Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93835
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘斯文zh_TW
dc.contributor.advisorStephen Payneen
dc.contributor.author黃國翔zh_TW
dc.contributor.authorGuo-Xiang Huangen
dc.date.accessioned2024-08-08T16:28:19Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation[1] PAYNE, Stephen J. Cerebral Autoregulation:Control of Blood Flow in the Brain. 2016.
[2] RAHMA, Ahmed G., et al. Blood flow CFD simulation on a cerebral artery of a stroke patient. SN Applied Sciences, 2022, 4: 261.
[3] GROEN, D., et al. Validation of Patient-Specific Cerebral Blood Flow Simulation Using Transcranial Doppler Measurements. Computational Physiology and Medicine, 2018, 9: 721.
[4] https://open.oregonstate.education/aandp/chapter/18-1-functions-of-blood/
[5] CASSON, N. A Flow Equation for Pigment-Oil Suspensions of the Printing Ink Type. Oxford, 1959, 84-104.
[6] CLAASSEN, AHR J. Transfer function analysis of dynamic cerebral autoregulation- A white paper from the International Cerebral Autoregulation Research Network. CARNet, 2016, 36.4: 665-680.
[7] LEUNG, J., et al. Developmental trajectories of cerebrovascular reactivity in healthy children and young adults assessed with magnetic resonance imaging. Neuroscience, 2016, 594.10: 2681-2689.
[8] GRAFF, Barnaby J., et al. Regional Cerebral Blood Flow Changes in Healthy Ageing and Alzheimer’s Disease: A Narrative Review. Cerebrovascular Disease, 2023; 52:11-20.
[9] https://www.ndc.gov.tw/Content_List.aspx?n=0F11EF2482E76C53
[10] WHITWORTH, Judith A. 2003 World Health Organization (WHO) :International Society of Hypertension (ISH) statement on management of hypertension. J Hypertension, 2003, 21.11:1983-92.
[11] https://www.hpa.gov.tw/Home/Index.aspx
[12] FARACO, G., et al. Hypertension: a harbinger of stroke and dementia. 2013, 62.5:810-7.
[13] https://medicine.utah.edu/radiology/research/learn/pet
[14] https://my.clevelandclinic.org/health/diagnostics/4876-magnetic-resonance-imaging-mri
[15] MILLER, Kathleen B., et al. Age-Related Reductions in Cerebrovascular Reactivity Using 4D Flow MRI. Original Research, 2019, 11.10.
[16] TONG, Z., et al. A multiscale model of cerebral autoregulation. Medical Engineering and Physics. 2021, 95:51-63.
[17] CATHERALL, M. Modelling the role of nitric oxide in cerebral autoregulation. Oxford University Press; 2014.
[18] BAYLISS, WM. On the local reactions of the arterial wall to changes of internal pressure. J Physiol, 1902; 3.28: 220–31.
[19] HAI, CM, et al. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am J Physiol, 1988; 1.254: C99–106.
[20] YANG, J, et al. The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell model. Med Eng Phys, 2003; 8.25: 691–709.
[21] STÅLHAND, J, et al. Smooth muscle contraction: Mechanochemical formulation for homogeneous finite strains. Prog Biophys Mol Biol, 2008; 1.96: 465–81.
[22] GALANTAI, A. The theory of Newton’s method. Journal of Computational and Applied Mathematics, 2000, 124: 25-44.
[23] SMITH, DR. An Introduction to Continuum Mechanics - after Truesdell and Noll. 1993.
[24] BAEK, S, et al. Biochemomechanics of Cerebral Vasospasm and its Resolution: II. Constitutive Relations and Model Simulations. Annals of Biomedical Engineering, 2007, 9.35: 1498-1509.
[25] VALENTI ́N, A, et al. A Multi-Layered Computational Model of Coupled Elastin Degradation, Vasoactive Dysfunction, and Collagenous Stiffening in Aortic Aging. Annals of Biomedical Engineering, 2011, 7.39: 2027-2045.
[26] FELDMAN, SA, et al. Transmedial collagen and elastin gradients in human aortas: reversal with age. Atherosclerosis, 1971, 3.13: 385–394.
[27] CARDAMONE, L, et al. Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle. Math. Med. Biol, 2010, 4.27: 343–371.
[28] VALENTI ́N, A, et al. Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling. J. Biomech. Eng, 2009, 10.131: 10100.
[29] HUMPHREY, JD. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2002.
[30] ARRIBAS, SM, et al. Elastic fibres and vascular structure in hypertension. Pharmacol. Ther, 2006, 3.111: 771–791.
[31] MATLAB, Starting. Matlab. The MathWorks, Natick, MA, 2012.
[32] https://www.mathworks.com/help/matlab/ref/fzero.html
[33] RUDER, S. An overview of gradient descent optimization algorithms. arXiv, 2017.
[34] https://www.mathworks.com/help/matlab/ref/ode45.html
[35] CHAPRA, S. Applied Numerical Methods with MATLAB: for Engineers & Scientists, 2004.
[36] KUO, L, et al. Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels. Am J Physiol, 1991, 6.261: H1706–15.
[37] URSINO, M, et al. Theoretical analysis of complex oscillations in multibranched microvascular networks. Microvasc Res, 1996, 2.51: 229-49.
[38] https://www.mathworks.com/help/optim/ug/fmincon.html
[39] PAYNE, Stephen J. Cerebral blood flow and metabolism: a quantitative approach. 2018.
[40] OGOH, S, et al. Influence of baroreflex-mediated tachycardia on the regulation of dynamic cerebral perfusion during acute hypotension in humans. J Physiol, 2010, 15.588: 365-71.
[41] DESOUZA, CA, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation, 2000, 12.102: 1351-7.
[42] GUINEY, H, et al. Evidence cerebral blood-flow regulation mediates exercise-cognition links in healthy young adults. Neuropsychology, 2015, 1.29: 1-9.
[43] COLCOMBE, SJ, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci, 2006, 11.61: 1166-70.
[44] https://www.fda.gov/radiation-emitting-products/medical-x-ray-imaging/computed-tomography-ct
[45] ANTONELLO, D, et al. Transcranial Doppler Ultrasound: Physical Principles and Principal Applications in Neurocritical Care Unit. J Cardiovasc Echogr, 2016, 2.26: 28-41.
[46] HANZHANG, L, et al. Alterations in Cerebral Metabolic Rate and Blood Supply across the Adult Lifespan. Cerebral Cortex, 2011, 6.21: 1426-34.
[47] IRGENS, F. Tensor Analysis. 2019.
[48] QUERIDO, JS, et al. Regulation of Cerebral Blood Flow During Exercise. Sports Medicine, 2007, 9.37: 765-782.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93835-
dc.description.abstract腦血流自動調節的干擾可能會嚴重影響大腦健康,並可能導致各種疾病,如老化和高血壓。因此,有了病人的血壓和血流量等臨床數據,我們可以利用數學模型來觀察自動調節曲線,並預測疾病的潛在發生。
然而,一氧化氮模型參數過多,使臨床分析和預測變得複雜。出於需要有效處理腦血流自動調節涉及的不同時間尺度的必要,提出了新的數學模型的需求。在擬合參數之後,建立了新的腦血流自動調節曲線,顯著減少了參數的數量。
此外,新的數學模型引入了進行性血管活性功能障礙公式,以觀察不同年齡組的腦血流自動調節。 我們的結果顯示,在新的數學模型中,我們調整了11個參數,顯著減少了總參數數量,同時滿足了自動調節曲線分佈的預期。
在穩態分析中,引入進行性血管活性功能障礙公式後,不同年齡組的自動調節曲線分佈符合預期,使得能夠對不同年齡組的高血壓患者進行可測試的預測。在動態狀態分析中,趨勢保持一致,顯示隨著年齡增長,血管半徑和血流量下降,表明新模型能有效預測老化和高血壓患者的病情。
zh_TW
dc.description.abstractDisruptions in cerebral blood flow autoregulation can significantly impact brain health, potentially leading to various diseases such as ageing and hypertension. Therefore, with clinical data on a patient's blood pressure and blood flow, we can use mathematical models to observe the autoregulation curve and predict the potential onset of diseases.
However, the nitro-oxide model had too many parameters, complicating clinical analysis and predictions. The need for a new mathematical model arises from the necessity to effectively address different time scales involved in cerebral blood flow autoregulation. After fitting the parameters, a new cerebral blood flow autoregulation curve is established, significantly reducing the number of parameters.
In addition, the new mathematical model introduces a progressive vasoactive dysfunction formula to observe cerebral blood flow autoregulation across different age groups. Our results show that in the new mathematical model, we adjusted 11 parameters, reducing the total number significantly while meeting expectations for the autoregulation curve's distribution.
In steady state analysis, after incorporating the progressive vasoactive dysfunction formula, the distribution of autoregulation curves across different age groups met expectations, allowing testable predictions for hypertensive patients across age groups. In dynamic state analysis, the trends remained consistent, showing a decline in blood vessel radius and blood flow with ageing, indicating the new model can effectively be used to predict conditions in ageing and hypertension patients.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:28:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:28:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
Acknowledgements ii
中文摘要 iv
Abstract v
Contents vii
List of Figures xi
List of Tables xiv
Introduction 1
1.1 Cerebral Blood Flow 2
1.1.1 Basic Function of Blood Flow 3
1.1.2 Cerebral Autoregulation 5
1.2 Diseases Related to CBF 6
1.2.1 Ageing 7
1.2.2 Hypertension 10
1.3 Clinical Measurements 12
1.3.1 Computed Tomography (CT) 12
1.3.2 Positron Emission Tomography (PET) 13
1.3.3 Magnetic Resonance Imaging (MRI) 14
1.3.4 4D flow MRI 16
1.3.5 Transcranial Doppler (TCD) 17
1.4 Conclusions 19
Models and Methods 20
2.1 Multiscale Model of Cerebral Autoregulation 20
2.1.1 Nitric Oxide Model 21
2.1.2 Simplified Myogenic Response Model 23
2.1.3 4-State Kinetic Model 25
2.1.4 Mechanical Model 26
2.2 Cauchy Stress Tensor 28
2.2.1 Introduction 29
2.2.2 Assumptions and Simplifications 30
2.2.3 Parameters Adjustment 34
2.2.4 Progressive Vasoactive Dysfunction 35
2.3 Haemodynamic Model 36
2.3.1 Steady State 37
2.3.2 Dynamic State 38
2.4 Numerical Methods 40
2.5 Conclusions 41
Results and Discussions 42
3.1 Results of Original Model in Steady State 42
3.1.1 Steady State Blood Vessel Radius 43
3.1.2 Steady State CBF Autoregulation 44
3.2 Results of New Mathematical Model in Steady State 46
3.2.1 Optimization 46
3.2.2 Progressive Vasoactive Dysfunction 48
3.3 Results of Dynamic State 50
3.3.1 The Results of Dynamic State 50
3.3.2 Progressive Vasoactive Dysfunction 55
3.4 Conclusions 59
Conclusions and Future Work 60
4.1 Summary of Findings 60
4.2 Limitations 62
4.3 Future Work 64
References 67
-
dc.language.isoen-
dc.subject腦血流zh_TW
dc.subject腦血流自動調節zh_TW
dc.subject柯西應力張量zh_TW
dc.subject老化zh_TW
dc.subject高血壓zh_TW
dc.subject進行性血管活性功能障礙zh_TW
dc.subjectCauchy stress tensoren
dc.subjectCerebral blood flowen
dc.subjectProgressive vasoactive dysfunctionen
dc.subjectHypertensionen
dc.subjectAgeingen
dc.subjectCerebral blood flow autoregulationen
dc.title利用新的數學模型分析老化與高血壓對腦血流自動調節的影響zh_TW
dc.titleAnalysing the effects of ageing and hypertension on dynamic cerebral autoregulation using a new mathematical modelen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梅文逢;湯瑪士尤薩zh_TW
dc.contributor.oralexamcommitteeVan-Phung Mai;Tamàs Jòzsaen
dc.subject.keyword腦血流,腦血流自動調節,柯西應力張量,老化,高血壓,進行性血管活性功能障礙,zh_TW
dc.subject.keywordCerebral blood flow,Cerebral blood flow autoregulation,Cauchy stress tensor,Ageing,Hypertension,Progressive vasoactive dysfunction,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202403077-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf2.34 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved