Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93868
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊士進zh_TW
dc.contributor.advisorShih-Chin Yangen
dc.contributor.author柯以忻zh_TW
dc.contributor.authorYi-Cin Koen
dc.date.accessioned2024-08-08T16:39:35Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-08-03-
dc.identifier.citation[1] T. Jahns, "Getting Rare-Earth Magnets Out of EV Traction Machines: A review of the many approaches being pursued to minimize or eliminate rare-earth magnets from future EV drivetrains," IEEE Electrification Magazine, vol. 5, no. 1, pp. 6-18, 2017.
[2] C. Breyer et al., "On the History and Future of 100% Renewable Energy Systems Research," IEEE Access, vol. 10, pp. 78176-78218, 2022.
[3] J. W. Heim and R. L. Vander Wal, "NdFeB Permanent Magnet Uses, Projected Growth Rates and Nd Plus Dy Demands across End-Use Sectors through 2050: A Review," Minerals, vol. 13, no. 10,
[4] "Mineral commodity summaries 2022," in "Mineral Commodity Summaries," Reston, VA, Report 2022, 2022.
[5] "Mineral commodity summaries 2023," in "Mineral Commodity Summaries," Reston, VA, Report 2023, 2023.
[6] "Mineral commodity summaries 2024," in "Mineral Commodity Summaries," Reston, VA, Report 2024, 2024.
[7] J. D. Widmer, R. Martin, and M. Kimiabeigi, "Electric vehicle traction motors without rare earth magnets," Sustainable Materials and Technologies, vol. 3, pp. 7-13, 2015/04/01/ 2015.
[8] S. Zheng, X. Zhu, Z. Xiang, L. Xu, L. Zhang, and C. H. T. Lee, "Technology trends, challenges, and opportunities of reduced-rare-earth PM motor for modern electric vehicles," Green Energy and Intelligent Transportation, vol. 1, no. 1, p. 100012, 2022/06/01/ 2022.
[9] B. Poudel, E. Amiri, P. Rastgoufard, and B. Mirafzal, "Toward Less Rare-Earth Permanent Magnet in Electric Machines: A Review," IEEE Transactions on Magnetics, vol. 57, no. 9, pp. 1-19, 2021.
[10] I. Boldea, L. N. Tutelea, L. Parsa, and D. Dorrell, "Automotive Electric Propulsion Systems With Reduced or No Permanent Magnets: An Overview," IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5696-5711, 2014.
[11] S. Morimoto, "Trend of permanent magnet synchronous machines," IEEJ Transactions on Electrical and Electronic Engineering, vol. 2, no. 2, pp. 101-108, 2007/03/01 2007.
[12] D. G. Dorrell, M. F. Hsieh, and Y. Guo, "Unbalanced Magnet Pull in Large Brushless Rare-Earth Permanent Magnet Motors With Rotor Eccentricity," IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4586-4589, 2009.
[13] F. Li, K. Wang, J. Li, and H. J. Zhang, "Suppression of Even-Order Harmonics and Torque Ripple in Outer Rotor Consequent-Pole PM Machine by Multilayer Winding," IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, 2018.
[14] K. T. Chau, C. C. Chan, and C. Liu, "Overview of Permanent-Magnet Brushless Drives for Electric and Hybrid Electric Vehicles," IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2246-2257, 2008.
[15] T. A. Huynh, P. H. Chen, and M. F. Hsieh, "Analysis and Comparison of Operational Characteristics of Electric Vehicle Traction Units Combining Two Different Types of Motors," IEEE Transactions on Vehicular Technology, vol. 71, no. 6, pp. 5727-5742, 2022.
[16] H. K. Kim and J. Hur, "Dynamic Characteristic Analysis of Irreversible Demagnetization in SPM- and IPM-Type BLDC Motors," IEEE Transactions on Industry Applications, vol. 53, no. 2, pp. 982-990, 2017.
[17] J. Binder, M. Silvagni, S. Ferrari, B. Deusinger, A. Tonoli, and G. Pellegrino, "High-speed IPM Motors with Rotor Sleeve: Structural Design and Performance Evaluation," in 2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), 13-14 April 2023 2023, pp. 1-6.
[18] K. Tae-Jong, H. Sang-Moon, K. Kyung-Tae, J. Weui-Bong, and U. K. Chul, "Comparison of dynamic responses for IPM and SPM motors by considering mechanical and magnetic coupling," IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2818-2820, 2001.
[19] T. Windisch and W. Hofmann, "A comparison of a signal-injection method and a discrete-search algorithm for MTPA tracking control of an IPM machine," in 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), 8-10 Sept. 2015 2015, pp. 1-10.
[20] A. Vagati, G. Pellegrino, and P. Guglielmi, "Comparison between SPM and IPM motor drives for EV application," in The XIX International Conference on Electrical Machines - ICEM 2010, 6-8 Sept. 2010 2010, pp. 1-6.
[21] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, "Comparison of Induction and PM Synchronous Motor Drives for EV Application Including Design Examples," IEEE Transactions on Industry Applications, vol. 48, no. 6, pp. 2322-2332, 2012.
[22] X. Ge, Z. Q. Zhu, J. Li, and J. Chen, "A Spoke-Type IPM Machine With Novel Alternate Airspace Barriers and Reduction of Unipolar Leakage Flux by Step-Staggered Rotor," IEEE Transactions on Industry Applications, vol. 52, no. 6, pp. 4789-4797, 2016.
[23] W. Wu, Y. Sun, Y. Wu, S. Zong, and W. Wu, "Design and Analysis of Adjustable Flux Leakage Characteristics in IPM Synchronous Machine Based on Regression Orthogonal Method," in 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 16-18 Oct. 2020 2020, pp. 1-2.
[24] H. B. Duc, D. B. Minh, T. P. Minh, and V. D. Quoc, "Analytical Technique for Computation of the Back EMF and Electromagnetic Torque for IPM Motors," in 2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS), 21-24 Nov. 2022 2022, pp. 572-577.
[25] W. Wu, D. Lei, H. Zhang, and Z. Cui, "Rotor Saliency Ratio Analysis of Interior Permanent Magnet Synchronous Machines Considering Variable Leakage Flux Property," in 2022 IEEE 20th Biennial Conference on Electromagnetic Field Computation (CEFC), 24-26 Oct. 2022 2022, pp. 1-2.
[26] K. Akatsu, M. Arimitsu, and S. Wakui, "Design and Control of a Field Intensified Interior Permanent Magnet Synchronous Machine," IEEJ Transactions on Industry Applications, vol. 126, no. 7, pp. 827-834, 2006.
[27] C. Rongmin and J. Heshuai, "Iterative learning control method for permanent magnet synchronous liner motor based on vector control," in 2013 9th Asian Control Conference (ASCC), 23-26 June 2013 2013, pp. 1-6.
[28] L. Meng and X. Yang, "Comparative analysis of direct torque control and DTC based on sliding mode control for PMSM drive," in 2017 29th Chinese Control And Decision Conference (CCDC), 28-30 May 2017 2017, pp. 736-741.
[29] A. Mohan, M. Khalid, and A. C. Binojkumar, "Performance Analysis of Permanent Magnet Synchronous Motor under DTC and Space Vector-based DTC schemes with MTPA control," in 2021 International Conference on Communication, Control and Information Sciences (ICCISc), 16-18 June 2021 2021, vol. 1, pp. 1-8.
[30] W. Li, Z. Xu, and Y. Zhang, "Induction motor control system based on FOC algorithm," in 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 24-26 May 2019 2019, pp. 1544-1548.
[31] M. Abirami and P. Balakrishnan, "DTC-FOC Hybrid Controller to Control the Speed and Torque of BLDC Motor," in 2023 Innovations in Power and Advanced Computing Technologies (i-PACT), 8-10 Dec. 2023 2023, pp. 1-6.
[32] M. L. D. Klerk and A. K. Saha, "A Comprehensive Review of Advanced Traction Motor Control Techniques Suitable for Electric Vehicle Applications," IEEE Access, vol. 9, pp. 125080-125108, 2021.
[33] R. Cai, R. Zheng, M. Liu, and M. Li, "Optimal selection of PI parameters of FOC for PMSM using structured H∞-synthesis," in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 29 Oct.-1 Nov. 2017 2017, pp. 8602-8607.
[34] H. Gashtil, V. Pickert, D. Atkinson, D. Giaouris, and M. Dahidah, "Comparative Evaluation of Field Oriented Control and Direct Torque Control Methodologies in Field Weakening Regions for Interior Permanent Magnet Machines," in 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), 23-25 April 2019 2019, pp. 1-6.
[35] R. Ghassani, Z. Kader, M. Fadel, P. Combes, and M. Koteich, "Comparison Study of Rotor Field-Oriented Control and Stator Field-Oriented Control in Permanent Magnet Synchronous Motors," in 2023 IEEE International Electric Machines & Drives Conference (IEMDC), 15-18 May 2023 2023, pp. 1-7.
[36] A. A. Elghany, H. Rezk, and A. H. M. E. Sayed, "Robust parameter estimation of vector controlled induction motors based on a modified particle swarm optimization technique," in 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), 27-29 Dec. 2016 2016, pp. 171-178.
[37] P. Y. Lin, W. T. Lee, S. W. Chen, J. C. Hwang, and Y. S. Lai, "Infinite speed drives control with MTPA and MTPV for interior permanent magnet synchronous motor," in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 29 Oct.-1 Nov. 2014 2014, pp. 668-674.
[38] H. Ge, Y. Miao, B. Bilgin, B. Nahid-Mobarakeh, and A. Emadi, "Speed Range Extended Maximum Torque Per Ampere Control for PM Drives Considering Inverter and Motor Nonlinearities," IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 7151-7159, 2017.
[39] M. M. Chowdhury, M. E. Haque, M. A. Mahmud, A. M. T. Oo, and A. Gargoom, "Control of IPM synchronous generator based direct drive wind turbine with MTPA trajectory and maximum power extraction," in 2016 IEEE Power and Energy Society General Meeting (PESGM), 17-21 July 2016 2016, pp. 1-5.
[40] M. M. Chowdhury, M. E. Haque, S. Saha, M. A. Mahmud, A. Gargoom, and A. M. T. Oo, "An Enhanced Control Scheme for an IPM Synchronous Generator Based Wind Turbine With MTPA Trajectory and Maximum Power Extraction," IEEE Transactions on Energy Conversion, vol. 33, no. 2, pp. 556-566, 2018.
[41] F. Tinazzi, S. Bolognani, S. Calligaro, P. Kumar, R. Petrella, and M. Zigliotto, "Classification and review of MTPA algorithms for synchronous reluctance and interior permanent magnet motor drives," in 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe), 3-5 Sept. 2019 2019, pp. P.1-P.10.
[42] K. D. Hoang, K. Atallah, J. Birchall, and S. Calverley, "Comparative Evaluation of Simplified and Complex IPM Machine Models on Control Development for Traction Applications," in IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 14-17 Oct. 2019 2019, vol. 1, pp. 945-950.
[43] A. Pouramin, S. Ekanayake, R. Dutta, and M. F. Rahman, "Challenges for including characteristic current as a design parameter in optimization of IPM machines," in 2017 IEEE International Electric Machines and Drives Conference (IEMDC), 21-24 May 2017 2017, pp. 1-6.
[44] M. Lu, Y. Zhang, Y. Wu, X. Cai, and H. Li, "Optimization of MTPA Algorithm of Permanent Magnet Synchronous Motor for Electric Tractor," in 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 7-10 Oct. 2018 2018, pp. 371-375.
[45] T. Song, Z. Zhang, H. Liu, and W. Hu, "Multi-objective optimisation design and performance comparison of permanent magnet synchronous motor for EVs based on FEA," IET Electric Power Applications, vol. 13, no. 8, pp. 1157-1166, 2019.
[46] R. Maulana, Y. F. Sidik, and H. R. Ali, "Field Weakening Control of a Permanent Magnet Synchronous Motor," in 2023 15th International Conference on Information Technology and Electrical Engineering (ICITEE), 26-27 Oct. 2023 2023, pp. 63-68.
[47] K. Chen, Y. Sun, and B. Liu, "Interior Permanent Magnet Synchronous Motor Linear Field-Weakening Control," IEEE Transactions on Energy Conversion, vol. 31, no. 1, pp. 159-164, 2016.
[48] S. J. Rind, Y. Ren, Y. Hu, J. Wang, and L. Jiang, "Configurations and control of traction motors for electric vehicles: A review," Chinese Journal of Electrical Engineering, vol. 3, no. 3, pp. 1-17, 2017.
[49] J. Wang, J. Wu, C. Gan, and Q. Sun, "Comparative study of flux-weakening control methods for PMSM drive over wide speed range," in 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 13-16 Nov. 2016 2016, pp. 1-6.
[50] D. D. V. Gueter and I. E. Chabu, "Space Vector Flux Weakening in Permanent Magnet Synchronous Machines Considering Demagnetization Risks and its Performance Impacts," in 2023 15th IEEE International Conference on Industry Applications (INDUSCON), 22-24 Nov. 2023 2023, pp. 918-924.
[51] X. Zhu, S. Yang, Y. Du, Z. Xiang, and L. Xu, "Electromagnetic Performance Analysis and Verification of a New Flux-Intensifying Permanent Magnet Brushless Motor With Two-Layer Segmented Permanent Magnets," IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1-4, 2016.
[52] A. Sun et al., "Magnetization and performance analysis of a variable-flux flux-intensifying interior permanent magnet machine," in 2015 IEEE International Electric Machines & Drives Conference (IEMDC), 10-13 May 2015 2015, pp. 369-375.
[53] Y. Lu, J. Li, R. Qu, and A. Sun, "Design and analysis of a hybrid permanent magnet variable-flux flux-intensifying machine," in 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 13-16 Nov. 2016 2016, pp. 1-6.
[54] D. K. Ngo, M. F. Hsieh, and T. D. Le, "Analysis on Field Weakening of Flux Intensifying Synchronous Motor Considering PM Dimension and Armature Current," IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1-5, 2021.
[55] M. Kashif and B. Singh, "Design of a New Spoke-PMSM with Multiple Flux Barriers Considering Flux-Intensifying Effect for SWPS," in 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia), 24-27 May 2021 2021, pp. 521-525.
[56] K. Yamazaki, Y. Kato, T. Ikemi, and S. Ohki, "Reduction of rotor losses in multi layer interior permanent magnet synchronous motors by introducing novel topology of rotor flux barriers," in 2013 IEEE Energy Conversion Congress and Exposition, 15-19 Sept. 2013 2013, pp. 1220-1226.
[57] V. V. Do, T. A. Huynh, and M. F. Hsieh, "Design and Analysis of Flux-Intensifying Spoke-type IPM Motor for Improving Output Torque and Flux-Weakening Performance," in 2022 25th International Conference on Electrical Machines and Systems (ICEMS), 29 Nov.-2 Dec. 2022 2022, pp. 1-6.
[58] T. Wang, X. Zhu, S. Zheng, L. Quan, Z. Xiang, and X. Zhou, "Investigation on Torque Characteristic and PM Operation Point of Flux-Intensifying PM Motor Considering Low-Speed Operation," IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1-5, 2021.
[59] Y. Xiao, Z. Q. Zhu, J. T. Chen, D. Wu, and L. M. Gong, "A Novel Asymmetric Rotor Interior PM Machine with Hybrid-layer PMs," in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 11-15 Oct. 2020 2020, pp. 4029-4035.
[60] S. Sakamoto, Y. Yokoi, T. Higuchi, and Y. Miyamoto, "A Study on Rotor Design of Consequent-Pole Permanent Magnet Machines," in 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), 24-27 Nov. 2020 2020, pp. 1600-1603.
[61] Y. Li, Q. Zhou, S. Ding, W. Li, and J. Hang, "Design and Evaluation of Reduced-Rare-Earth Interior Consequent-Pole Permanent Magnet Machines for Automotive Applications," IEEE Transactions on Industry Applications, vol. 59, no. 2, pp. 1372-1382, 2023.
[62] M. T. Chiu, J. A. Chiang, and C. H. Lin, "Design and Optimization of a Novel V-Type Consequent-Pole Interior Permanent Magnet Synchronous Motor for Applying to Refrigerant Compressor," in 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 7-10 Oct. 2018 2018, pp. 413-418.
[63] J. W. Kwon, M. Li, and B. I. Kwon, "Design of V-Type Consequent-Pole IPM Machine for PM Cost Reduction With Analytical Method," IEEE Access, vol. 9, pp. 77386-77397, 2021.
[64] J. Qi et al., "Analytical Analysis of Cogging Torque in Permanent Magnet Machines With Unequal North and South Poles, With Particular Reference to Consequent Pole Machines," IEEE Transactions on Energy Conversion, vol. 38, no. 2, pp. 1361-1375, 2023.
[65] Z. Q. Zhu and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," IEEE Transactions on Energy Conversion, vol. 15, no. 4, pp. 407-412, 2000.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93868-
dc.description.abstract本研究專注於兩輪機車載具所應用的單磁極永磁馬達(Consequent-pole Permanent Magnet Motor, CPM),提出一套系統性的優化設計流程。研究中參考了市面上睿能公司所推出的第二代6 kW內藏式永磁同步馬達(Interior Permanent Magnet Motor, IPM),其最大運轉轉速可達9000 rpm。在馬達設計方面,有鑑於稀土磁鐵材料供應源短缺與電動載具市場對稀土磁鐵需求的顯著上升,本研究的目標主要聚焦於在保持相同直流母線電壓和相電流限制的情況下,於降低稀土磁鐵使用量的同時,對力矩、功率和效率曲線進行改進,以降低馬達製作材料的成本與對稀土磁鐵的依賴。
在單極轉子的設計中,由於磁鐵擺放位置與方向的不對稱性,磁鐵所提供的磁通密度分布與馬達運轉時的反電動勢(Back Electromotive Force, Back EMF)相較於傳統IPM馬達在一個電氣周期內的波型較不理想,並且可能會出現一個周期內波型不對稱的情況,導致單極馬達在未加負載電流時的齒卡力矩(Cogging Torque)和負載後輸出的力矩其漣波(Torque Ripple)峰值會有明顯的增加。為解決這個問題,本研究將通過馬達肋部的縮減以及優化轉子磁鐵的擺放位置,以彌補稀土磁鐵減少所帶來的力矩和功率損失,同時降低由不對稱磁鐵引起的力矩漣波。
在設計階段,本研究運用有限元素法(Finite Element Analysis, FEA)軟體Ansys Maxwell進行穩態性能分析。在馬達暫態響應方面,則採用MATLAB & Simulink軟體進行控制演算法和逆變器的模擬,最後進行模擬結果與實驗數據的對比與分析。
zh_TW
dc.description.abstractThis research focuses on proposing a systematic optimization design process for the application of a single-pole Consequent-pole Permanent Magnet Motor (CPM) in two-wheeled motorcycles. We refer to Gogoro's commercially available second generation 6 kW Interior Permanent Magnet Motor (IPM) with a maximum operating speed of up to 9000 rpm. The primary objective is to reduce the use of rare earth magnets while improving torque, power and efficiency curves under the same voltage and current performance conditions.
Although consequent pole motors can improve magnetic flux density by reducing the effective air gap, the asymmetry of the magnets in the rotor significantly increases cogging torque and torque ripple after loading. To address this issue, the study focuses on reducing motor cogging by modifying the motor ribs and optimizing the placement of the rotor magnets to compensate for torque and power losses due to reduced rare earth magnets. At the same time, efforts are being made to minimize torque ripple caused by asymmetric magnets, resulting in the development of a motor with reduced rare earth magnet usage.
During the design phase, Finite Element Analysis (FEA) is used for steady-state performance analysis. For transient motor response, MATLAB & Simulink software is used to simulate control algorithms and inverters, with subsequent comparison between simulation and experimental results.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:39:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:39:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents國立台灣大學碩士學位論文 口試委員會審定書 i
中文摘要 ii
ABSTRACT iv
目次 vi
圖次 viii
表次 xi
符號列表 xii
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 4
1.2.1 內藏式永磁同步馬達 5
1.2.2 永磁同步馬達控制架構 9
1.2.3 增磁型永磁同步馬達與反向凸極 16
1.2.4 單極性轉子內藏式永磁同步馬達 18
1.3 研究目的 23
1.3.1 提升稀土磁鐵利用率 23
1.3.2 非對稱氣隙磁通密度分布最佳化 24
1.3.3 強化高轉速區間性能 24
1.4 論文大綱 26
第2章 馬達設計方法 27
2.1 馬達規格 27
2.1.1 IPM馬達與CPM馬達規格 31
2.2 頓轉力矩諧波成分分析 32
2.2.1 氣隙磁通密度分析 32
2.2.2 極弧比對氣隙磁通與頓轉力矩的影響 38
2.2.3 考慮磁極邊緣漏磁之影響 41
2.3 D-Q軸電感分析 42
2.3.1 磁鐵厚度對電感的影響 44
2.3.2 修弧深度對電感的影響 47
2.4 轉子肋部漏磁分析 49
2.4.1 肋部厚度縮減抑制漏磁 49
2.4.2 機械強度分析 51
2.5 設計結果 55
第3章 模擬驗證 58
3.1 設計結果規格 58
3.2 有限元素法分析 58
3.2.1 頓轉力矩分析 59
3.2.2 力矩和力矩漣波 62
3.2.3 不同工況下之效率比較 63
3.2.4 負載下電感分析 65
3.3 等效電路提取模型耦合模擬 69
3.3.1 等效電路提取模型耦合模擬方法介紹 69
3.3.2 耦合模擬之馬達控制架構 71
3.3.3 耦合模擬結果 72
3.4 概念性驗證原型機製造 79
3.4.1 原型機轉子尺寸修改 79
3.4.2 原型機實驗驗證結果 81
第4章 結論與未來工作 83
4.1 結論 83
4.1.1 馬達力矩輸出能力 83
4.1.2 反向凸極特性與高速區間性能優化 83
4.2 未來工作 84
4.2.1 弱磁控制演算法 84
4.2.2 使用單極設計強化增磁型永磁馬達性能 85
參考文獻 86
-
dc.language.isozh_TW-
dc.subject低稀土馬達zh_TW
dc.subject單極馬達zh_TW
dc.subject永磁馬達zh_TW
dc.subjectConsequent Pole Motoren
dc.subjectPermanent Magnet Motoren
dc.title電動機車新型低稀土單磁性永磁馬達開發zh_TW
dc.titleDesign of Novel Consequent Pole IPM Motor and Drive for Electric Scooteren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee仲維德;周柏寰zh_TW
dc.contributor.oralexamcommitteeWei-Der Chung;Po-Huan Chouen
dc.subject.keyword低稀土馬達,單極馬達,永磁馬達,zh_TW
dc.subject.keywordConsequent Pole Motor,Permanent Magnet Motor,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202403183-
dc.rights.note未授權-
dc.date.accepted2024-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved