請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93867完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊士進 | zh_TW |
| dc.contributor.advisor | Shih-Chin Yang | en |
| dc.contributor.author | 陳政豪 | zh_TW |
| dc.contributor.author | Zheng-Hao Chen | en |
| dc.date.accessioned | 2024-08-08T16:39:16Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | Y. M. Co. "For Greater Safety in Mobility." https://global.yamaha-motor.com/design_technology/technology/safe/ (accessed.
F. J. W. Whipple, "The stability of the motion of a bicycle," Quarterly Journal of Pure and Applied Mathematics, vol. 30, pp. 312-348, 1899. J. P. Meijaard, J. M. Papadopoulos, A. Ruina, and A. L. Schwab, "Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 463, no. 2084, pp. 1955-1982, 2007/06/11 2007, doi: 10.1098/rspa.2007.1857. A. Schwab, J. Meijaard, and J. Papadopoulos, "Benchmark results on the linearized equations of motion of an uncontrolled bicycle," Journal of Mechanical Science and Technology, vol. 19, pp. 292-304, 01/01 2005, doi: 10.1007/BF02916147. D. J. N. Limebeer and R. S. Sharp, "Bicycles, motorcycles, and models," IEEE Control Systems Magazine, vol. 26, no. 5, pp. 34-61, 2006, doi: 10.1109/MCS.2006.1700044. S. Dieltiens, F. Debrouwere, M. Juwet, and E. Demeester, "Practical Application of the Whipple and Carvallo Stability Model on Modern Bicycles with Pedal Assistance," Applied Sciences, vol. 10, p. 5672, 08/15 2020, doi: 10.3390/app10165672. K. J. Åström, R. E. Klein, and A. Lennartsson, "Bicycle dynamics and control: Adapted bicycles for education and research," Control Systems, IEEE, vol. 25, pp. 26-47, 09/01 2005, doi: 10.1109/MCS.2005.1499389. S. Vatanashevanopakorn and M. Parnichkun, "Steering control based balancing of a bicycle robot," in 2011 IEEE International Conference on Robotics and Biomimetics, 7-11 Dec. 2011 2011, pp. 2169-2174, doi: 10.1109/ROBIO.2011.6181613. N. H. Getz and J. E. Marsden, "Control for an autonomous bicycle," in Proceedings of 1995 IEEE International Conference on Robotics and Automation, 21-27 May 1995 1995, vol. 2, pp. 1397-1402 vol.2, doi: 10.1109/ROBOT.1995.525473. R. S. Sharp, "The Stability and Control of Motorcycles," Journal of Mechanical Engineering Science, vol. 13, no. 5, pp. 316-329, 1971/10/01 1971, doi: 10.1243/JMES_JOUR_1971_013_051_02. V. Cossalter, Motorcycle Dynamics. Vittore Cossalter, 2006. R. S. Sharp, "Stability, Control and Steering Responses of Motorcycles," Vehicle System Dynamics, vol. 35, no. 4-5, pp. 291-318, 2001/03/01 2001, doi: 10.1076/vesd.35.4.291.2042. Y. Marumo and T. Katayama, "Effects of Structural Flexibility on Motorcycle Straight Running Stability by using Energy Flow Method," Journal of Mechanical Systems for Transportation and Logistics, vol. 2, pp. 170-181, 11/18 2009, doi: 10.1299/jmtl.2.170. C. Tires. "Motorcycle stability issues and how to solve them." https://www.continental-tires.com/products/b2c/tire-knowledge/motorcycle-stability-issues/ (accessed. J. Fajans, "Steering in bicycles and motorcycles," American Journal of Physics - AMER J PHYS, vol. 68, pp. 654-659, 07/01 2000, doi: 10.1119/1.19504. J. Higbie, "The Motorcycle as a Gyroscope," American Journal of Physics, vol. 42, no. 8, pp. 701-702, 1974, doi: 10.1119/1.1987814. A. J. Cox, "Angular momentum and motorcycle counter-steering: A discussion and demonstration," American Journal of Physics, vol. 66, no. 11, pp. 1018-1020, 1998, doi: 10.1119/1.19032. H. Yetkin, "Stabilization of Autonomous Bicycle," Ohio State University, 2013. H. Moon, W. Zhang, D. Frank, D. Delp, and T. Sugar, "Balancing Control and Model Validation of Self-Stabilizing Motorcycle," 2020. D. Todeschini, G. Panzani, M. Tanelli, D. Sette, and S. M. Savaresi, "Experimental gyroscopic stabilization of motorcycles: a 3rd order sliding mode approach," in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 20-23 Sept. 2020 2020, pp. 1-6, doi: 10.1109/ITSC45102.2020.9294172. Y. Tanaka and T. Murakami, "Self sustaining bicycle robot with steering controller," in The 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC '04., 28-28 March 2004 2004, pp. 193-197, doi: 10.1109/AMC.2004.1297665. Y.-H. Huang, "Self-balancing E-scooter with front wheel steering control," National Taiwan University, 2023. [Online]. Available: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89101 M. A. Anjumol and V. R. Jisha, "Optimal stabilization and straight line tracking of an electric bicycle," in 2014 International Conference on Power Signals Control and Computations (EPSCICON), 6-11 Jan. 2014 2014, pp. 1-6, doi: 10.1109/EPSCICON.2014.6887487. A. Owczarkowski, D. Horla, P. Kozierski, and T. Sadalla, "Dynamic modeling and simulation of a bicycle stabilized by LQR control," in 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), 29 Aug.-1 Sept. 2016 2016, pp. 907-911, doi: 10.1109/MMAR.2016.7575258. Z. Yongli, Y. Liu, and G. Yi, "Model Analysis of Unmanned Bicycle and Variable Gain LQR Control," presented at the 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2020. M. Defoort and T. Murakami, "Second order sliding mode control with disturbance observer for bicycle stabilization," in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 22-26 Sept. 2008 2008, pp. 2822-2827, doi: 10.1109/IROS.2008.4650685. S. Himanshu Dutt and N. UmaShankar, "A Fuzzy Controller Design for an Autonomous Bicycle System," in 2006 IEEE International Conference on Engineering of Intelligent Systems, 22-23 April 2006 2006, pp. 1-6, doi: 10.1109/ICEIS.2006.1703218. N. Persson, T. Andersson, A. Fattouh, M. C. Ekström, and A. V. Papadopoulos, "A Comparative Analysis and Design of Controllers for Autonomous Bicycles," in 2021 European Control Conference (ECC), 29 June-2 July 2021 2021, pp. 1570-1576, doi: 10.23919/ECC54610.2021.9655223. P. West. "Yamaha go back to the future: Electric and self-driving prototypes set for Japan Mobility Show debut." https://www.motorcyclenews.com/news/2023/october/japan-mobility-show-yamaha-concepts/ (accessed. S. Hara, M. Tsuchiya, and T. Kimura, "Robust Control of Automatic Low-Speed Driving Motorcycle "MOTOROiD"," in 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), 12-15 Oct. 2021 2021, pp. 645-646, doi: 10.1109/GCCE53005.2021.9621913. 栄. 辻井, 光. 土屋, 敬. 寺山, and 尚. 鶴見, "自動二輪自立制御機構の研究," 自動車技術会論文集, vol. 50, no. 4, pp. 1049-1054, 2019, doi: 10.11351/jsaeronbun.50.1049. S. Hara, M. Tsuchiya, T. Kimura, and N. Akai, "Low-Speed Control Experiment of Motorcycles Using SPACAR Model," IEEJ Transactions on Electrical and Electronic Engineering, vol. 17, no. 4, pp. 617-619, 2022/04/01 2022, doi: https://doi.org/10.1002/tee.23550. A. Utano and M. Yamakita, "Automatic control of bicycles with a balancer," in Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics., 24-28 July 2005 2005, pp. 1245-1250, doi: 10.1109/AIM.2005.1511181. A. V. Beznos et al., "Control of autonomous motion of two-wheel bicycle with gyroscopic stabilisation," in Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), 20-20 May 1998 1998, vol. 3, pp. 2670-2675 vol.3, doi: 10.1109/ROBOT.1998.680749. M. Yamakita, A. Utano, and K. Sekiguchi, "Experimental Study of Automatic Control of Bicycle with Balancer," in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9-15 Oct. 2006 2006, pp. 5606-5611, doi: 10.1109/IROS.2006.282281. A. VENUGOPAL. "Harley-Davidson patents technology eliminating the need of a side stand." https://www.rushlane.com/harley-davidson-self-balancing-technology-patent-12364571.html (accessed. 魯浩天, "無人自行車之自我平衡及直線追蹤控制," 國立清華大學, 2018. [Online]. Available: Article/Detail?docID=U0016-1803201914461168 G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems. Prentice Hall Press, 2014. R. C. Hsu, C. T. Liu, and D. Y. Chan, "A Reinforcement-Learning-Based Assisted Power Management With QoR Provisioning for Human–Electric Hybrid Bicycle," IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3350-3359, 2012, doi: 10.1109/TIE.2011.2141092. 成. Wiki. "控制器區域網路CAN." http://wiki.csie.ncku.edu.tw/embedded/CAN (accessed. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93867 | - |
| dc.description.abstract | 本論文介紹了一種創新的機車技術,利用前輪轉向力矩控制的方式來調整車輛的傾角,使得機車在低速行駛及類靜止時仍能保持穩定的自平衡狀態,目前市面上有一些重型自平衡二輪車,但是通常需要使用陀螺儀搭載慣性飛輪來穩定車身姿態,而這些系統因為飛輪體積與重量的增加限制了機車的靈活度和可控性。針對台灣常見的一般機車規格,本論文提出了使用前輪轉向力矩控制的自平衡方法,這種系統只需在腳踏板位置增加一顆前輪轉向馬達和連接龍頭與前輪轉向馬達之二連桿機構,相比於陀螺儀搭載飛輪的方式,能有效減少體積與重量的增加,更適合用於一般機車上面。
在論文中,經過對二輪機車動態性能和參數性質的分析後,分別針對低速且定速與變速模型建立了具有前輪轉向力矩系統的完整動態模型,文獻表明,這種系統可能會產生類似於倒單擺的不穩定持續振盪動態,因此論文提出了一種LQR控制方法,通過LQR控制器的設計來確保機車能夠達到自平衡穩定狀態,在模擬中確認了二輪車低速與靜態自平衡的可行性後,並在電動機車上進行實驗測試,結果證實,這種低重量的轉向自平衡系統能夠有效地保持機車在低速行駛的車身穩定性,論文還進行類靜平衡的實驗,結果顯示,以龍頭轉向力矩控制下,能夠有效將車身擺正至車身平衡位置,並在一段時間內可以短暫保持靜平衡的狀態。 | zh_TW |
| dc.description.abstract | This paper introduces an innovative motorcycle technology that utilizes front wheel steering torque control to adjust the scooter's roll angle, enabling stable self-balancing at low speeds and near-static conditions. This technology aims to enhance scooter riding safety and develop an assisted driving feature to prevent scooter tipping. While there are existing concepts of heavy-duty self-balancing scooter s abroad typically relying on gyroscopes and flywheels to stabilize scooter posture, these systems often compromise agility and maneuverability due to increased size and weight. Targeting Taiwan's popular scooter specifications, this paper proposes a self-balancing approach using front wheel steering torque control, requiring only the addition of a steering motor and a linkage mechanism at the handlebars. Compared to gyroscopic flywheel systems, this approach significantly reduces volume increase, making it more suitable for widespread adoption on regular scooters.
The paper conducts an analysis of the dynamic performance and parameter characteristics of two-wheeled scooters, establishing comprehensive dynamic models with front wheel steering torque systems for both low-speed constant and variable speed models. Literature suggests that such systems may induce unstable sustained oscillatory dynamics similar to inverted pendulum behavior. Therefore, the paper proposes an LQR control method to ensure scooter stability and achieve self-balancing states. After confirming the feasibility of scooter self-balancing through simulations, practical installations were conducted, and experimental tests on electric scooter validated the effectiveness of this lightweight steering-based self-balancing system in maintaining vehicle stability at low speeds. Finally, experimental tests on actual motorcycles demonstrated near-static balance under steering torque control, effectively correcting vehicle posture to a balanced position and maintaining near-static equilibrium for a period. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:39:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:39:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 iii
中文摘要 v ABSTRACT vii 目次 ix 圖次 xiii 表次 xix 符號列表 xxi 第一章 緒論 1 1.1 動機 1 1.2 文獻回顧 2 1.2.1 二輪車的動態系統 3 1.2.2 二輪車的平衡與穩定性分析 5 1.2.3 二輪車的陀螺效應及逆操舵 8 1.2.4 使用陀螺儀搭載慣性飛輪之自平衡機車 10 1.2.5 使用前輪轉向改變車身姿態之自平衡控制 12 1.3 研究目的 20 1.4 論文大綱 22 第二章 機車動態模型及模擬 23 2.1 建立機車動態模型 23 2.2 陀螺效應 27 2.2.1 轉向時車輪產生之陀螺力矩 27 2.2.2 龍頭轉向所產生之陀螺力矩 29 2.2.3 包含陀螺力矩之變速動態方程式 30 2.2.4 包含陀螺力矩之定速動態方程式 30 2.3 控制器設計 31 2.3.1 Linear-Quadratic-Regulator (LQR)控制器 31 2.3.2 Q與R矩陣之選取 33 2.3.3 系統模型之建立 35 2.3.4 乘感指數 40 2.4 系統模擬分析之龍頭轉向力矩控制與車身姿態變化 41 2.4.1 不同條件下的平衡模擬 42 2.4.2 定速情況下與PID控制器的模擬比較 53 2.4.3 變動速度下的平衡模擬 54 第三章 實驗及測試結果 61 3.1 實驗測試平台 61 3.2 前輪轉向機構 64 3.3 通訊架構及硬體規格 66 3.4 實驗方法及場地 70 3.5 有騎乘者之平衡輔助駕駛實驗 71 3.5.1 時速10公里 73 3.5.2 時速7公里 78 3.5.3 時速5公里 82 3.5.4 時速3公里 86 3.6 類靜平衡實驗 87 第四章 結論及未來工作 93 4.1 結論 93 4.1.1 以龍頭轉向力矩控制達到之有騎乘者之低速自平衡 93 4.1.2 以龍頭轉向力矩控制之類靜平衡 93 4.2 未來工作 94 參考文獻 95 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 前輪轉向力矩控制 | zh_TW |
| dc.subject | LQR控制法 | zh_TW |
| dc.subject | 自平衡機車 | zh_TW |
| dc.subject | 低速平衡 | zh_TW |
| dc.subject | 類靜平衡 | zh_TW |
| dc.subject | front wheel steering torque control | en |
| dc.subject | static balance | en |
| dc.subject | low speed self-balance | en |
| dc.subject | LQR controller | en |
| dc.title | 使用前輪轉向力矩控制之自平衡電動機車 | zh_TW |
| dc.title | Self-balancing E-scooter with front wheel steering torque control | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周柏寰;仲維德 | zh_TW |
| dc.contributor.oralexamcommittee | Po-Huan Chou;Wei-Der Chung | en |
| dc.subject.keyword | 前輪轉向力矩控制,LQR控制法,自平衡機車,低速平衡,類靜平衡, | zh_TW |
| dc.subject.keyword | front wheel steering torque control,LQR controller,low speed self-balance,static balance, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202403381 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 7.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
