. 67. 12 Lead ECG Placement Guide | Cables & Sensors. Cables & Sensors. 68. MAX86150 Datasheet and Product Info. 2019. 69. Guiñón, J.L., et al., Moving Average and Savitzki-Golay Smoothing Filters Using Mathcad. 2007. 70. Smith, S.W., The Scientist and Engineer's Guide to Digital Signal Processing. 1999. 71. Raghavan, J., A modified CNN-Based face recognition system. International Journal of Artificial Intelligence and Applications (IJAIA), 2021. 12(2). 72. Martinez, M. and R. Stiefelhagen. Taming the cross entropy loss. in Pattern Recognition: 40th German Conference, GCPR 2018, Stuttgart, Germany, October 9-12, 2018, Proceedings 40. 2019. Springer. 73. Asadi, B. and H. Jiang, On approximation capabilities of ReLU activation and softmax output layer in neural networks. arXiv preprint arXiv:2002.04060, 2020. 74. Bradshaw, T.J., et al., A Guide to Cross-Validation for Artificial Intelligence in Medical Imaging. Radiol Artif Intell, 2023. 5(4): p. e220232. 75. FDA, ECG 2.0 App electrocardiograph software for over-the-counter use, F. Food and Drug Administration, Editor. 2024. 76. FDA, Garmin ECG App electrocardiograph software for over-the-counter use, F. Food and Drug Administration, Editor. 2024. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93869 | - |
dc.description.abstract | 隨著醫療產業的進步,心臟相關疾病的預防以及治療都有明顯改善,但在面對心律不整(Arrhythmia)時其仍然是臨床和公衛方面的一大挑戰。由於節律的不規則使血液無法完全地從心臟輸出,很可能會形成血栓而導致最終造成中風。其中最常見的心律不整為心房震顫(Atrial fibrillation, AF),在臨床上的特徵表現為心房快速且不規律的異常收縮,估計至2050年患有心房震顫的人數將增加2到3倍。
有鑑於光體積變化描記圖的量測裝置相較於心電圖裝置在穿戴式裝置上的便利性,也可以進一步提供在血流動力學上的生理訊息,因此本研究嘗試利用兩者之間的同步訊號,結合深度學習演算法在一維卷積神經網路上進行心律不整的辨識訓練,希望能在特定心血管疾病種類上實現以PPG單獨判別心律不整的可行性。 在現行的研究中,已經有許多演算法應用在偵測、預測或是分類心房震顫在心電圖訊號上,以此為基礎,本研究收集不同演算法分析心房震顫相關的文獻,選擇最合適的卷積神經網路作為模型架構,透過臨床試驗實際收集心律不整患者之心電圖(Electrocardiogram)與光體積變化描記圖(Photoplethysmography)資料庫,將訊號經過Moving Average與Difference等前處理,最後分割片段以投入進行5-fold Nested Cross Validation訓練,並進一步將訓練好的模型嘗試讀取PPG訊號達到實際偵測心律不整。 最終在訓練結果顯示出,透過心電圖與光體積變化描記圖兩種訊號之下,共同訓練的模型可以達到98.5 %的辨識準確率,實現在症狀發作前或是沒有任何明顯異常的表現當中,以PPG單獨判別心律不整的可行性,並在不同種類的辨識情況下同樣具備高準確率,初步證實透過多種心臟生理資訊有助於患者達到更精確的判別。 未來可以將辨識模型結合穿戴式裝置應用在需要長時間監測的患者上,並進一步持續加強辨識模型,納入更多實際病患的訓練資料以及不同類型的異常心律種類,達到連續監測並且方便有效的心律不整演算法系統。 | zh_TW |
dc.description.abstract | With advancements in the medical industry, there have been significant improvements in the prevention and treatment of cardiovascular diseases. However, dealing with arrhythmias remains a major challenge in clinical and public health settings. The irregular heart rhythms can prevent blood from being fully pumped out of the heart, potentially leading to the formation of blood clots and eventual stroke. Atrial fibrillation (AF) is the most common type of arrhythmia, clinically characterized by rapid and irregular contractions of the atria. It has been estimated that the number of individuals with atrial fibrillation will double or triple by the year 2050.
Considering the convenience of wearable devices for photoplethysmography (PPG) measurements compared to electrocardiography devices, as well as the additional physiological information they provide on hemodynamics, this study attempts to use synchronized signals from both modalities and apply deep learning algorithms for arrhythmia recognition training. The aim is to achieve the feasibility of solely detecting arrhythmias using PPG in specific cardiovascular conditions. In current research, various algorithms have been applied to detect, predict, or classify atrial fibrillation in electrocardiogram (ECG) signals. Based on this, our study collects and analyzes literature on different algorithms related to atrial fibrillation. We select the most suitable convolutional neural network (CNN) as the model architecture. Through clinical trials, we collect ECG and PPG data from patients with arrhythmias. The signals are preprocessed with techniques such as moving average and difference, segmented, and inputted for training using 5-fold nested cross-validation. Furthermore, the trained models are attempted to be applied to PPG signals for the actual detection of arrhythmias. The results show that the model jointly trained with ECG and PPG signals achieved a recognition accuracy of 98.5%. This demonstrates the feasibility of using PPG alone to identify arrhythmias, even before the onset of symptoms or in the absence of any obvious abnormalities. Additionally, the model demonstrated high accuracy across different recognition scenarios, confirming that using multiple types of cardiac physiological information can help patients achieve more precise diagnoses. In the future, the recognition model can be integrated with wearable devices for continuous monitoring of patients requiring long-term monitoring, and further efforts can be made to continuously enhance the recognition model by incorporating more training data from actual patients and different types of abnormal rhythms, aiming for a continuous monitoring and convenient and effective arrhythmia algorithm system. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:39:55Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-08T16:39:55Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 目次 v 圖目次 vii 表目次 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.3 章節架構 5 第二章 文獻探討 6 2.1 心律不整 Arrhythmia 6 2.1.2 臨床診斷技術與判別標準 7 2.2 心電圖Electrocardiogram 8 2.3 演算法在心房震顫的研究 10 2.3.1卷積神經網路Convolutional Neural Network 13 2.3.2心律不整資料庫 16 2.3.3 FDA通過之支援AI/ML醫療設備 17 2.4 光體積變化描記圖Photoplethysmography 18 2.4.1 ECG與PPG比較 19 第三章 實驗方法 20 3.1 CNN模型建立 20 3.1.1 訓練所使用資料庫與訊號前處理 22 3.1.2 硬體開發環境與訓練參數 23 3.1.3 重現的模型表現 24 3.2 ECG & PPG的訓練 25 3.2.1 三總資料庫 25 3.2.1.1 收案儀器與流程 27 3.2.2 訓練流程 30 3.2.3 訊號前處理 31 3.2.3.1 Moving Average 31 3.2.3.2 Difference 32 3.2.3.3 Normalize 32 3.2.4 片段分割與資料擴增 33 3.2.5 CNN模型架構 34 3.2.6 CNN模型訓練方式 36 3.2.7 訓練驗證指標 38 3.3 模擬辨識 39 3.3.1 訊號前處理 40 第四章 研究結果 41 4.1 ECG & PPG訓練結果 41 4.1.1 模型選擇 43 4.2 模擬辨識結果 46 第五章 結論、討論與展望 56 5.1 結果討論 56 5.2 結論與展望 58 第六章 參考資料 60 | - |
dc.language.iso | zh_TW | - |
dc.title | 以深度卷積神經網路結合心電圖與光體積變化描記圖訊號在心律不整的判別應用 | zh_TW |
dc.title | Arrhythmia detection using deep convolutional neural network based on Electrocardiogram and Photoplethysmography Signals | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 趙福杉;施文彬 | zh_TW |
dc.contributor.oralexamcommittee | Fu-Shan Jaw;Shih-Wen Pin | en |
dc.subject.keyword | 心律不整,心房震顫,卷積神經網路,心電圖,光體積變化描記圖, | zh_TW |
dc.subject.keyword | Arrhythmia,Atrial Fibrillation,Convolutional Neural Network,Electrocardiogram,Photoplethysmography, | en |
dc.relation.page | 63 | - |
dc.identifier.doi | 10.6342/NTU202403238 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-07 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 醫學工程學系 | - |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。