Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93824
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉志文zh_TW
dc.contributor.advisorChih-Wen Liuen
dc.contributor.author邱玟臻zh_TW
dc.contributor.authorWen-Chen Chiuen
dc.date.accessioned2024-08-08T16:24:49Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation[1] IEEE Standard for Interconnection and Interoperability of Inverter-Based Resources (IBRs) Interconnecting with Associated Transmission Electric Power Systems, in IEEE Standard 2800-2022, vol., no., pp.1-180, 22 Apr. 2022.
[2] The Grid Code, NGESO, 5 Jan. 2023.
[3] Grid Code, Version 11, EirGrid Group, 13 Oct. 2022.
[4] THE GRID CODE, Version 5 ,National Grid ,21 March.2017.
[5] Nycander and L. Söder, "Review of European Grid Codes for Wind Farms and their implications for Wind Power Curtailment," in 17th International Wind Integration Workshop, Stockholm, Sweden, 2018.
[6] L. G. Meegahapola, E. Vittal, A. Keane and D. Flynn, "Voltage Security Constrained Reactive Power Optimization Incorporating Wind Generation," in IEEE International Conference on Power System Technology (POWERCON), Auckland, New Zealand, 2012.
[7] M. Sarkar, M. Altin, A. D. Hansen and P. E. Sørensen, "Impact of Wind Power Plants on Voltage Control of Power System," in 1st International Conference on Large-Scale Grid Integration of Renewable Energy in India, New Delhi, India, 2017.
[8] Zheng, Qianwei and li, Jiaming and ai, Xiaomeng and Wen, Jinyu and Fang, Jiakun. Overivew of grid codes for photovoltaic integration , 2017.
[9] Tadie, Abebe and Guo, Zhizhong and Xu, Ying. Hybrid Model-Based BESS Sizing and Control for Wind Energy Ramp Rate Control. Energies, 2022.
[10] Hector Chavez, and Ross Baldick, "Inertia and Governor Ramp Rate Constrained Economic Dispatch to Assess Primary Frequency Response Adequacy", International Conference on Renewable Energies and Power Quality (ICREPQ’12) Santiago de Compostela (Spain), 28th to 30th March. 2012.
[11] W. Liu, G. Geng, Q. Jiang, H. Fan and J. Yu, "Model-Free Fast Frequency Control Support With Energy Storage System," in IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 3078-3086, July 2020.
[12] A. L. Pinheiro, F. O. Ramos, M. M. B. Neto, R. N. Lima, L. G. S. Bezerra and A. Washington, "A Review and Comparison of Smoothing Methods for Solar Photovoltaic Power Fluctuation Using Battery Energy Storage Systems," 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Lima, Peru, 2021.
[13] 王釿鋊主任、劉致峻研究員,電力系統運轉與再生能源併網的影響,中技社能源暨產業研究中心
[14] A. -H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober and A. Leon-Garcia, "Autonomous Demand-Side Management Based on Game-Theoretic Energy Consumption Scheduling for the Future Smart Grid," in IEEE Transactions on Smart Grid, vol. 1, no. 3, pp. 320-331, Dec. 2010.
[15] 「台灣電力公司-資訊揭露」,有效網址: https://www.taipower.com.tw/tc/pageList.aspx
[16] 2024 International Atomic Energy Agency (IAEA), Available: https://pris.iaea.org/PRIS/WorldStatistics/OperationalReactorsByCountry.aspx
[17] Kyle Powys Whyte, "Exploring the Latest Advancements in Nuclear Energy Technology for a Sustainable Future". Tribal Climate Camp, Jan 11, 2024. Available: https://www.tribalclimatecamp.org/is-nuclear-energy-safe-and-clean/
[18] 台電月刊679期,火力發電燃料重配置高效環保燃氣複循環機組未來發電新主流,有效網址: https://tpcjournal.taipower.com.tw/article/3319
[19] 經濟部能源署-再生能源資訊網,有效網址: https://www.re.org.tw/default.aspx
[20] 經濟部能源署. (2023, Jun. 26). 111年度全國電力資源供需報告.有效網址: https://www.moeaboe.gov.tw/ECW/populace/content/wHandMenuFile.ashx?file_id=15274
[21] 經濟部能源署. (2023, Jul. 3). 經濟部能源署再生能源資訊網-再生能源統計資料.
[22] 經濟部能源署. (2023, Aug.). 經濟部能源署再生能源資訊網-政策.
[23] 國家發展委員會. (2023, Mar. 3). 臺灣 2050 淨零排放路徑及策略總說明.
[24] 台電系統慣量分析及改善對策完成報告,台灣電力股份有限公司,中華民國 110 年 6 月
[25] 曾繁宏、張俊勃,電力系統慣性的時空特性及分析方法,中國電機工程學報, 第 40 卷,第 1 期,50-58 頁,2020 年 1 月
[26] 台灣電力公司, "電力系統運轉操作章則彙編."
[27] 張標盛, "台灣電力系統之運轉," 台電工程月刊, 1996
[28] G. Zhang, E. Ela, and Q. Wang, "Market scheduling and pricing for primary and secondary frequency reserve," in IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2914-2924, 2019.
[29] H. Chávez, R. Baldick, and S. Sharma, "Governor rate-constrained opf for primary 87 frequency control adequacy," in IEEE Transactions on Power Systems, vol. 29, no. 3, pp. 1473-1480, 2014.
[30] Zhang, E. Du, F. Teng, N. Zhang, and C. Kang, "Modeling frequency dynamics in unit commitment with a high share of renewable energy," in IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4383-4395, 2020.
[31] NERC-Balancing and Frequency Control-A Technical Document Prepared by the NERC Resources Subcommittee-January 26, 2011.
[32] US DOE Quadrennial Energy Review, Second Installment, January 2017
[33] UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION Order No. 888 , pp.200, 204~205.
[34] 台電公司108 年度電力交易平台之國外資訊研析及培訓計畫研究資料蒐集成果,中華民國 110 年 11 月
[35] E. Ela, M. Milligan, and B. Kirby, "Operating Reserves and Variable Generation," August 2011.
[36] Manasseh Obi, Tylor Slay, Robert Bass , "Distributed Energy Resource Aggregation using Customer-owned Equipment," A review of literature and standards ,Energy Reports ,Volume 6,2020.
[37] Yih-huei Wan, "Analysis of Wind Power Ramping Behavior in ERCOT, "Technical Report, NREL/TP-5500-49218, March 2011.
[38] Aramazd Muzhikyan, Steffi O. Muhanji, Galen D. Moynihan, Dakota J. Thompson, Zachary M. Berzolla, Amro M. Farid, The 2017 ISO New England System Operational Analysis and Renewable Energy Integration Study (SOARES)
[39] 李孟芸、邱玟臻、吳炘睿、張嘉丞、楊俊哲、劉志文、張文德, "探討《再生能源發電系統併聯技術要點",臺灣能源期刊第10卷第4期,民國112年12月
[40] "Technical Report on the Events of 9 Sep. 2019, " NGESO, Sep. 2019.
[41] Christopher Frey, H. and Patil, S.R. (2002), Identification and Review of Sensitivity Analysis Methods. Risk Analysis, 22: 553-578. Available: https://doi.org/10.1111/0272-4332.00039
[42] H. Christopher Frey, Ph.D., Sumeet R. Patil,” IDENTIFICATION AND REVIEW OF SENSITIVITY ANALYSIS METHODS”.
[43] Burer, S., Saxena, A. (2012). The MILP Road to MIQCP. In: Lee, J., Leyffer, S. (eds) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol 154. Springer, New York, NY. Available: https://doi.org/10.1007/978-1-4614-1927-3_13
[44] BYJU’S, Least Square Method , Available: https://byjus.com/maths/least-square-method/
[45] 1994-2024 The MathWorks, Inc. ” lsqr 求解線性系統-最小平方法,有效網址: https://ww2.mathworks.cn/help/matlab/ref/lsqr.html?searchHighlight=lsqr&s_tid=srchtitle_support_results_1_lsqr
[46] Chavez, Hector and Baldick, "Inertia and Governor Ramp Rate Constrained Economic Dispatch to Assess Primary Frequency Response Adequacy, " Renewable Energy and Power Quality Journal, 2012.
[47] H. Chávez, R. Baldick and S. Sharma, "Governor Rate-Constrained OPF for Primary Frequency Control Adequacy," in IEEE Transactions on Power Systems, vol. 29, no. 3, pp. 1473-1480, May 2014.
[48] C. -Y. Lai and C. -W. Liu, "A Scheme to Mitigate Generation Trip Events by Ancillary Services Considering Minimal Actions of UFLS," in IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4815-4823, Nov 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93824-
dc.description.abstract隨著當前風光發電逐年提高,其出力間歇特性對系統產生衝擊,為維持電網安全需透過嚴格之再生能源併聯技術要點加以限制。當前我國針對再生能源實功升降載率規範中尚未限制實功降載率也未包含太陽能案場及陸域型風場,然而風光總量年年攀升,2050年淨零碳排再生能源發電占比可能高達60-70%,若針對其出力瞬間變化無完好之配套措施,將對系統造成巨大影響,本研究統整並比較多國再生能源併網法規,提出我國實功升降載率規範問題及需改進之處。
針對實功升降載率限制,本研究首先利用PSS®E建置系統並執行不同實功升降載率下之敏感度分析;接著利用MATLAB建構一最佳化數學模型同時結合離散非線性最小平方法及混合整數平方規劃法,基於最小化各類輔助服務成本下,進行再生能源發電之暫態穩定度分析並取得最佳化資源需求量,結果顯示不僅能得出最適當之再生能源升降載限制大小,亦能取得整體最小成本並兼顧電力系統穩定性。
配合國際趨勢及能源轉型,在大量再生能源廣泛接納的同時,須思考如何使其最大效益且安全發電,本研究透過實際系統模擬得出之結果,可做為未來我國針對再生能源實功升降載率法規修訂之參考。
zh_TW
dc.description.abstractWith the increasing penetration of renewable energy, its intermittent characteristics have significantly impacted the power system. To maintain grid safety, strict grid codes for renewable energy must be enforced. Currently, Taiwanese grid code on the active power ramp rate for renewable energy does not restrict the ramp-down rate and excludes PV plants and onshore wind farms. By 2050, renewable energy could account for 60-70% of electricity, aiming for Net Zero Emissions. The lack of comprehensive measures for their instantaneous output changes will significantly affect power system frequency. This study will compile and compare the grid code from various countries, identify issues in our country's active power ramp rate limit, and suggest improvements.
To address limitations on active power ramp rates, first, use PSS®E to build a power system and perform sensitivity analyses under different ramp rates. Second, use MATLAB to construct an optimization model combining discrete nonlinear least squares and mixed-integer quadratic programming. Conduct a transient stability analysis and determine optimized resource requirements, minimizing the costs of various ancillary services. The results indicate the most appropriate ramp rate limitations for renewable energy, achieving the lowest cost while maintaining stability.
In line with international trends and the energy transition, we must maximize the benefits of renewable energy while ensuring power system safety. The methods and results from this study can guide future amendments to Taiwan's grid code on the active power ramp rate for renewable energy.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:24:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:24:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目次 v
圖次 vii
表次 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 論文架構概述 5
2 第二章 電力系統的組成與運轉分析 7
2.1 組成架構 7
2.2 再生能源現況與未來發展 15
2.3 系統慣量與頻率分析 19
2.4 輔助服務簡介 25
3 第三章 再生能源實功升降載率簡介 32
3.1 各國再生能源併聯技術要點簡介 32
3.2 實功升降載率簡介 34
3.3 各國實功升降載率情境與比較 36
3.4 我國實功升降載規範及問題 38
4 第四章 敏感度分析及混合整數平方規劃 41
4.1 敏感度分析法介紹 41
4.2 最佳化演算法介紹 42
4.3 非線性最小平方法 44
4.4 最佳化數學模型 47
4.4.1 目標方程式 47
4.4.2 限制條件 48
4.5 研究流程說明 51
5 第五章 模擬結果與分析 53
5.1 模擬系統簡介與背景參數設計 53
5.2 模擬測試案例介紹 56
5.3 模擬結果與分析比較 59
6 第六章 結論與未來研究方向 80
6.1 結論 80
6.2 未來研究方向 81
7 參考文獻 82
-
dc.language.isozh_TW-
dc.subject輔助服務zh_TW
dc.subject再生能源併聯技術要點zh_TW
dc.subject暫態穩定度分析zh_TW
dc.subject混合整數平方規劃法zh_TW
dc.subject實功升降載率zh_TW
dc.subjectactive power ramp rateen
dc.subjectancillary servicesen
dc.subjecttransient stability analysisen
dc.subjectmixed-integer quadratic programmingen
dc.subjectgrid codeen
dc.title因應我國系統再生能源高佔比之實功升降載率結合輔助服務分析zh_TW
dc.titleAnalysis of Active Power Ramp Rates with Ancillary Services in Response to High Penetration of Renewable Energyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee江昭皚 ;楊俊哲zh_TW
dc.contributor.oralexamcommitteeJoe-Air Jiang;Jun-Zhe Yangen
dc.subject.keyword再生能源併聯技術要點,實功升降載率,混合整數平方規劃法,暫態穩定度分析,輔助服務,zh_TW
dc.subject.keywordgrid code,active power ramp rate,mixed-integer quadratic programming,transient stability analysis,ancillary services,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202403135-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved