Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93816
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉zh_TW
dc.contributor.advisorChuin-Shan Chenen
dc.contributor.author陳啟瑋zh_TW
dc.contributor.authorChi-Wei Chenen
dc.date.accessioned2024-08-08T16:22:16Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citationK. Koch, B. Bhushan, and W. Barthlott, “Multifunctional surface structures of plants: An inspiration for biomimetics,” Progress in Materials Science, vol. 54, no. 2, pp. 137–178, Feb. 2009, ISSN: 0079-6425. DOI: 10.1016/j.pmatsci.2008.07.003.
B. Bhushan and E. K. Her, “Fabrication of Superhydrophobic Surfaces with High and Low Adhesion Inspired from Rose Petal,” en, Langmuir, vol. 26, no. 11, pp. 8207–8217, Jun. 2010, ISSN: 0743-7463, 1520-5827. DOI: 10.1021/la904585j.
W. Barthlott, T. Schimmel, S. Wiersch, et al., “The Salvinia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water,” Advanced Materials, vol. 22, no. 21, pp. 2325–2328, 2010, ISSN: 1521-4095. DOI: 10.1002/adma.200904411.
N. Gao, F. Geyer, D. W. Pilat, et al., “How drops start sliding over solid surfaces,” en, Nat. Phys., vol. 14, no. 2, pp. 191–196, Feb. 2018, ISSN: 1745-2481. DOI: 10.1038/nphys4305.
X. Geng, X. Yu, L. Bao, N. V. Priezjev, and Y. Lu, “Directed transport of liquid droplets on vibrating substrates with asymmetric corrugations and patterned wettability: A dissipative particle dynamics study,” Molecular Simulation, vol. 46, no. 1, pp. 33–40, Jan. 2020, ISSN: 0892-7022. DOI: 10.1080/08927022.2019.1667498.
C. Lin, S. Chen, L. Xiao, and Y. Liu, “Tuning Drop Motion by Chemical Chessboard-Patterned Surfaces: A Many-Body Dissipative Particle Dynamics Study,” Langmuir, vol. 34, no. 8, pp. 2708–2715, Feb. 2018, ISSN: 0743-7463. DOI: 10.1021/acs.langmuir.7b04162.
P. W. Atkins, J. d. Paula, and J. Keeler, Atkins’ Physical Chemistry, en. Oxford University Press, 2023, ISBN: 978-0-19-884781-6.
P. G. de Gennes, “Wetting: Statics and dynamics,” Rev. Mod. Phys., vol. 57, no. 3, pp. 827–863, Jul. 1985. DOI: 10.1103/RevModPhys.57.827.
D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” en, Rev. Mod. Phys., vol. 81, no. 2, pp. 739–805, May 2009, ISSN: 0034-6861, 1539-0756. DOI: 10.1103/RevModPhys.81.739.
T. Young, “III. An essay on the cohesion of fluids,” Philosophical transactions of the royal society of London, no. 95, pp. 65–87, 1805.
K. Seo, M. Kim, D. H. Kim, K. Seo, M. Kim, and D. H. Kim, “Re-derivation of Young's Equation, Wenzel Equation, and Cassie-Baxter Equation Based on Energy Minimization,” en, in Surface Energy, IntechOpen, Dec. 2015, ISBN: 978-953-51-2216-6. DOI: 10.5772/61066.
S. Banerjee, “Simple derivation of Young, Wenzel and Cassie-Baxter equations and its interpretations,” arXiv preprint arXiv:0808.1460, Aug. 2008. DOI: 10.48550/arXiv.0808.1460.
Z. N. Xu, “An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis,” Review of Scientific Instruments, vol. 85, no. 12, p. 125 107, Dec. 2014, ISSN: 0034-6748. DOI: 10.1063/1.4903198.
R. Akbari and C. Antonini, “Contact angle measurements: From existing methods to an open-source tool,” Advances in Colloid and Interface Science, vol. 294, p. 102 470, Aug. 2021, ISSN: 0001-8686. DOI: 10.1016/j.cis.2021.102470.
T. Liu and C.-J. Kim, “Contact Angle Measurement of Small Capillary Length Liquid in Super-repelled State,” en, Sci Rep, vol. 7, no. 1, p. 740, Apr. 2017, ISSN: 2045-2322. DOI: 10.1038/s41598-017-00607-9.
D. Chattoraj, K. Birdi, D. Chattoraj, and K. Birdi, Wettability and Contact Angles, en, D. K. Chattoraj and K. S. Birdi, Eds. Boston, MA: Springer US, 1984, pp. 233–256, ISBN: 978-1-4615-8333-2. DOI: 10.1007/978-1-4615-8333-2_7.
H.-J. Butt, J. Liu, K. Koynov, et al., “Contact angle hysteresis,” Current Opinion in Colloid & Interface Science, vol. 59, p. 101 574, Jun. 2022, ISSN: 1359-0294. DOI: 10.1016/j.cocis.2022.101574.
L. Gao and T. J. McCarthy, “Contact Angle Hysteresis Explained,” Langmuir, vol. 22, no. 14, pp. 6234–6237, Jul. 2006, ISSN: 0743-7463. DOI: 10.1021/la060254j.
S. Daniel, M. K. Chaudhury, and P.-G. de Gennes, “Vibration-Actuated Drop Motion on Surfaces for Batch Microfluidic Processes,” Langmuir, vol. 21, no. 9, pp. 4240–4248, Apr. 2005, ISSN: 0743-7463. DOI: 10.1021/la046886s.
孫廷瑋, “以水平振動驅動數位液滴於傾斜平板移動與爬升之影響參數與運動機制探討,” Ph.D. dissertation, 國立臺灣大學應力所碩士論文, 台北市, 2022.
S. Daniel, S. Sircar, J. Gliem, and M. K. Chaudhury, “Ratcheting Motion of Liquid Drops on Gradient Surfaces,” Langmuir, vol. 20, no. 10, pp. 4085–4092, May 2004, ISSN: 0743-7463. DOI: 10.1021/la036221a.
H. Lamb and S. H. Lamb, Hydrodynamics, en. Cambridge University Press, Nov. 1993, ISBN: 978-0-521-45868-9.
X. Li, F. Bodziony, M. Yin, H. Marschall, R. Berger, and H.-J. Butt, “Kinetic drop friction,” en, Nat Commun, vol. 14, no. 1, p. 4571, Jul. 2023, ISSN: 2041-1723. DOI: 10.1038/s41467-023-40289-8.
C. W. Extrand and Y. Kumagai, “Liquid Drops on an Inclined Plane: The Relation between Contact Angles, Drop Shape, and Retentive Force,” Journal of Colloid and Interface Science, vol. 170, no. 2, pp. 515–521, Mar. 1995, ISSN: 0021-9797. DOI: 10.1006/jcis.1995.1130.
R. A. Brown, F. M. Orr, and L. E. Scriven, “Static drop on an inclined plate: Analysis by the finite element method,” Journal of Colloid and Interface Science, vol. 73,no. 1, pp. 76–87, Jan. 1980, ISSN: 0021-9797. DOI: 10.1016/0021-9797(80)90124-1.
Y. Rotenberg, L. Boruvka, and A. W. Neumann, “The shape of nonaxisymmetric drops on inclined planar surfaces,” Journal of Colloid and Interface Science, vol. 102, no. 2, pp. 424–434, Dec. 1984, ISSN: 0021-9797. DOI: 10.1016/0021-9797(84)90245-5.
K. Huang and I. Szlufarska, “Green-Kubo relation for friction at liquid-solid interfaces,” Phys. Rev. E, vol. 89, no. 3, p. 032 119, Mar. 2014. DOI: 10.1103/PhysRevE.89.032119.
Z. Li, X. Bian, X. Li, et al., Dissipative Particle Dynamics: Foundation, Evolution, Implementation, and Applications (Advances in Mathematical Fluid Mechanics), en, T. Bodnár, G. P. Galdi, and Š. Nečasová, Eds. 2017, pp. 255–326. DOI: 10.1007/978-3-319-60282-0_5.
P. J. Hoogerbrugge and J. M. V. A. Koelman, “Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics,” en, Europhys. Lett., vol. 19, no. 3, pp. 155–160, Jun. 1992, ISSN: 0295-5075, 1286-4854. DOI: 10.1209/0295-5075/19/3/001.
J. M. V. A. Koelman and P. J. Hoogerbrugge, “Dynamic Simulations of Hard-Sphere Suspensions Under Steady Shear,” en, Europhys. Lett., vol. 21, no. 3, pp. 363–368, Jan. 1993, ISSN: 0295-5075, 1286-4854. DOI: 10.1209/0295-5075/21/3/018.
R. D. Groot and P. B. Warren, “Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation,” The Journal of Chemical Physics, vol. 107, no. 11, pp. 4423–4435, Sep. 1997, ISSN: 0021-9606. DOI: 10.1063/1.474784.
P. B. Warren, “Vapor-liquid coexistence in many-body dissipative particle dynamics,” en, Phys. Rev. E, vol. 68, no. 6, p. 066 702, Dec. 2003, ISSN: 1063-651X, 1095-3787. DOI: 10.1103/PhysRevE.68.066702.
I. Pagonabarraga and D. Frenkel, “Non-ideal DPD fluids,” Molecular Simulation, vol. 25, Aug. 2000. DOI: 10.1080/08927020008044122.
I. Pagonabarraga and D. Frenkel, “Dissipative Particle Dynamics for Interacting Systems,” The Journal of Chemical Physics, vol. 115, May 2001. DOI: 10.1063/1.1396848.
Z. Li, G.-H. Hu, Z.-L. Wang, Y.-B. Ma, and Z.-W. Zhou, “Three dimensional flow structures in a moving droplet on substrate: A dissipative particle dynamics study,” Physics of Fluids, vol. 25, no. 7, p. 072 103, Jul. 2013, ISSN: 1070-6631. DOI: 10.1063/1.4812366.
Tzung-Han Lin, T.-H. Lin, Tzung-Han Lin, et al., “Surface wettability and contact angle analysis by dissipative particle dynamics,” Interaction and multiscale mechanics, vol. 5, no. 4, pp. 399–405, Dec. 2012. DOI: 10.12989/imm.2012.5.4.399.
X. He, Q. Bai, R. Shen, F. Zhang, and Y. Guo, “The evolution of configuration and final state of graphene on rough iron surface,” Applied Surface Science, vol. 530, p. 147 084, Nov. 2020, ISSN: 0169-4332. DOI: 10.1016/j.apsusc.2020.147084.
K. Zhang, Z. Li, M. Maxey, S. Chen, and G. E. Karniadakis, “Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition,” Langmuir, vol. 35, no. 6, pp. 2431–2442, Feb. 2019, ISSN: 0743-7463. DOI: 10.1021/acs.langmuir.8b03664.
B. Bhushan, Y. C. Jung, and K. Koch, “Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 367, no. 1894, pp. 1631–1672, May 2009. DOI: 10.1098/rsta.2009.0014.
A. Stukowski, “Computational Analysis Methods in Atomistic Modeling of Crystals,” en, JOM, vol. 66, no. 3, pp. 399–407, Mar. 2014, ISSN: 1543-1851. DOI: 10.1007/s11837-013-0827-5.
M. v. Gorcum, Mvgorcum/Sessile.drop.analysis, May 2024.
A. P. Thompson, H. M. Aktulga, R. Berger, et al., “LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Computer Physics Communications, vol. 271, p. 108 171, Feb. 2022, ISSN: 0010-4655. DOI: 10.1016/j.cpc.2021.108171.
S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1–19, Mar. 1995, ISSN: 0021-9991. DOI: 10.1006/jcph.1995.1039.
S. Chen, Bo Zhang, B. Zhang, et al., “Direction Dependence of Adhesion Force for Droplets on Rough Substrates.,” Langmuir, vol. 33, no. 9, pp. 2472–2476, Feb. 2017. DOI: 10.1021/acs.langmuir.6b04668.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93816-
dc.description.abstract在微流體控制、塗布和生醫檢測等領域,理解和控制液滴受振動引起的運動行為至關重要。儘管200多年前人們已知固體間的最大靜摩擦力大於動摩擦力,但對液滴在固體表面上橫向運動的阻力尚缺乏全面理解。此外,現有的保持力(retentive force)公式在描述液滴運動行為時存在局限,需進一步修正和優化。
在本研究中,我們利用分子動力學的多體耗散性粒子動力法(mDPD)來模擬液滴在不同粗糙基底結構上的運動行為及相關的Cassie/Wenzel狀態變化。多體耗散性粒子動力法考慮了液-氣體之間的相互作用,能夠有效地描述氣-液共存系統的熱力學和流體力學特性。此外,mDPD方法也能夠模擬液滴與固體表面之間的接觸角和受力行為,以及液滴內部的微觀結構和相變化過程。
在液滴受振動行為的研究中,我們模擬了液滴在粗糙基底結構上受水平與垂直振動所產生的運動行為。研究發現,當振動模態為Rocking mode時,液滴會開始移動,且有兩段不同速度變化。當垂直與水平振動耦合時,液滴質心高度較高,接觸線減小,導致側向黏附力降低,從而在相同水平振動下液滴移動速度更快。此外,我們對液滴黏附力儀器(DAFI)實驗進行了模擬和驗證,成功再現了液滴在潤濕性表面上的靜摩擦和動摩擦現象,並分析了液滴的側向黏附力行為。模擬中發現接觸線、接觸寬度和接觸長度對液滴移動影響顯著,且過往對於保持力公式的假設過於簡化,故我們基於模擬結果對現有保持力公式進行了修正,提出了一個新的計算公式,顯著提高了預測液滴黏附力的準確性。
本研究不僅提供了可準確用於模擬液滴動態行為的方法,且提出了改進的理論公式,這些發現和突破將推動微流體控制、塗布技術和生醫檢測等領域的進一步發展。我們的研究為液滴基礎理論與行為提供了堅實的科學基礎,並為未來的研究和應用開闢了新的方向。
zh_TW
dc.description.abstractUnderstanding and controlling the movement of droplets induced by vibration is crucial in fields such as microfluidic control, coating, and biomedical detection. Although it has been known for over 200 years that the maximum static friction between solid surfaces is greater than dynamic friction, the resistance faced by droplets during lateral movement on solid surfaces remains insufficiently understood. Additionally, the current retentive force formulas have limitations in accurately describing droplet movement behaviors, necessitating further refinement and optimization.
In this study, we employed the many-body dissipative particle dynamics (mDPD) method to simulate the motion of droplets on various rough substrates and the associated Cassie/Wenzel state transitions. The mDPD method effectively considers liquid-gas interactions, capturing gas-liquid coexisting systems' thermodynamic and fluid dynamic properties. Furthermore, it simulates the contact angles, force behaviors between droplets and solid surfaces, and the internal microstructure and phase changes within the droplets.
Our research on droplet behavior under vibration involved simulating droplet motion on rough substrates subjected to both horizontal and vertical vibrations. The study revealed that when the vibration mode is rocking, the droplets initiate movement, exhibiting two distinct velocity phases. Coupling vertical and horizontal vibrations increases the droplet's center of mass height and reduces the contact line, leading to decreased lateral adhesion force, resulting in faster droplet movement under identical horizontal vibration conditions. Additionally, we conducted simulations and validations based on the droplet adhesion force instrument (DAFI) experiments. We successfully replicated the observed static and dynamic friction phenomena of droplets on wettable surfaces and analyzed their lateral adhesion force behaviors. The simulations indicated that the contact line, contact width, and contact length significantly influence droplet movement. We identified that previous assumptions for the retentive force formula were overly simplified. Consequently, based on our simulation results, we refined the existing retentive force formula and proposed a new calculation formula, significantly enhancing the accuracy in predicting droplet adhesion forces.
This study not only provides a precise method for simulating droplet dynamic behavior but also introduces an improved theoretical formula. These findings and breakthroughs are poised to advance the fields of microfluidic control, coating technology, and biomedical detection. Our research establishes a robust scientific foundation for the fundamental theory and behavior of droplets, paving the way for future research and applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:22:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:22:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
摘要 i
ABSTRACT ii
目次 v
圖次 ix
表次 xiii
符號列表 xv
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 論文架構 4
第二章 文獻探討 7
2.1 濕潤現象與理論 7
2.1.1 楊氏方程式 8
2.1.2 接觸角量測 11
2.2 接觸角遲滯現象 12
2.3 水平振動與液滴搖擺模態 13
2.3.1 水平振動驅動液滴 13
2.3.1.1 非對稱振動波形 14
2.3.1.2 液滴自然頻率 14
2.4 液滴在固體表面的側向黏附力 16
2.4.1 側向黏附力 16
2.4.2 保持力 Retentive Force 17
2.4.2.1 接觸線隨液滴前進保持橢圓形 18
2.4.2.2 前後接觸角線性內插 19
2.5 小結 20
第三章 研究方法 21
3.1 多體耗散性粒子動力法 21
3.1.1 力場(The Force-field) 23
3.1.1.1 保守力(Conservative force, FCij) 23
3.1.1.2 隨機力 (Random force, FRij) 24
3.1.1.3 耗散力 (Dissipative force, FDij) 24
3.1.2 模擬參數說明 25
3.2 粗糙基板結構 25
3.2.1 粗糙基板結構模型 25
3.2.2 Cassie/Wenzel 基板結構 26
3.2.2.1 Wenzel 和 Cassie 濕潤狀態的轉變 27
3.3 推廣至任意封閉曲線的線積分 28
3.3.1 任意封閉曲線的參數化 28
3.3.2 模擬結果驗證保持力(Retentive Force)公式 29
3.4 小結 31
第四章 結果與討論 35
4.1 液滴運動模擬與實驗數據的驗證 35
4.1.1 接觸角(Contact Angle) 35
4.1.2 振動模態 36
4.2 液滴受水平振動的 Cassie/Wenzel 機制 37
4.2.1 液滴長程移動會有兩段式速度變化 37
4.2.2 液滴質心高度 40
4.2.3 Cassie/Wenzel 轉變機制探討 40
4.3 液滴垂直與水平振動耦合之運動模擬分析 41
4.3.1 垂直振動 41
4.3.2 垂直與水平振動耦合 42
4.3.3 側向黏附力(Lateral Adhesion Force, FLA) 43
4.4 液滴黏附力儀器(DAFI)的作用現象模擬 45
4.4.1 LAMMPS 中 mDPD 相互作用的配對係數(Pair Coefficients) 45
4.4.1.1 參數分析與總結 47
4.4.2 模擬 DAFI 計算側向黏附力 49
4.4.2.1 懸臂樑親水 49
4.4.2.2 懸臂樑疏水 54
4.5 分析保持力公式 59
4.5.1 計算結果比較 60
4.5.2 液滴接觸角分佈 62
4.5.3 修正保持力公式 64
4.5.4 實驗驗證修正後的保持力公式 66
第五章 結論與未來展望 69
5.1 結論 69
5.1.1 液滴於粗糙基板結構上受振動之運動機制 69
5.1.2 液滴黏附力儀器(DAFI)在潤濕性表面的作用現象 70
5.2 未來展望 71
參考文獻 73
附錄 A LAMMPS 模型程式碼 79
A.1 液滴於粗糙基板結構上受振動之模型 79
A.2 液滴黏附力儀器(DAFI)在潤濕性表面之模型 83
-
dc.language.isozh_TW-
dc.subject多體耗散性粒子動力法zh_TW
dc.subject保留力公式zh_TW
dc.subject側向黏附力zh_TW
dc.subject靜摩擦與動摩擦zh_TW
dc.subject液滴黏附力儀器zh_TW
dc.subject潤濕性zh_TW
dc.subject基板振動zh_TW
dc.subjectLateral Adhesion Forceen
dc.subjectVibrating Substrateen
dc.subjectWetting phenomenonen
dc.subjectRetentive Force Formulaen
dc.subjectMany-body Dissipative Particle Dynamics (mDPD)en
dc.subjectStatic and Kinetic Frictionen
dc.subjectDroplet Adhesion Force Instrument (DAFI)en
dc.title探討液滴黏附力儀器(DAFI)在潤濕性表面的作用現象:結合實驗與分子動力學模擬zh_TW
dc.titleDroplet Adhesion Force Instrument (DAFI) on Wettable Surfaces: A Combined Experimental and Molecular Dynamics Simulation Studyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王安邦;劉瑋文;林正釧zh_TW
dc.contributor.oralexamcommitteeAn-Bang Wang;Wei-Wen Liu;Cheng-Chuan Linen
dc.subject.keyword多體耗散性粒子動力法,基板振動,潤濕性,液滴黏附力儀器,靜摩擦與動摩擦,側向黏附力,保留力公式,zh_TW
dc.subject.keywordMany-body Dissipative Particle Dynamics (mDPD),Vibrating Substrate,Wetting phenomenon,Droplet Adhesion Force Instrument (DAFI),Static and Kinetic Friction,Lateral Adhesion Force,Retentive Force Formula,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202402692-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-01-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-07-31-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
38.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved