Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9384
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳小梨(Show-Li Chen)
dc.contributor.authorPei-Yu Luen
dc.contributor.author呂培瑜zh_TW
dc.date.accessioned2021-05-20T20:20:08Z-
dc.date.available2014-09-15
dc.date.available2021-05-20T20:20:08Z-
dc.date.copyright2009-09-15
dc.date.issued2008
dc.date.submitted2009-05-11
dc.identifier.citationAndrophy EJ, Lowy DR, Schiller JT (1987) Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA. Nature 325(6099): 70-73
Bernard HU, Apt D (1994) Transcriptional control and cell type specificity of HPV gene expression. Arch Dermatol 130(2): 210-215
Blanco JC, Minucci S, Lu J, Yang XJ, Walker KK, Chen H, Evans RM, Nakatani Y, Ozato K (1998) The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev 12(11): 1638-1651
Boyer SN, Wazer DE, Band V (1996) E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56(20): 4620-4624
Chan WK, Klock G, Bernard HU (1989) Progesterone and glucocorticoid response elements occur in the long control regions of several human papillomaviruses involved in anogenital neoplasia. J Virol 63(8): 3261-3269
Chong T, Apt D, Gloss B, Isa M, Bernard HU (1991) The enhancer of human papillomavirus type 16: binding sites for the ubiquitous transcription factors oct-1, NFA, TEF-2, NF1, and AP-1 participate in epithelial cell-specific transcription. J Virol 65(11): 5933-5943
Fortney JA, Potts M, Bonhomme M (1985) Invasive cervical cancer and combined oral contraceptives. Br Med J (Clin Res Ed) 290(6481): 1587
Gloss B, Bernard HU, Seedorf K, Klock G (1987) The upstream regulatory region of the human papilloma virus-16 contains an E2 protein-independent enhancer which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones. EMBO J 6(12): 3735-3743
Gloss B, Chong T, Bernard HU (1989) Numerous nuclear proteins bind the long control region of human papillomavirus type 16: a subset of 6 of 23 DNase I-protected segments coincides with the location of the cell-type-specific enhancer. J Virol 63(3): 1142-1152
Hebner CM, Laimins LA (2006) Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol 16(2): 83-97
Heinlein CA, Chang C (2002a) Androgen receptor (AR) coregulators: an overview. Endocrine reviews 23: 175-200
Heinlein CA, Chang C (2002b) The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. . Molecular endocrinology 16: 2181-2187
Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR (1996) GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci U S A 93(10): 4948-4952
Incassati A, Patel D, McCance DJ (2006) Induction of tetraploidy through loss of p53 and upregulation of Plk1 by human papillomavirus type-16, E6. Oncogene 25: 2444-2451
Iovino F, Lentini L, Amato A, Di Leonardo A (2006) RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts. Mol Cancer Res 5: 38
Ishiji T, Lace MJ, Parkkinen S, Anderson RD, Haugen TH, Cripe TP, Xiao JH, Davidson I, Chambon P, Turek LP (1992) Transcriptional enhancer factor (TEF)-1 and its cell-specific co-activator activate human papillomavirus-16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells. EMBO J(6): 2271-2281
Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85(3): 403-414
Kanaya T, Kyo S, Laimins LA (1997) The 5' region of the human papillomavirus type 31 upstream regulatory region acts as an enhancer which augments viral early expression through the action of YY1. Virology 237(1): 159-169
Li D, Roberts R (2001) WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58(14): 2085-2097
Lorincz AT, Reid R, Jenson AB, Greenberg MD, Lancaster W, Kurman RJ (1992) Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol 79(3): 328-337
Luscher B, Larsson LG (1999) The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation. Oncogene 18: 2955-2966
Mittal R, Pater A, Pater MM (1993a) Multiple human papillomavirus type 16 glucocorticoid response elements functional for transformation, transient expression, and DNA-protein interactions. J Virol 67(9): 5656-5659
Mittal R, Tsutsumi K, Pater A, Pater MM (1993b) Human papillomavirus type 16 expression in cervical keratinocytes: role of progesterone and glucocorticoid hormones. Obstet Gynecol 81(1): 5-12
Morris PJ, Dent CL, Ring CJ, Latchman DS (1993a) The octamer binding site in the HPV16 regulatory region produces opposite effects on gene expression in cervical and non-cervical cells. Nucleic Acids Res 21(4): 1019-1023
Morris PJ, Ring CJ, Lillycrop KA, Latchman DS (1993b) Transactivation of the human papilloma virus 16 octamer motif by the octamer binding protein Oct-2 requires both the N and C terminal activation domains. Nucleic Acids Res 21(19): 4506-4510
Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371(6495): 297-300
Onate SA, Tsai SY, Tsai MJ, O'Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270(5240): 1354-1357
Patel D, Incassati A, Wang N, McCance DJ (2004) Human papillomavirus type 16, E6 and E7 cause polyploidy in human keratinocytes and up-regulation of G2-M-phase proteins. Cancer Res 64: 1299-1306
Pater MM, Hughes GA, Hyslop DE, Nakshatri H, Pater A (1988) Glucocorticoid-dependent oncogenic transformation by type 16 but not type 11 human papilloma virus DNA. Nature 335(6193): 832-835
Pisani P, Bray F, Parkin DM (2002) Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int J Cancer 97(1): 72-81
PM H (1996) Papillomaviridae: the viruses and
their replication., Philadelphia,
PA: Lippincott-Raven Publishers.
Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63(6): 1129-1136
Schneider A, Hotz M, Gissmann L (1987) Increased prevalence of human papillomaviruses in the lower genital tract of pregnant women. Int J Cancer 40(2): 198-201
Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24(5): 181-185
Stern E, Forsythe AB, Youkeles L, Coffelt CF (1977) Steroid contraceptive use and cervical dysplasia: increased risk of progression. Science 196(4297): 1460-1462
Strahle U, Klock G, Schutz G (1987) A DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression. Proc Natl Acad Sci U S A 84(22): 7871-7875
Tan SH, Leong LE, Walker PA, Bernard HU (1994) The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. J Virol 68(10): 6411-6420
Tsai TC, Lee YL, Hsiao WC, Tsao YP, Chen SL (2005) NRIP, a novel nuclear receptor interaction protein, enhances the transcriptional activity of nuclear receptors. J Biol Chem 280(20): 20000-20009
Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1): 12-19
Wang KL (2007) Human papillomavirus and vaccination in cervical cancer. Taiwan J Obstet Gynecol 46(4): 352-362
Wu MH, Chan JY, Liu PY, Liu ST, Huang SM (2007a) Human papillomavirus E2 protein associates with nuclear receptors to stimulate nuclear receptor- and E2-dependent transcriptional activations in human cervical carcinoma cells. Int J Biochem Cell Biol 39(2): 413-425
Wu MH, Huang CJ, Liu ST, Liu PY, Ho CL, Huang SM (2007b) Physical and functional interactions of human papillomavirus E2 protein with nuclear receptor coactivators. Biochem Biophys Res Commun 356(3): 523-528
zur Hausen H (1989) Papillomaviruses in anogenital cancer as a model to understand the role of viruses in human cancers. Cancer Res 49(17): 4677-4681
zur Hausen H (1991) Human papillomaviruses in the pathogenesis of anogenital cancer. Virology 184(1): 9-13
zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2(5): 342-350
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9384-
dc.description.abstract人類乳突瘤病毒十六型 (HPV-16) 感染是造成子宮頸癌的主因,而且此癌症的發生與體內的糖皮質激素濃度相關。在前人的研究中指出糖皮質素 (glucocorticoid) 會藉由位於 HPV-16 之 long control region (LCR) 中的三個糖皮質素反應序列 (glucocorticoid response element, GRE) 來增強 HPV-16 的轉錄能力,以提升其下游的主要致癌蛋白質 E6 及 E7 之表現,因而促成細胞轉形及癌症發展。此外,GR 屬於細胞核受體家族的一員,具有轉錄因子的功能,在受到配體刺激的情況之下,會結合至目標基因上游的 GRE,並招募其他共同活化因子或共同抑制因子前來進行調控,顯示 GR 的轉錄共同因子在 HPV-16 的調控中,必定也扮演重要角色。其中,本實驗室先前發現之細胞核受體交互作用蛋白質 (nuclear receptor interaction protein, NRIP) 已被證明能夠增強 GR 的轉錄活性,可作為 GR 之共同活化因子。因此,本論文針對 GR 及其共同活化因子 NRIP 在 HPV-16 LCR 之調控中所扮演的角色進行研究。首先,我們以染色質免疫沉澱法 (chromatin immunoprecipitation, ChIP) 證明 GR 在受到配體 dexamethosome (Dex) 的刺激後,會結合至 HPV-16 LCR 上的 GRE。啟動子活性分析的結果除了證實 HPV-16 LCR 上的三個已知 GREs 都能被 GR 所增進,序列刪除突變株的結果更指出第四個具有功能的 GRE 之存在。在細胞受到配體刺激的情形下,我們以 ChIP 證實共同活化因子 NRIP 會藉由 GR 共同結合至 HPV-16 LCR。以核酸干擾技術降低 NRIP 的表現量後,HPV-16 的 E6 及 E7 的 mRNA 表現量也隨之降低,子宮頸癌細胞株受 GR 配體促進而提升的生長速率也隨之減緩。
本篇結果顯示 GR 藉由結合 HPV-16 LCR 上的四個 GREs 來促進其轉錄活性,而共同活化因子 NRIP 又對 GR 的調控功能扮演著舉足輕重的角色。
zh_TW
dc.description.abstractThe major cause of cervical cancer is infection of human papillomavirus type 16 (HPV-16), which pathogenicity and oncogenicity are correlated with the hormone glucocorticoid. Previous studies have shown that glucocorticoid upregulates the transcription activity through the three glucocorticoid response elements (GREs) in HPV-16 long control region (LCR), enhancing the expression of the two major oncogenes E6 and E7 downstream, resulting in cell transformation and oncogenesis.
Moreover, GR belongs to Type I nuclear receptor family and serves as transcription factor. When treated with ligand, GR binds to the GREs upstream of its target genes and recruits other coregulators to exert its function, implicating that the cofactors of GR may play roles in the regulation of HPV-16. Previously, our lab found a novel cofactor of GR, named NRIP, which was demonstrated to upregulate the transactivity of GR. Hence, we investigate the roles of GR and its coactivator NRIP in the regulation of HPV-16. First, we demonstrated that GR bound to the GRE(s) in HPV-16 LCR upon ligand dexamethosome (Dex) treatment by chromatin immunoprecipitation (ChIP). The results of luciferase activity assays not only proved the three unknown GREs were separately functional, but also revealed the existence of the fourth GRE. We also proved that NRIP bound HPV-16 LCR through GR in the presence of Dex. Knockdown of NRIP downregulated the mRNA expression of HPV-16 E6 and E7, and also decreased the cell proliferation promoted by Dex.
These results indicate that GR enhances the transcription activity of HPV-16 LCR by binding to the four GREs, and cofactor NRIP also plays an important role in GR-mediated regulation.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:20:08Z (GMT). No. of bitstreams: 1
ntu-97-R95445110-1.pdf: 2017768 bytes, checksum: 2948794199a002f1046cbe9870c8f7a7 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要 ii
Abstract iii
Contents v
Contents of Figures and Tables viii
1. Introduction 1
1.1 HPV and cervical cancer risk 1
1.1.1 HPV genome 2
1.1.2 The regulation of HPV transcription 2
1.1.3 HPV E6 and E7 oncoproteins 3
1.2 Glucocorticoid receptor and cervical cancer risk 4
1.2.1 Glucocorticoid receptor response elements (GREs) on HPV-16 promoter 5
1.2.2 GR is a member of type I nuclear receptor family 6
1.2.3 GR recruits cofactors to exert its function in transcription regulation 7
1.3 Nuclear receptor interaction protein (NRIP), a coactivator of GR 7
1.3.1 The discovery of NRIP 8
1.3.2 The effects of NRIP 8
1.3.3 The structure of NRIP 9
1.3.4 NRIP-B, an alternatively spliced isoform of NRIP 10
1.4 Specific aims 11
2. Materials and Methods 13
2.1 Cell culture 13
2.2 Plasmid construction 14
2.2.1 Serial deleted mutagenesis of HPV-16 promoter 14
2.2.2 Site-directed mutagenesis of HPV-16 promoter 15
2.3 Transfection 16
2.3.1 Calcium phosphate method 16
2.3.2 Lipofectamine method 17
2.3.3 FuGENE HD method 17
2.4 Semi-quantitative RT-PCR 18
2.4.1 RNA extraction 18
2.4.2 First-strand cDNA synthesis 20
2.4.3 Polymerase chain reaction (PCR) 21
2.5 Chromatin immunoprecipitation assay (ChIP) 21
2.6 Luciferase assay 25
2.7 Co-immunoprecipitation and Western blot 25
2.7.1 Co-immunoprecipitation 25
2.7.2 Western blot 26
2.8 Cell growth assay 27
3. Results 28
3.1 The regulation mechanisms of GR on HPV-16 promoter 28
3.1.1 To search for the proper cell line as research model 28
3.1.2 To test the effect of glucocorticoid on endogenous HPV-16 E7 expression 28
3.1.3 To investigate the interaction between GR and the putative GREs on HPV-16 promoter 29
3.1.4 To elucidate which site is important for GR-mediated HPV gene expression 29
3.1.5 To search for the novel GRE on HPV-16 promoter 30
3.2 The effect of coregulator NRIP on GR-mediated HPV-16 gene expression 31
3.2.1 To investigate whether NRIP enhances GR through binding to HPV-16 promoter 31
3.2.2 To investigate whether NRIP binds to HPV-16 promoter through GR 32
3.2.3 The effect of siNRIP on GR-mediated E6 and E7 expression 32
3.2.4 The effect of siNRIP on GR-mediated cell proliferation 33
3.3 The interaction between NRIP and its isoform NRIP-B 33
3.3.1 To test whether NRIP and NRIPB associate with each other 33
4. Discussion 35
4.1 The role of GR in HPV-16 LCR regulation 35
4.1.1 The binding between GR and the four GREs on HPV-16 LCR 36
4.1.2 The responses of GREs toward Dex treatment 38
4.2 The role of coregulator NRIP in GR-mediated HPV-16 LCR regulation 39
4.2.1 The binding of coregulator NRIP and HPV-16 LCR 39
4.2.2 The effect of shNRIP on the expression of HPV-16 oncogenes E6 and E7 40
4.2.3 The effect of shNRIP on GR-mediated cell proliferation 41
4.3 The interaction between NRIP and its alternative spliced isoform NRIP-B 42
Figures 45
Tables 57
References 59
dc.language.isoen
dc.title糖皮質素受體及其共同活化因子核受體交互作用蛋白質在人類子宮頸瘤病毒十六型轉錄調控區域之角色zh_TW
dc.titleThe Roles of Glucocorticoid Receptor and Its Coactivator NRIP in the Regulation of Human Papillomavirus Type 16 Long Control Regionen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃世明,鄧述諄,董馨蓮
dc.subject.keyword子宮頸癌,人類乳突瘤病毒,糖皮質素受體,核受體交互作用蛋白質,轉錄調控,zh_TW
dc.subject.keywordcervical cancer,HPV-16 LCR,glucocorticoid receptor (GR),nuclear receptor interaction protein (NRIP),en
dc.relation.page63
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-05-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf1.97 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved