請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93858
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳丕燊 | zh_TW |
dc.contributor.advisor | Pisin Chen | en |
dc.contributor.author | 陳盈智 | zh_TW |
dc.contributor.author | Ying-Chih Chen | en |
dc.date.accessioned | 2024-08-08T16:35:50Z | - |
dc.date.available | 2024-08-09 | - |
dc.date.copyright | 2024-08-08 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-02 | - |
dc.identifier.citation | Emily Petroff, JWT Hessels, and DR Lorimer. Fast radio bursts. The Astronomy and Astrophysics Review, 27(1):4, 2019.
SA Colgate. Electromagnetic pulse from supernovae. Astrophysical Journal, vol. 198, June 1, 1975, pt. 1, p. 439-445., 198:439–445, 1975. Stirling A Colgate and Peter D Noerdlinger. Coherent emission from expanding supernova shells. Astrophysical Journal, vol. 165, p. 509, 165:509, 1971. Duncan R Lorimer, Matthew Bailes, Maura Ann McLaughlin, David J Narkevic, and Froney Crawford. A bright millisecond radio burst of extragalactic origin. Science, 318(5851):777–780, 2007. E F Keane, M Kramer, AG Lyne, BW Stappers, and MA McLaughlin. Rotating radio transients: new discoveries, timing solutions and musings. Monthly Notices of the Royal Astronomical Society, 415(4):3065–3080, 2011. Keith W Bannister and GJ Madsen. A galactic origin for the fast radio burst frb010621. Monthly Notices of the Royal Astronomical Society, 440(1):353–358, 2014. D ea Thornton, B Stappers, M Bailes, B Barsdell, S Bates, NDR Bhat, M Burgay, S Burke-Spolaor, DJ Champion, P Coster, et al. A population of fast radio bursts at cosmological distances. Science, 341(6141):53–56, 2013. LG Spitler, James M Cordes, JWT Hessels, Duncan R Lorimer, MA McLaughlin, S Chatterjee, F Crawford, JS Deneva, VM Kaspi, RS Wharton, et al. Fast radio burst discovered in the arecibo pulsar alfa survey. The Astrophysical Journal, 790(2):101, 2014. M Amiri, K Bandura, P Berger, M Bhardwaj, MM Boyce, PJ Boyle, C Brar, M Burhanpurkar, P Chawla, J Chowdhury, et al. The chime fast radio burst project: system overview. The Astrophysical Journal, 863(1):48, 2018. Hsiu-Hsien Lin, Kai-yang Lin, Chao-Te Li, Yao-Huan Tseng, Homin Jiang, Jen-Hung Wang, Jen-Chieh Cheng, Ue-Li Pen, Ming-Tang Chen, Pisin Chen, et al. Burstt: Bustling universe radio survey telescope in taiwan. Publications of the Astronomical Society of the Pacific, 134(1039):094106, 2022. Massimo Giovannini. The magnetized universe. International Journal of Modern Physics D, 13(03):391–502, 2004. Daniele Michilli, A Seymour, JWT Hessels, LG Spitler, V Gajjar, AM Archibald, GC Bower, S Chatterjee, JM Cordes, K Gourdji, et al. An extreme magneto-ionic environment associated with the fast radio burst source frb 121102. Nature, 553(7687):182–185, 2018. Graham Woan. Radio propagation and scintillation. Radioastronomie Basses Fréquences: Instrumentation, Thématiques scientifiques, Projets, XXXeeme Ecole de Goutelas, pages 4–8, 2007. Vikram Ravi, RM Shannon, M Bailes, K Bannister, S Bhandari, NDR Bhat, S Burke-Spolaor, M Caleb, C Flynn, A Jameson, et al. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science, 354(6317):1249–1252, 2016. Bridget C Andersen, Kevin Bandura, Mohit Bhardwaj, PJ Boyle, Charanjot Brar, Tomas Cassanelli, S Chatterjee, Pragya Chawla, Amanda M Cook, Alice P Curtin, et al. Chime/frb discovery of 25 repeating fast radio burst sources. The Astrophysical Journal, 947(2):83, 2023. Di Li, P Wang, WW Zhu, Bing Zhang, XX Zhang, Ran Duan, YK Zhang, Yi Feng, NY Tang, Shami Chatterjee, et al. A bimodal burst energy distribution of a repeating fast radio burst source. Nature, 598(7880):267–271, 2021. Pravir Kumar, Ryan M Shannon, Chris Flynn, Stefan Osłowski, Shivani Bhandari, Cherie K Day, Adam T Deller, Wael Farah, Jane F Kaczmarek, Matthew Kerr, et al. Extremely band-limited repetition from a fast radio burst source. Monthly Notices of the Royal Astronomical Society, 500(2):2525–2531, 2021. Bo Han Chen, Tetsuya Hashimoto, Tomotsugu Goto, Seong Jin Kim, Daryl Joe D Santos, Alvina YL On, Ting-Yi Lu, and Tiger YY Hsiao. Uncloaking hidden repeating fast radio bursts with unsupervised machine learning. Monthly Notices of the Royal Astronomical Society, 509(1):1227–1236, 2022. Victoria M Kaspi and Andrei M Beloborodov. Magnetars. Annual Review of Astronomy and Astrophysics, 55(1):261–301, 2017. Ben Margalit and Brian D Metzger. A concordance picture of frb 121102 as a flaring magnetar embedded in a magnetized ion–electron wind nebula. The Astrophysical Journal Letters, 868(1):L4, 2018. Christopher D Bochenek, Vikram Ravi, Konstantin V Belov, Gregg Hallinan, Jonathon Kocz, Shri R Kulkarni, and Dan L McKenna. A fast radio burst associated with a galactic magnetar. Nature, 587(7832):59–62, 2020. JD Lyman, AJ Levan, Klaas Wiersema, C Kouveliotou, AA Chrimes, and AS Fruchter. The fast radio burst-emitting magnetar sgr 1935+ 2154—proper motion and variability from long-term hubble space telescope monitoring. The Astrophysical Journal, 926(2):121, 2022. E Petroff, JWT Hessels, and DR Lorimer. Fast radio bursts at the dawn of the 2020s. The Astronomy and Astrophysics Review, 30(1):2, 2022. Mandana Amiri, Bridget C Andersen, Kevin Bandura, Sabrina Berger, Mohit Bhardwaj, Michelle M Boyce, PJ Boyle, Charanjot Brar, Daniela Breitman, Tomas Cassanelli, et al. The first chime/frb fast radio burst catalog. The Astrophysical Journal Supplement Series, 257(2):59, 2021. Peng Jiang, Ning-Yu Tang, Li-Gang Hou, Meng-Ting Liu, Marko Krčo, Lei Qian, Jing-Hai Sun, Tao-Chung Ching, Bin Liu, Yan Duan, et al. The fundamental performance of fast with 19-beam receiver at l band. Research in Astronomy and Astrophysics, 20(5):064, 2020. Chen-Hui Niu, Di Li, Rui Luo, Wei-Yang Wang, Jumei Yao, Bing Zhang, Wei-Wei Zhu, Pei Wang, Haoyang Ye, Yong-Kun Zhang, et al. Crafts for fast radio bursts: extending the dispersion–fluence relation with new frbs detected by fast. The Astrophysical Journal Letters, 909(1):L8, 2021. Yong-Kun Zhang, Di Li, Bing Zhang, Shuo Cao, Yi Feng, Wei-Yang Wang, Yuan-hong Qu, Jia-Rui Niu, Wei-Wei Zhu, Jin-Lin Han, et al. Fast observations of frb 20220912a: burst properties and polarization characteristics. The Astrophysical Journal, 955(2):142, 2023. AW Hotan, JD Bunton, AP Chippendale, M Whiting, J Tuthill, VA Moss, D McConnell, SW Amy, MT Huynh, JR Allison, et al. Australian square kilometre array pathfinder: I. system description. Publications of the Astronomical Society of Australia, 38:e009, 2021. PW Gorham, P Allison, SW Barwick, JJ Beatty, DZ Besson, WR Binns, C Chen, P Chen, JM Clem, A Connolly, et al. The antarctic impulsive transient antenna ultra-high energy neutrino detector: Design, performance, and sensitivity for the 2006–2007 balloon flight. Astroparticle Physics, 32(1):10–41, 2009. J. W. Nam, C.-C. Chen, C.-H. Chen, C.-W. Chen, P. Chen, Y.-C. Chen, S.-Y. Hsu, J.-J. Huang, M.-H. A. Huang, T.-C. Liu, J. Řípa, Y.-S. Shiao, M.-Z. Wang, and S.-H. Wang. Design and implementation of the taroge experiment. International Journal of Modern Physics D, 25(13):1645013, 2016. Shih-Hao Wang, Jiwoo Nam, Pisin Chen, Yaocheng Chen, Taejin Choi, Young-bae Ham, Shih-Ying Hsu, Jian-Jung Huang, Ming-Huey A Huang, Geonhwa Jee, et al. Taroge-m: radio antenna array on antarctic high mountain for detecting near-horizontal ultra-high energy air showers. Journal of Cosmology and Astroparticle Physics, 2022(11):022, 2022. Tim Huege and Heino Falcke. Radio emission from cosmic ray air showers-coherent geosynchrotron radiation. Astronomy & Astrophysics, 412(1):19–34, 2003. J Nam, CY Kuo, BK Shin, P Chen, Y Chen, SY Hsu, JJ Huang, MHA Huang, CH Leung, TC Liu, et al. Development of drone-borne aerial calibration pulser system for radio observatories of ultra-high energy air showers. PoS ICRC2021, 283, 2021. Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explainable artificial intelligence (xai). IEEE Access, 6:52138–52160, 2018. Batta Mahesh. Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9(1):381–386, 2020. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015. Google LLC. What is supervised learning? https://cloud.google.com/discover/what-is-supervised-learning. Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and momentum in deep learning. In International conference on machine learning, pages 1139–1147. PMLR, 2013. John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7), 2011. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788, 2016. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015. Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018. Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you want to learn using programmable gradient information. arXiv preprint arXiv:2402.13616, 2024. Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. Py-Torch 2: Faster Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation. In 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. Jiaying Xu, Yi Feng, Di Li, Pei Wang, Yongkun Zhang, Jintao Xie, Huaxi Chen, Han Wang, Zhixuan Kang, Jingjing Hu, et al. Blinkverse: A database of fast radio bursts. Universe, 9(7):330, 2023. E Petroff and O Yaron. Fast radio burst catalogue on the tns. Transient Name Server AstroNote, 160:1, 2020. https://www.wis-tns.org/. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. Yunfan Gerry Zhang, Vishal Gajjar, Griffin Foster, Andrew Siemion, James Cordes, Casey Law, and Yu Wang. Fast radio burst 121102 pulse detection and periodicity: a machine learning approach. The Astrophysical Journal, 866(2):149, 2018. Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013. Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating activation differences. In International conference on machine learning, pages 3145–3153. PMlR, 2017. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93858 | - |
dc.description.abstract | 本研究針對快速電波爆發(FRB)的探測設計了一套以監督式機器學習為基礎的分析流程,並以 TAROGE-3 所蒐集的資料訓練模型並嘗試搜索相關訊號。TAROGE-3 原本是針對宇宙射線探測所設計的無線電波測站,為了可能的 FRB 探測,在 2021 到 2022 年間,曾以 20 赫茲固定頻率的強制觸發 (forced trigger) 採集最高至 350 MHz 、長度 1.2 微秒的訊號。本研究以殘差神經網路為架構打造客製化的機器學習模型,以多頻道的電壓振幅時頻譜為輸入資料,判斷是否存在類似 FRB 的反啁啾訊號。完成訓練的模型可以剔除約 99.8% 的背景資料,並在探測訊號方面維持高度效率。我們接著運用顯著圖分析以及訊號的方位重建以訂定另一個篩選標準,這使得最終的偽陽性率得以再下降約一個數量級。
本論文將介紹 FRB 的相關特性、TAROGE-3 系統,及監督機器學習的基本概念,並討論本研究如何處理資料、訓練模型、驗證結果和設定參數,最後呈現訊號搜尋的結果。 | zh_TW |
dc.description.abstract | In this study, we developed an analysis process based on supervised machine learning for the detection of Fast Radio Bursts (FRBs). The model was trained using data collected by TAROGE-3, originally designed as a radio telescope for cosmic ray detection. To facilitate FRB detection, a periodic forced trigger was configured to record 1.2 µs long waveforms with 350 MHz analog bandwidth, and data were collected at a rate of 20 Hz between 2021 and 2022. A custom machine learning model based on a residual neural network was developed, using multi-channel voltage amplitude spectrograms as input data to determine the presence of anti-chirp signals similar to FRBs. The trained model can filter out approximately 99.8% of the background data while maintaining high efficiency in signal detection. We then applied saliency map analysis and signal direction reconstruction, which further reduced the fake rate (false positive rate) by about an order of magnitude.
This thesis introduces the characteristics of FRBs, the TAROGE-3 system, and the basic concepts of supervised machine learning. It discusses data processing, model training, result validation, and parameter setting. Finally, the results of the signal search are presented. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:35:50Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-08T16:35:50Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee ... i
Acknowledgements ... iii 摘要 ... v Abstract ... vii Contents ... ix List of Figures ... xiii List of Tables ... xvii Chapter 1 Fast Radio Bursts ... 1 1.1 History and Developments ... 1 1.2 Properties ... 3 1.2.1 Dispersion ... 3 1.2.2 Scattering ... 4 1.2.3 Faraday Rotation ... 5 1.2.4 Scintillation ... 6 1.2.5 Repeating ... 7 1.3 Origins ... 8 1.4 FRB Detection ... 9 1.4.1 Canadian Hydrogen Intensity Mapping Experiment (CHIME) ... 9 1.4.2 Five-hundred-meter Aperture Spherical Telescope (FAST) ... 9 1.4.3 Australia Square Kilometre Array Pathfinder (ASKAP) ... 10 Chapter 2 Taiwan Astroparticle Radio Observatory of Geosynchrotron Emission (TAROGE) ... 13 2.1 Overview ... 13 2.2 Antennas ... 14 2.3 Front-End Electronics (FEEs) ... 15 2.4 Data Acquisition System ... 16 2.4.1 Trigger Module ... 17 2.4.2 Digitizer Module ... 17 2.5 Drone Pulser Calibration ... 18 2.6 FRB Detection ... 18 2.6.1 Increased Forced Trigger Rate ... 19 2.6.2 Detection Feasibility ... 19 Chapter 3 Image Classification with Supervised Machine Learning ... 23 3.1 Machine Learning, Deep Learning, and Supervised Learning ... 23 3.2 Loss and Gradient Descent ... 24 3.3 Neural Networks ... 26 3.3.1 Fully Connected Layers ... 26 3.3.2 Convolutional Neural Networks ... 27 3.4 Residual Networks ... 29 Chapter 4 Data Analysis Method ... 33 4.1 Data sets ... 35 4.1.1 Construction of Data Sets ... 35 4.1.1.1 Background Noises from TAROGE-3 ... 36 4.1.1.2 FRB Signals Generation ... 37 4.1.1.3 Combining Background and Signal ... 41 4.1.2 Data Transformations and Format ... 43 4.1.3 Splitting Data ... 45 4.2 Classification with Modified ResNet ... 46 4.2.1 Architecture: Modified ResNet ... 47 4.2.2 Training ... 49 4.2.3 Validation ... 50 4.2.4 Saliency Map ... 51 4.3 Reducing Fake Rate with Non-ML Method ... 52 4.3.1 Selecting Relevant Pixels ... 53 4.3.2 Angular Reconstruction: Beam-Forming Method ... 53 4.3.3 Co-Adding and Power Enhancement ... 55 4.3.4 Candidates Selection ... 56 Chapter 5 Analysis and Results ... 59 5.1 Validation and Cuts Determination ... 59 5.1.1 Confidence Cut ... 59 5.1.2 PSR and WPSR Cuts ... 60 5.2 Opening Exploration Set ... 62 5.2.1 Data Distribution ... 62 5.2.2 Remaining Events ... 63 5.2.2.1 FRB-Like Events ... 64 5.2.2.2 Repeating Sweeps ... 69 5.2.2.3 Insufficient Pixels Events ... 73 5.2.2.4 Inconclusive Events ... 81 5.2.2.5 Obfuscated by RFI Events ... 101 5.2.3 Event Rate Estimation ... 103 Chapter 6 Conclusions ... 105 References ... 107 | - |
dc.language.iso | en | - |
dc.title | 使用監督式機器學習以 TAROGE 搜尋快速電波爆發 | zh_TW |
dc.title | Search for Fast Radio Bursts with TAROGE Using Supervised Machine Learning | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 南智祐 | zh_TW |
dc.contributor.coadvisor | Jiwoo Nam | en |
dc.contributor.oralexamcommittee | 林凱揚;李昭德;王士豪 | zh_TW |
dc.contributor.oralexamcommittee | Kai-Yang Lin;Chao-Te Li;Shih-Hao Wang | en |
dc.subject.keyword | 快速電波爆發,TAROGE,監督式機器學習,殘差神經網路, | zh_TW |
dc.subject.keyword | Fast Radio Burst,TAROGE,Supervised Machine Learning,Residual Neural Network, | en |
dc.relation.page | 115 | - |
dc.identifier.doi | 10.6342/NTU202402175 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-06 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 118.98 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。