Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93833
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蘇偉儁zh_TW
dc.contributor.advisorWei-Jiun Suen
dc.contributor.author李昱錞zh_TW
dc.contributor.authorYu-Chun Lien
dc.date.accessioned2024-08-08T16:27:38Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citationAudrain Auto Museum. "1959 Cadillac Cyclone." https://www.audrainautomuseum.org/styling-the-future/1959-cadillac-cyclone (accessed Mar, 2024).
Mitsubishi. "Car History." https://www.mitsubishi-motors.com/en/company/history/car/ (accessed Dec 19, 2023).
UN Regulations No. 131, UNITED NATIONS, 2013. [Online]. Available: https://unece.org/transport/vehicle-regulations-wp29/standards/addenda-1958-agreement-regulations-121-140
AEB Car-to-Car Test Protocol v4.3, EUROPEAN NEW CAR ASSESSMENT PROGRAMME, 2023. [Online]. Available: https://www.euroncap.com/media/79864/euro-ncap-aeb-c2c-test-protocol-v43.pdf
UN Regulations No. 152, UNITED NATIONS, 2020. [Online]. Available: https://unece.org/transport/vehicle-regulations-wp29/standards/addenda-1958-agreement-regulations-141-160
Autovolt. "Euro NCAP puts Autonomous Emergency Braking Systems (AEBs) to the Test." https://www.autovolt-magazine.com/euro-ncap-puts-autonomous-emergency-braking-systems-aebs-to-the-test/ (accessed Nov 6, 2023).
H. Kamiya, Y. Fujita, T. Tsuruga, Y. Nakamura, S. Matsuda, and K. Enomoto, "Intelligent technologies of Honda ASV," in Proceedings of Conference on Intelligent Vehicles, 1996, pp. 236-241, doi: 10.1109/IVS.1996.566384.
T. Mimuro, Y. Miichi, T. Maemura, and K. Hayafune, "Functions and devices of Mitsubishi active safety ASV," in Proceedings of Conference on Intelligent Vehicles, 1996, pp. 248-253, doi: 10.1109/IVS.1996.566386.
E. Coelingh, A. Eidehall, and M. Bengtsson, "Collision Warning with Full Auto Brake and Pedestrian Detection - a practical example of Automatic Emergency Braking," in 13th International IEEE Conference on Intelligent Transportation Systems, 19-22 Sept. 2010, pp. 155-160, doi: 10.1109/ITSC.2010.5625077.
T.-S. Wu, "Pedestrian and Vehicle Recognition Based on Radar for Autonomous Emergency Braking," 2017. [Online]. Available: https://doi.org/10.4271/2017-01-1405.
Continental. "ARS 404 Radar." https://conti-engineering.com/components/ars-404/ (accessed Dec 20, 2022).
Continental. "ARS 408 Radar." https://conti-engineering.com/components/ars-408/ (accessed Mar 2, 2024).
H. Araki, K. Yamada, Y. Hiroshima, and T. Ito, "Development of rear-end collision avoidance system," JSAE Review, vol. 18, no. 3, pp. 314-316, 1997, doi: https://doi.org/10.1016/S0389-4304(97)00010-6.
M. K. Park, S. Y. Lee, C. K. Kwon, and S. W. Kim, "Design of Pedestrian Target Selection With Funnel Map for Pedestrian AEB System," IEEE Transactions on Vehicular Technology, vol. 66, no. 5, pp. 3597-3609, 2017, doi: 10.1109/TVT.2016.2604420.
Y. Pan, F. Huo, Z. Wang, S. Zhai, and Z. Geng, "A Millimeter-Wave Radar Tunnel Obstacle Detection Method Based on Invalid Target Filtering," Applied Sciences, vol. 13, no. 11, 2023, doi: 10.3390/app13116720.
K. Kodaka, M. Otabe, Y. Urai, and H. Koike, "Rear-End Collision Velocity Reduction System," SAE Technical Papers, 03/03 2003, doi: 10.4271/2003-01-0503.
I. C. Han, B. C. Luan, and F. C. Hsieh, "Development of Autonomous Emergency Braking control system based on road friction," in 2014 IEEE International Conference on Automation Science and Engineering (CASE), 18-22 Aug. 2014, pp. 933-937, doi: 10.1109/CoASE.2014.6899438.
T. Kim, J. Lee, and K. Yi, "Enhanced maximum tire-road friction coefficient estimation based advanced emergency braking algorithm," in IEEE Intelligent Vehicles Symposium (IV), 28 June-1 July 2015, pp. 883-888, doi: 10.1109/IVS.2015.7225796.
J. Guo, Y. Wang, X. Yin, P. Liu, Z. Hou, and D. Zhao, "Study on the Control Algorithm of Automatic Emergency Braking System (AEBS) for Commercial Vehicle Based on Identification of Driving Condition," Machines, vol. 10, no. 10, 2022, doi: 10.3390/machines10100895.
M. Choi, J. J. Oh, and S. B. Choi, "Linearized Recursive Least Squares Methods for Real-Time Identification of Tire–Road Friction Coefficient," IEEE Transactions on Vehicular Technology, vol. 62, no. 7, pp. 2906-2918, 2013, doi: 10.1109/TVT.2013.2260190.
C. Canudas-de-Wit, P. Tsiotras, E. Velenis, M. Basset, and G. l. Gissinger, "Dynamic Friction Models for Road/Tire Longitudinal Interaction," Vehicle System Dynamics - VEH SYST DYN, vol. 39, pp. 189-226, 03/01 2003, doi: 10.1076/vesd.39.3.189.14152.
C. Ahn, H. Peng, and H. E. Tseng, "Robust estimation of road friction coefficient," in Proceedings of the 2011 American Control Conference, 29 June-1 July 2011 2011, pp. 3948-3953, doi: 10.1109/ACC.2011.5991256.
S. Song, K. Min, J. Park, H. Kim, and K. Huh, "Estimating the Maximum Road Friction Coefficient with Uncertainty Using Deep Learning," in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 4-7 Nov. 2018, pp. 3156-3161, doi: 10.1109/ITSC.2018.8569965.
TOYOTA. "FORTUNER SAFETY." https://toyota.com.bh/vehicles/fortuner/safety (accessed May 20, 2024).
D. V. S. Gowda, "Slip Ratio Control of Anti-Lock Braking System with Bang-Bang Controller," 2017.
H. R. More, A. A. Digrase, and A. V. Wayse, "Linear PID control technique for single wheel ABS (anti-lock braking system) of motorcycle," in 2017 2nd International Conference for Convergence in Technology (I2CT), 7-9 April 2017, pp. 277-281, doi: 10.1109/I2CT.2017.8226135.
S. S. Tippannavar, S. D. Yashwanth, M. P. M. Sudan, K. M. Puneeth, B. N. C. Murthy, and M. S. V. Prasad, "Analysis Of Performance of different Control Techniques on Anti-Lock Braking System," in 2022 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), 22-24 Dec. 2022, vol. 2, pp. 35-40, doi: 10.1109/CENTCON56610.2022.10051207.
H. D. Unbehauen, CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Volume XIII: Nonlinear, Distributed, and Time Delay Systems-II. EOLSS Publications, 2009.
交通部. "道安資訊查詢網." https://roadsafety.tw/Dashboard/Custom?type=%E7%B5%B1%E8%A8%88%E5%BF%AB%E8%A6%BD (accessed Apr 16, 2024).
World Health Organization. "Road traffic injuries." (accessed April 16, 2024).
J. J. Rolison, S. Regev, S. Moutari, and A. Feeney, "What are the factors that contribute to road accidents? An assessment of law enforcement views, ordinary drivers’ opinions, and road accident records," Accident Analysis & Prevention, vol. 115, pp. 11-24, 2018/06/01/, doi: https://doi.org/10.1016/j.aap.2018.02.025.
K. Digges and G. Bahouth, "Frequency of injuries in multiple impact crashes," (in eng), Annu Proc Assoc Adv Automot Med, vol. 47, pp. 417-23, 2003.
ISO 8855:2011, ISO, 2011. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:8855:en
V. Colli, G. Tomassi, and M. Scarano, ""Single Wheel" longitudinal traction control for electric vehicles," IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 799-808, 2006, doi: 10.1109/TPEL.2006.872363.
N. Lin, C. Zong, and S. Shi, "The Method of Mass Estimation Considering System Error in Vehicle Longitudinal Dynamics," Energies, vol. 12, no. 1, 2019, doi: 10.3390/en12010052.
T. Ghotikar, "Estimation Of Vehicle Mass And Road Grade," 2008.
R. Hoseinnezhad and A. Bab-Hadiashar, "Efficient Antilock Braking by Direct Maximization of Tire–Road Frictions," IEEE Transactions on Industrial Electronics, vol. 58, no. 8, pp. 3593-3600, 2011, doi: 10.1109/TIE.2010.2081951.
C. K. Song, M. Uchanski, and J. Hedrick, Vehicle Speed Estimation Using Accelerometer and Wheel Speed Measurements. 2002.
E. Bakker, L. Nyborg, and H. B. Pacejka, "Tyre Modelling for Use in Vehicle Dynamics Studies," SAE Transactions, vol. 96, pp. 190-204, 1987. [Online]. Available: http://www.jstor.org/stable/44470677.
H. Dugoff, P. S. Fancher, and L. Segel, "An Analysis of Tire Traction Properties and Their Influence on Vehicle Dynamic Performance," SAE Transactions, vol. 79, pp. 1219-1243, 1970. [Online]. Available: http://www.jstor.org/stable/44644491.
C. C. d. Wit and P. Tsiotras, "Dynamic tire friction models for vehicle traction control," in Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), 7-10 Dec. 1999, vol. 4, pp. 3746-3751 vol.4, doi: 10.1109/CDC.1999.827937.
M. Burckhardt, Fahrwerktechnik: Radschlupf Regelsysteme. Vogel Business Media/VM, 1993.
M. Dousti, S. Baslamisli, E. Onder, and S. Solmaz, "Design of a multiple-model switching controller for ABS braking dynamics," Transactions of the Institute of Measurement and Control, vol. 37, 09/01 2014, doi: 10.1177/0142331214546522.
A. P. Blancas, A. L. Galicia, and M. E. L. López, "Simulation and Comparison of a PID Controller for an Anti-Lock Braking System," 2019.
Z. Ivanov et al., "Investigation Of Braking Deceleration In Vehicle," in 2022 8th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), 30 June-2 July 2022, pp. 1-4, doi: 10.1109/EEAE53789.2022.9831283.
N. Kudarauskas, "Analysis of emergency braking of a vehicle," Transport, vol. 22, 07/01 2007, doi: 10.1080/16484142.2007.9638118.
J. Wang, L. Alexander, and R. Rajamani, "Friction Estimation on Highway Vehicles Using Longitudinal Measurements," Journal of Dynamic Systems, Measurement, and Control, vol. 126, no. 2, pp. 265-275, 2004, doi: 10.1115/1.1766028.
H. Guan, B. Wang, P. Lu, and L. Xu, "Identification of maximum road friction coefficient and optimal slip ratio based on road type recognition," Chinese Journal of Mechanical Engineering, vol. 27, no. 5, pp. 1018-1026, 2014/09/01, doi: 10.3901/CJME.2014.0725.128.
Z. Yizhen, E. K. Antonsson, and K. Grote, "A new threat assessment measure for collision avoidance systems," in 2006 IEEE Intelligent Transportation Systems Conference, 17-20 Sept. 2006, pp. 968-975, doi: 10.1109/ITSC.2006.1706870.
W. Li, H. Du, and W. Li, "Four-Wheel Electric Braking System Configuration With New Braking Torque Distribution Strategy for Improving Energy Recovery Efficiency," IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 1, pp. 87-103, 2020, doi: 10.1109/TITS.2018.2888915.
G. Weibing and J. C. Hung, "Variable structure control of nonlinear systems: a new approach," IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 45-55, 1993, doi: 10.1109/41.184820.
H. Koylu and E. Tural, "Experimental study on braking and stability performance during low speed braking with ABS under critical road conditions," Engineering Science and Technology, an International Journal, vol. 24, no. 5, pp. 1224-1238, 2021/10/01/, doi: https://doi.org/10.1016/j.jestch.2021.02.001.
DSFK. "EC - 35." https://www.dfsk.com.hk/ec-35 (accessed Dec 6, 2023).
State Program Dynamometer Driving Schedules, U.S. Environmental Protection Agency, 1995. [Online]. Available: https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93833-
dc.description.abstract自動緊急煞車系統(Autonomous Emergency Braking System, AEBS)提升車輛主動安全性,但其效用受到實際行駛情況的影響,其中包含車輛負載與路面情況。為滿足安全法規以確保駕駛安全性,本研究開發應用於不同路況以及車輛負載之自動緊急煞車系統控制策略。首先,根據車輛感測器取得輪速與車身加速度訊號,估測縱向速度、輪胎縱向力與正向力、整車質量等控制策略所需之參數。其次,為因應車輛行駛的路況,將根據估測之參數推算出路面即時摩擦係數,並建立路況判斷標準。隨後,配合估測之參數及狀態得到煞車距離以此作為AEBS煞車基準,並以滑動模式控制器(Sliding Mode Control)控制輪胎於最佳滑差。本研究在Matlab/Simulink環境下建立其控制系統,搭配CarSim模擬軟體進行UN Regulations No. 152所制定的測試規範;模擬結果顯示,提出之開發策略與對照組之策略相比,能有效避免碰撞並符合規範要求,並且於低摩擦係數路面也符合法規之要求。zh_TW
dc.description.abstractThe Autonomous Emergency Braking System (AEBS) enhances vehicle active safety, but its effectiveness is influenced by real-world driving conditions, including vehicle load and road conditions. To meet safety regulations and ensure driver safety, this study develops a control strategy for AEBS applicable to various road conditions and vehicle loads. First, vehicle sensors are used to obtain wheel speed and vehicle body acceleration signals to estimate the parameters required for the control strategy, such as longitudinal speed, tire longitudinal force and normal force, and overall vehicle mass. Next, to adapt to road conditions while driving, the real-time road surface friction coefficient is calculated based on the estimated parameters, and a road condition assessment standard is established. Subsequently, using the estimated parameters and states, the braking distance is obtained as the AEBS braking reference, and a Sliding Mode Controller (SMC) is used to control the tires at optimal slip. Finally, the control system is built in the Matlab/Simulink environment and tested with the CarSim simulation software according to the test specifications set out in UN Regulations No. 152. Simulation results show that the proposed development strategy can effectively prevent collisions and meet regulatory requirements compared to the control group strategy, and it also meets the requirements on low-friction road surfaces.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:27:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:27:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
致謝 II
摘要 III
Abstract IV
目次 V
圖次 VIII
表次 XI
符號表 XIII
縮寫表 XVII
第 1 章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 AEBS設計 3
1.2.2 路面識別 6
1.2.3 防鎖死煞車系統控制方法 7
1.2.3.1 滑差開關控制 7
1.2.3.2 滑差PID控制 8
1.2.3.3 適應性PID控制 8
1.2.3.4 滑動模式控制 8
1.2.4 文獻回顧總結 9
1.3 研究動機與方法 10
第 2 章 車輛理論 11
2.1 車輛幾何定義 11
2.1.1 車輛座標 11
2.1.2 感測器座標 13
2.2 車輛阻力模型 13
2.3 卡爾曼濾波 14
第 3 章 車輛參數及狀態估測設計 17
3.1 估測系統架構 18
3.2 車輛參數及狀態估測 19
3.2.1 輪胎縱向力 19
3.2.2 車輛質量 21
3.2.3 輪胎正向力 23
3.2.4 輪胎滾動有效輪徑 25
3.2.5 車輛縱向速度 27
3.3 路面識別方法 29
3.3.1 滑差斜率識別法 32
3.3.2 數據比對識別法 34
3.3.3 路面識別系統總結 35
第 4 章 AEBS策略與煞車控制設計 36
4.1 系統架構 36
4.2 AEBS策略設計 37
4.2.1 煞車距離策略 37
4.2.2 警示系統設計 40
4.3 煞車控制器 42
4.3.1 控制器設計 42
第 5 章 模擬結果 46
5.1 CarSim車輛模型 46
5.2 參數及狀態估測性能 48
5.2.1 輪胎縱向力估測 49
5.2.2 車輛質量估測 50
5.2.3 輪胎正向力估測 51
5.2.4 輪胎滾動有效輪徑估測 52
5.2.5 車輛縱向速度估測 53
5.2.6 參數及狀態估測性能小結 54
5.3 路面識別性能 54
5.3.1 IM240模擬結果 54
5.4 煞車控制器模擬 56
5.4.1 空載模擬結果 56
5.4.2 滿載模擬結果 61
5.4.3 控制器模擬小結 66
5.5 AEBS工況模擬與分析 67
5.5.1 對照組策略 67
5.5.2 UN Regulations No.152測試規範 67
5.5.3 CCRs模擬結果 70
5.5.3.1 空載模擬結果 70
5.5.3.2 滿載模擬結果 75
5.5.4 CCRm模擬結果 80
5.5.4.1 空載模擬結果 80
5.5.4.2 滿載模擬結果 83
第 6 章 結論與未來方向 87
6.1 結論 87
6.2 未來方向 89
參考文獻 90
-
dc.language.isozh_TW-
dc.subject自動緊急煞車系統zh_TW
dc.subject滑動模式控制zh_TW
dc.subject道路摩擦係數zh_TW
dc.subject碰撞時間zh_TW
dc.subject碰撞距離zh_TW
dc.subject質量估測zh_TW
dc.subject縱向動力學zh_TW
dc.subjectSliding Mode Controlen
dc.subjectLongitudinal Dynamicsen
dc.subjectMass Estimationen
dc.subjectCollision Distanceen
dc.subjectTime to Collisionen
dc.subjectRoad Friction Coefficienten
dc.subjectAutonomous Emergency Braking Systemen
dc.title基於車輛參數及狀態之自動緊急煞車系統設計zh_TW
dc.titleDesign of an Automatic Emergency Braking System Based on Vehicle Parameters and Statesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹魁元;陳明彥zh_TW
dc.contributor.oralexamcommitteeKuei-Yuan Chan;Ming-Yen Chenen
dc.subject.keyword自動緊急煞車系統,滑動模式控制,道路摩擦係數,碰撞時間,碰撞距離,質量估測,縱向動力學,zh_TW
dc.subject.keywordAutonomous Emergency Braking System,Sliding Mode Control,Road Friction Coefficient,Time to Collision,Collision Distance,Mass Estimation,Longitudinal Dynamics,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202402188-
dc.rights.note未授權-
dc.date.accepted2024-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
5.28 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved