Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93805
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林峻永zh_TW
dc.contributor.advisorChun-Yeon Linen
dc.contributor.author李韋辰zh_TW
dc.contributor.authorWei-Chen Lien
dc.date.accessioned2024-08-08T16:18:37Z-
dc.date.available2024-10-10-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citationN. Ida and N. Meyendorf, Handbook of Advanced Nondestructive Evaluation. Springer, 2019.
A. N. AbdAlla, M. A. Faraj, F. Samsuri, D. Rifai, K. Ali, and Y. Al-Douri, “Challenges in improving the performance of eddy current testing: Review,” Measurement and Control, vol. 52, no. 1-2, pp. 46–64, 2019.
J. García-Martín, J. Gómez-Gil, and E. Vázquez-Sánchez, “Non-destructive techniques based on eddy current testing,” Sensors, vol. 11, no. 3, pp. 2525–2565, 2011.
E. J. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians, vol. 3, 2006, pp. 1433–1452.
D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.
M. Mishali and Y. C. Eldar, “From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals,” IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 375–391, 2010.
J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image restoration,” IEEE Transactions on Image Processing, vol. 17, no. 1, pp. 53–69, 2007.
J. Wright and Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications. Cambridge University Press, 2022.
N. Meyendorf, N. Ida, R. Singh, and J. Vrana, Handbook of Nondestructive Evaluation 4.0. Springer, 2022.
M. Rani, S. B. Dhok, and R. B. Deshmukh, “A systematic review of compressive sensing: Concepts, implementations and applications,” IEEE Access, vol. 6, pp. 4875–4894, 2018.
E. C. Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse recovery algorithms,” IEEE Access, vol. 7, pp. 1300–1322, 2019.
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed. Johns Hopkins University Press, 2013.
E. H. Moore, “On the reciprocal of the general algebraic matrix,” Bulletin of the American Mathematical Society, vol. 26, pp. 294–295, 1920.
R. Penrose, “A generalized inverse for matrices,” in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 51, no. 3. Cambridge University Press, 1955, pp. 406–413.
R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, 3rd ed. Elsevier, 2018.
P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, 1987.
A. N. Tikhonov, “Solution of incorrectly formulated problems and the regularization method.” Sov Dok, vol. 4, pp. 1035–1038, 1963.
P. C. Hansen, “Perturbation bounds for discrete Tikhonov regularisation,” Inverse Problems, vol. 5, no. 4, pp. L41–L44, 1989.
A. Nemirovski, “Information-based complexity of convex programming,” 1995.
G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy approximations,” Constructive Approximation, vol. 13, pp. 57–98, 1997.
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed. Springer, 2017.
I. Gorodnitsky and B. Rao, “Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm,” IEEE Transactions on Signal Processing, vol. 45, no. 3, pp. 600–616, 1997.
D. L. Donoho and X. M. Huo, “Uncertainty principles and ideal atomic decomposition,” IEEE Transactions on Information Theory, vol. 47, no. 7, pp. 2845–2862, 2001.
M. Elad and A. M. Bruckstein, “A generalized uncertainty principle and sparse representation in pairs of bases,” IEEE Transactions on Information Theory, vol. 48, no. 9, pp. 2558–2567, 2002.
D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization,” Proceedings of the National Academy of Sciences, vol. 100, no. 5, pp. 2197–2202, 2003.
R. Gribonval and M. Nielsen, “Sparse representations in unions of bases,” IEEE Transactions on Information Theory, vol. 49, no. 12, pp. 3320–3325, 2003.
J. J. Fuchs, “On sparse representations in arbitrary redundant bases,” IEEE Transactions on Information Theory, vol. 50, no. 6, pp. 1341–1344, 2004.
J. A. Tropp, “Just relax: Convex programming methods for identifying sparse signals in noise,” IEEE Transactions on Information Theory, vol. 52, no. 3, pp. 1030–1051, 2006.
D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcomplete representations in the presence of noise,” IEEE Transactions on Information Theory, vol. 52, no. 1, pp. 6–18, 2006.
E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.
E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006.
E. J. Candès and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406–5425, 2006.
E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Communications on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.
E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” Comptes Rendus. Mathématique, vol. 346, no. 9-10, pp. 589–592, 2008.
M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research, vol. 1, no. 3, pp. 211–244, 2001.
S. H. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2346–2356, 2008.
C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
T. Moon, “The expectation-maximization algorithm,” IEEE Signal Processing Magazine, vol. 13, no. 6, pp. 47–60, 1996.
K. B. Petersen and M. S. Pedersen, The Matrix Cookbook. Technical University of Denmark, 2012.
T. Buchgraber, “Variational sparse Bayesian learning: Centralized and distributed processing,” Thesis, Graz University of Technology, Austria, 2013.
S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Bayesian compressive sensing using Laplace priors,” IEEE Transactions on Image Processing, vol. 19, no. 1, pp. 53–63, 2010.
D. P. Wipf, B. D. Rao, and S. Nagarajan, “Latent variable Bayesian models for promoting sparsity,” IEEE Transactions on Information Theory, vol. 57, no. 9, pp. 6236–6255, 2011.
D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,” IEEE Transactions on Signal Processing, vol. 52, no. 8, pp. 2153–2164, 2004.
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 5th ed. Springer, 2021.
D. Wipf and S. Nagarajan, “Iterative reweighted ℓ1 and ℓ2 methods for finding sparse solutions,” IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 317–329, 2010.
D. Wipf and S. Nagarajan, “A new view of automatic relevance determination,” Advances in Neural Information Processing Systems, vol. 20, 2007.
R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.
Z. L. Zhang and B. D. Rao, “Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation,” IEEE Transactions on Signal Processing, vol. 61, no. 8, pp. 2009–2015, 2013.
Z. L. Zhang and B. D. Rao, “Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 5, pp. 912–926, 2011.
D. P. Wipf and B. D. Rao, “An empirical Bayesian strategy for solving the simultaneous sparse approximation problem,” IEEE Transactions on Signal Processing, vol. 55, no. 7, pp. 3704–3716, 2007.
Z. Zhang, T. P. Jung, S. Makeig, Z. Pi, and B. D. Rao, “Spatiotemporal sparse Bayesian learning with applications to compressed sensing of multichannel physiological signals,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 6, pp. 1186–1197, 2014.
J. Fang, Y. N. Shen, H. B. Li, and P. Wang, “Pattern-coupled sparse Bayesian learning for recovery of block-sparse signals,” IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 360–372, 2015.
F. Jun, Z. Lizao, and L. Hongbin, “Two-dimensional pattern-coupled sparse Bayesian learning via generalized approximate message passing,” IEEE Transactions on Image Processing, vol. 25, no. 6, pp. 2920–2930, 2016.
L. Wang, L. F. Zhao, S. Rahardja, and G. A. Bi, “Alternative to extended block sparse Bayesian learning and its relation to pattern-coupled sparse Bayesian learning,” IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2759–2771, 2018.
L. Yu, H. Sun, J. P. Barbot, and G. Zheng, “Bayesian compressive sensing for cluster structured sparse signals,” Signal Processing, vol. 92, no. 1, pp. 259–269, 2012.
L. Yu, C. Wei, J. Y. Jia, and H. Sun, “Compressive sensing for cluster structured sparse signals: Variational Bayes approach,” IET Signal Processing, vol. 10, no. 7, pp. 770–779, 2016.
L. Wang, L. F. Zhao, L. Yu, J. J. Wang, and G. A. Bi, “Structured Bayesian learning for recovery of clustered sparse signal,” Signal Processing, vol. 166, p. 107255, 2020.
O. A. Prokopyev, H. X. Huang, and P. A. Pardalos, “On complexity of unconstrained hyperbolic 0-1 programming problems,” Operations Research Letters, vol. 33, no. 3, pp. 312–318, 2005.
D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods. Academic Press, 1982.
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.
D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.
D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, “The variational approximation for Bayesian inference,” IEEE Signal Processing Magazine, vol. 25, no. 6, pp. 131–146, 2008.
G. H. Golub and J. H. Welsch, “Calculation of Gauss quadrature rules,” Mathematics of Computation, vol. 23, no. 106, pp. 221–230, 1969.
N. Hale and A. Townsend, “Fast and accurate computation of Gauss–Legendre and Gauss–Jacobi quadrature nodes and weights,” SIAM Journal on Scientific Computing, vol. 35, no. 2, pp. A652–A674, 2013.
T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 323–343, 2009.
J.-F. Cai, S. Osher, and Z. Shen, “Split Bregman methods and frame based image restoration,” Multiscale Modeling & Simulation, vol. 8, no. 2, pp. 337–369, 2010.
J. Zou, H. Li, and G. Liu, “Split Bregman algorithm for structured sparse reconstruction,” IEEE Access, vol. 6, pp. 21560–21569, 2018.
S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms. Springer, 2008.
M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, 1998.
D. N. Dyck, D. A. Lowther, and E. M. Freeman, “A method of computing the sensitivity of electromagnetic quantities to changes in materials and sources,” IEEE Transactions on Magnetics, vol. 30, no. 5, pp. 3415–3418, 1994.
W. R. Smythe, Static and Dynamic Electricity, 3rd ed. Taylor & Francis, 1989.
T. P. Theodoulidis and E. E. Kriezis, Eddy Current Canonical Problems (with Applications to Nondestructive Evaluation). Tech Science Press, 2006.
C. V. Dodd and W. E. Deeds, “Analytical solutions to eddy-current probe-coil problems,” Journal of Applied Physics, vol. 39, no. 6, pp. 2829–2838, 1968.
J. W. Luquire, W. E. Deeds, and C. V. Dodd, “Alternating current distribution between planar conductors,” Journal of Applied Physics, vol. 41, no. 10, pp. 3983–3991, 1970.
T. P. Theodoulidis and A. Skarlatos, “Eddy current interaction of an arbitrarily positioned probe coil with a conductive cylinder,” IEEE Transactions on Magnetics, vol. 48, no. 8, pp. 2392–2394, 2012.
X. F. Mao and Y. Z. Lei, “Analytical solutions to eddy current field excited by a probe coil near a conductive pipe,” NDT & E International, vol. 54, pp. 69–74, 2013.
J. D. Jackson, Classical Electrodynamics, 3rd ed. Wiley, 1998.
J.-M. Jin, The Finite Element Method in Electromagnetics, 3rd ed. Wiley-IEEE Press, 2014.
J. Xiang, Y. Dong, and Y. Yang, “Multi-frequency electromagnetic tomography for acute stroke detection using frequency-constrained sparse Bayesian learning,” IEEE Transactions on Medical Imaging, vol. 39, no. 12, pp. 4102–4112, 2020.
Y. X. Chen, C. Tan, and F. Dong, “Combined planar magnetic induction tomography for local detection of intracranial hemorrhage,” IEEE Transactions on Medical Imaging, vol. 70, pp. 1–11, 2021.
Y. X. Chen, C. Tan, and F. Dong, “Multifrequency weighted difference magnetic induction tomography for intracranial hemorrhage detection,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–9, 2022.
S. Liu, J. Jia, Y. D. Zhang, and Y. Yang, “Image reconstruction in electrical impedance tomography based on structure-aware sparse Bayesian learning,” IEEE Transactions on Medical Imaging, vol. 37, no. 9, pp. 2090–2102, 2018.
S. H. Liu, H. C. Wu, Y. M. Huang, Y. J. Yang, and J. B. Jia, “Accelerated structureaware sparse Bayesian learning for three-dimensional electrical impedance tomography,” IEEE Transactions on Industrial Informatics, vol. 15, no. 9, pp. 5033–5041, 2019.
S. H. Liu, Y. M. Huang, H. C. Wu, C. Tan, and J. B. Jia, “Efficient multitask structure-aware sparse Bayesian learning for frequency-difference electrical impedance tomography,” IEEE Transactions on Industrial Informatics, vol. 17, no. 1, pp. 463–472, 2021.
C. Dimas, V. Alimisis, N. Uzunoglu, and P. P. Sotiriadis, “Advances in electrical impedance tomography inverse problem solution methods: From traditional regularization to deep learning,” IEEE Access, vol. 12, pp. 47797–47829, 2024.
Y. Wang, F. Dong, and S. J. Ren, “Computational focusing sensor: Enhancing spatial resolution of electrical impedance tomography in region of interest,” IEEE Sensors Journal, vol. 21, no. 17, pp. 19101–19111, 2021.
G. S. Alberti, H. Ammari, B. T. Jin, J. K. Seo, and W. L. Zhang, “The linearized inverse problem in multifrequency electrical impedance tomography,” SIAM Journal on Imaging Sciences, vol. 9, no. 4, pp. 1525–1551, 2016.
A. Bernieri, G. Betta, L. Ferrigno, and M. Laracca, “Crack depth estimation by using a multi-frequency ECT method,” IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 3, pp. 544–552, 2013.
Q. Yang, S. Xie, K. He, Y.-E. Chen, Z. Chen, T. Uchimoto, and T. Takagi, “A novel circumferential eccentric eddy current probe and its application for defect detection of small-diameter tubes,” Sensors and Actuators A: Physical, vol. 331, p. 113023, 2021.
J. Xin, N. Lei, L. Udpa, and S. S. Udpa, “Rotating field eddy current probe with bobbin pickup coil for steam generator tubes inspection,” NDT & E International, vol. 54, pp. 45–55, 2013.
J. Ge, B. Hu, and C. Yang, “Bobbin pulsed eddy current array probe for detection and classification of defects in nonferromagnetic tubes,” Sensors and Actuators A: Physical, vol. 317, p. 112450, 2021.
X. Yuan, W. Li, G. Chen, X. Yin, J. Ge, W. Jiang, and J. Zhao, “Bobbin coil probe with sensor arrays for imaging and evaluation of longitudinal cracks inside aluminum tubes,” IEEE Sensors Journal, vol. 18, no. 16, pp. 6774–6781, 2018.
J. Lee, J. Jun, J. Kim, H. Choi, and M. Le, “Bobbin-type solid-state Hall sensor array with high spatial resolution for cracks inspection in small-bore piping systems,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 3704–3707, 2012.
M. Mazdziarz, “Unified isoparametric 3D Lagrange finite elements,” Computer Modeling in Engineering & Sciences, vol. 66, no. 1, pp. 1–24, 2010.
A. Bernieri, L. Ferrigno, M. Laracca, and A. Rasile, “Eddy current testing probe based on double-coil excitation and GMR sensor,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 5, pp. 1533–1542, 2019.
H. Malekmohammadi, A. Migali, S. Laureti, and M. Ricci, “A pulsed eddy current testing sensor made of low-cost off-the-shelf components: Overview and application to pseudo-noise excitation,” IEEE Sensors Journal, vol. 21, no. 20, pp. 23578–23587, 2021.
CT100 1D Linear Sensor, Allegro MicroSystems, Manchester, NH, USA, Nov. 2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93805-
dc.description.abstract工業4.0的到來使得大型結構的品質檢測顯得愈顯重要。傳統網格掃描的檢測方式需要超過兩倍的取樣空間頻率才能達到預期的空間解析度。另一種取樣方法為壓縮取樣;利用訊號的稀疏性,比起奈奎斯特取樣需要更少的取樣數即可達到相同的解析度。然而,僅依靠訊號稀疏性的壓縮取樣在需要更詳細的深度分辨率時將會面臨困境。在本研究中,三維重構指的是重構結構內缺陷的位置和深度。關鍵在於結構中的缺陷是二元的:存在與否(存在為1,不存在為0)。因此,訊號除了稀疏性也有二元性,或者在某些情況下,值介於0和1之間以表示某些區域內的局部缺陷。
本研究著重於從線性量測中還原二元向量。解決方案有二種;其一為放寬二元約束,並採用凸優化演算法來求解。此外,文中證明演算法的收斂性。其二方法是在向量上引入伯努利先驗,並以變分法近似已知量測條件下向量的後驗機率。這些演算法可以適用於單位區間向量的還原。凸優化方法本身能夠處理單位區間向量的還原;於此同時,基於機率推論的演算法可以透過引入貝塔先驗來達成。這些演算法使用高斯隨機量測矩陣或具有共線行的量測矩陣進行測試,並在二元和單位區間向量的還原任務上展現出優於現有壓縮取樣演算法的效能。
在應用方面,使用微擾分析以線性化磁通量密度量測值和待檢測結構材料性質之間的關係。線性化的靈敏度矩陣實質上為兩個電場的內積:由線圈中的電流密度感應的電場,以及由磁感測器處的點磁流密度感應的電場。為求有效率的計算靈敏度矩陣,推導了幾種幾何形狀下電磁場的半解析解,並使用有限元素法進行驗證。
本研究將二元向量還原演算法應用於多層金屬板中缺陷的三維重構,使用數值模擬數據和實際實驗數據進行缺陷重構。結果顯示,開發的演算法在深度解析度和重構品質方面優於現有的壓縮取樣演算法。具體而言,該感測系統能夠使用間隔為4毫米的磁感測器陣列,達到重構小至2毫米的缺陷並有0.5毫米的深度解析度。 另一例為將單位區間向量還原演算法應用於金屬管的檢測。隨著感測探頭沿著金屬管移動,重構結果被重合為一。這兩個例子不但突顯了渦電流感測中高效取樣的潛力,也為應用擴展壓縮取樣至更多的物理重構問題奠定了基礎。
zh_TW
dc.description.abstractWith the advent of Industry 4.0, ensuring the quality inspection of large structures has become increasingly crucial. Traditional raster scanning methods necessitate sampling at more than twice the spatial frequency to achieve a desired spatial resolution. Another sampling paradigm, known as compressive sampling, exploits signal sparsity to achieve the same resolution using fewer samples than Nyquist sampling would otherwise require. However, compressive sampling, which rely solely on sparsity, encounter challenges when a detailed depth resolution is necessary. In this study, 3D reconstruction refers to reconstructing both the position and depth of defects within a structure. The key is that defects in structures are binary; they are either present (represented as 1) or absent (represented as 0). Therefore, the signal of interest is not only sparse but also binary, or in some instances, have values between 0 and 1 to indicate partial defects in certain regions.
This study focuses on the recovery of binary vectors from linear measurements with two approaches. One approach relaxes the binary constraint and employs convex optimization algorithms to solve the problem. Additionally, convergence of the algorithm is proved. Another approach introduces a Bernoulli prior on the vector and computes the variational approximation of the posterior probability of the vector conditioned on the measurements. These algorithms can be adapted to recover unit interval vectors. The convex method inherently handles the recovery of unit interval vectors, while the probabilistic inference-based algorithms can be modified with a beta prior to achieve this as well. These algorithms are tested using measurement matrices that are either Gaussian random or have collinear columns, and demonstrate superior performance compared to existing compressive sampling algorithms on binary vector recovery tasks.
On the application side, perturbation analysis is applied to linearize the relationship between the magnetic flux density measurements and the material properties of the inspected structure. The linearized sensitivity matrix is essentially the inner product of two electric fields: one induced by electric current density in the coil, and the other induced by a point magnetic current density at the magnetic sensor. For efficient calculation of the sensitivity matrices, semi-analytical solutions are derived for the electromagnetic fields in several geometries and validated against finite element methods.
Binary vector recovery algorithms are applied to provide 3D reconstructions of defects in a multilayer metal plate, using both numerically simulated and experimental data. The results show that the developed algorithms provide superior depth resolution and reconstruction quality compared to existing compressive sampling algorithms. Specifically, the sensing system is capable of reconstructing defects as small as 2~mm with a depth resolution of 0.5~mm, using a magnetic sensor array with 4~mm intervals. Another example applies unit interval vector recovery algorithms to the inspection of a metal pipe. Reconstructions are merged together as the sensing probe move along the pipe. These two examples not only highlight the potential of efficient sampling in eddy current sensing, but also establish a foundation for applying the extension of compressive sampling to a broader range of physical reconstruction problems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:18:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:18:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
List of Figures xi
List of Tables xiii
Notation xv
Acronyms xvii
1 Introduction 1
1.1 Nondestructive evaluation 1
1.2 Compressive sampling 2
1.3 Solving underdetermined linear systems 4
1.3.1 Pseudo-inverse 4
1.3.2 Tikhonov regularization 8
1.3.3 Convex relaxation and ℓ1 regularization 12
1.3.4 Sparse Bayesian learning 18
1.4 Outline and contributions 27
2 Convex Methods for Binary Vector Recovery 29
2.1 Relaxing binary constraint 29
2.1.1 Derivation of the algorithm 30
2.2 Promoting sparsity with ℓ1 regularization 33
2.2.1 Derivation of the algorithm 33
2.2.2 Analysis of algorithm convergence 36
2.3 Promoting sparsity with summed regularization 44
2.3.1 Derivation of the algorithm 44
3 Bayesian Inference for Vector Recovery 47
3.1 Choosing Bernoulli prior to enforce binary structure 47
3.1.1 Defining the probabilistic model 48
3.1.2 Derivation of the algorithm 50
3.2 Incorporating multiple measurements and clustered structure 54
3.2.1 Defining the probabilistic model 54
3.2.2 Derivation of the algorithm 56
3.3 Bayesian inference for the recovery of unit interval vectors 62
3.3.1 Defining the probabilistic model 62
3.3.2 Derivation of the algorithm 64
4 Comparison of Vector Recovery Algorithms 71
4.1 Recovery of binary vectors 73
4.1.1 Measurement matrix is Gaussian random 74
4.1.2 Measurement matrix has collinear columns 79
4.2 Recovery of unit interval vectors 84
4.2.1 Measurement matrix is Gaussian random 84
5 Modeling of Eddy Current Systems 89
5.1 Modeling of defects as changes in material properties 90
5.1.1 Perturbation analysis of measurements and material properties 91
5.1.2 Using magnetic sensors for measurement 93
5.2 Semi-analytical solution for electromagnetic fields 96
5.2.1 Multilayer plate in Cartesian coordinates 99
5.2.2 Pipe with inner excitation in cylindrical coordinates 107
5.3 Finite element solution for electromagnetic fields 117
6 Eddy Current Sensing for Defect Reconstruction 123
6.1 Reconstruction of defects in a multilayer metal plate 125
6.1.1 System setup 127
6.1.2 Numerical simulation results for 2D reconstruction 130
6.1.3 Numerical simulation results for 3D reconstruction 132
6.1.4 Real-world experiment results for 3D reconstruction 134
6.2 Reconstruction of defects in a metal pipe 138
6.2.1 System setup 141
6.2.2 Numerical simulation results 143
7 Conclusions and Future Work 151
7.1 Conclusions 151
7.1.1 Conclusions about the methodology part 151
7.1.2 Conclusions about the application part 153
7.2 Future work 155
Appendices 157
Appendix A Proof of ℓ1 Recovery 159
Appendix B Derivation of Posterior and Marginal Likelihood in SBL 165
Appendix C Derivation of Variational Bayesian Inference 167
Appendix D Derivation of (5.8) 169
Appendix E Approximate Fourier Transform and Inverse DTFT by FFT 171
Appendix F Derivation of (6.12) 175
References 177
-
dc.language.isoen-
dc.title擴展壓縮取樣應用於渦電流三維重構zh_TW
dc.titleExtension of Compressive Sampling for Eddy Current 3D Reconstructionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃漢邦;蔡志申;鄭振宗zh_TW
dc.contributor.oralexamcommitteeHan-Pang Huang;Jyh-Shen Tsay;Jen-Tzong Jengen
dc.subject.keyword壓縮取樣,二元向量,單位區間向量,渦電流感測,缺陷重構,zh_TW
dc.subject.keywordcompressive sampling,binary vector,unit interval vector,eddy current sensing,defect reconstruction,en
dc.relation.page188-
dc.identifier.doi10.6342/NTU202400686-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf17.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved