請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93797
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝雅萍 | zh_TW |
dc.contributor.advisor | Ya-Ping Hsieh | en |
dc.contributor.author | 秦浩庭 | zh_TW |
dc.contributor.author | Hao-Ting Chin | en |
dc.date.accessioned | 2024-08-08T16:15:56Z | - |
dc.date.available | 2024-08-09 | - |
dc.date.copyright | 2024-08-08 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-31 | - |
dc.identifier.citation | 1. Zhang C-L, Xu S-Y, Belopolski I, Yuan Z, Lin Z, Tong B, et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nature Communications 2016, 7(1), 10735.
2. Soluyanov AA, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, et al. Type-II Weyl semimetals. Nature 2015, 527(7579), 495-498. 3. Campi D, Kumari S, Marzari N. Prediction of Phonon-Mediated Superconductivity with High Critical Temperature in the Two-Dimensional Topological Semimetal W2N3. Nano Letters 2021, 21(8), 3435-3442. 4. Wang H, Sandoz-Rosado EJ, Tsang SH, Lin J, Zhu M, Mallick G, et al. Elastic Properties of 2D Ultrathin Tungsten Nitride Crystals Grown by Chemical Vapor Deposition. Advanced Functional Materials 2019, 29(31), 1902663. 5. Jiang P-C, Lai Y-S, Chen JS. Dependence of crystal structure and work function of WNx films on the nitrogen content. Applied Physics Letters 2006, 89(12) 122107. 6. Kalantar-zadeh K, Ou JZ, Daeneke T, Mitchell A, Sasaki T, Fuhrer MS. Two dimensional and layered transition metal oxides. Applied Materials Today 2016, 5, 73-89. 7. Mandal D, Routh P, Nandi AK. A New Facile Synthesis of Tungsten Oxide from Tungsten Disulfide: Structure Dependent Supercapacitor and Negative Differential Resistance Properties. Small 2018, 14(4), 1702881. 8. Bandi S, Srivastav AK. Review: Oxygen-deficient tungsten oxides. Journal of Materials Science 2021, 56(11), 6615-6644. 9. Lyu C, Zhang L, Zhang X, Zhang H, Xie H, Zhang J, et al. Controlled Synthesis of Sub-Millimeter Nonlayered WO2 Nanoplates via a WSe2-Assisted Method. Advanced Materials 2023, 35(12), 2207895. 10. Yao Q, Ren G, Xu K, Zhu L, Khan H, Mohiuddin M, et al. 2D Plasmonic Tungsten Oxide Enabled Ultrasensitive Fiber Optics Gas Sensor. Advanced Optical Materials 2019, 7(24), 1901383. 11. Zhang B, Cicmancova V, Ludvik B, Slang S, Kutalek P, Motola M, et al. The Structural Modulation of Amorphous 2D Tungsten Oxide Materials in Magnetron Sputtering. Advanced Materials Interfaces 2022, 9(35), 2201790. 12. Li S, Lin Y-C, Zhao W, Wu J, Wang Z, Hu Z, et al. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nature Materials 2018, 17(6), 535-542. 13. Esmaeilpour M, Bügel P, Fink K, Studt F, Wenzel W, Kozlowska M. Multiscale Model of CVD Growth of Graphene on Cu(111) Surface. International Journal of Molecular Sciences 2023, 24(10), 8563. 14. Mirzaei A, Lee MH, Pawar KK, Bharath SP, Kim T-U, Kim J-Y, et al. Metal Oxide Nanowires Grown by a Vapor–Liquid–Solid Growth Mechanism for Resistive Gas-Sensing Applications: An Overview. Materials 2023, 16(18), 6233. 15. Li S. Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides. IScience 2021, 24(11), 103229. 16. Liu H, Qi G, Tang C, Chen M, Chen Y, Shu Z, et al. Growth of Large-Area Homogeneous Monolayer Transition-Metal Disulfides via a Molten Liquid Intermediate Process. ACS Applied Materials & Interfaces 2020, 12(11), 13174-13181. 17. Chin H-T, Lee J-J, Hofmann M, Hsieh Y-P. Impact of growth rate on graphene lattice-defect formation within a single crystalline domain. Scientific Reports 2018, 8(1), 4046. 18. Chin HT, Shih CH, Hsieh YP, Ting CC, Aoh JN, Hofmann M. How does graphene grow on complex 3D morphologies? Physical Chemistry Chemical Physics 2017, 19(34), 23357-23361. 19. Hsieh Y-P, Shih C-H, Chiu Y-J, Hofmann M. High-Throughput Graphene Synthesis in Gapless Stacks. Chemistry of Materials 2016, 28(1), 40-43. 20. Cançado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, et al. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Letters 2011, 11(8), 3190-3196. 21. Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials 2011, 10(6), 443-449. 22. Hsieh Y-P, Hofmann M, Kong J. Promoter-assisted chemical vapor deposition of graphene. Carbon 2014, 67, 417-423. 23. Picher M, Navas H, Arenal R, Quesnel E, Anglaret E, Jourdain V. Influence of the growth conditions on the defect density of single-walled carbon nanotubes. Carbon 2012, 50(7), 2407-2416. 24. Amato G, Milano G, Vignolo U, Vittone E. Kinetics of defect formation in chemically vapor deposited (CVD) graphene during laser irradiation: The case of Raman investigation. Nano Research 2015, 8(12), 3972-3981. 25. Yuan Q, Xu Z, Yakobson BI, Ding F. Efficient Defect Healing in Catalytic Carbon Nanotube Growth. Physical Review Letters 2012, 108(24), 245505. 26. Ni ZH, Ponomarenko LA, Nair RR, Yang R, Anissimova S, Grigorieva IV, et al. On Resonant Scatterers As a Factor Limiting Carrier Mobility in Graphene. Nano Letters 2010, 10(10), 3868-3872. 27. Suzuki H, Hashimoto R, Misawa M, Liu Y, Kishibuchi M, Ishimura K, et al. Surface Diffusion-Limited Growth of Large and High-Quality Monolayer Transition Metal Dichalcogenides in Confined Space of Microreactor. ACS Nano 2022, 16(7), 11360-11373. 28. Lucentini I, Garcia X, Vendrell X, Llorca J. Review of the Decomposition of Ammonia to Generate Hydrogen. Industrial & Engineering Chemistry Research 2021, 60(51), 18560-18611. 29. Wang Y, Kunz MR, Fang Z, Yablonsky G, Fushimi R. Accumulation Dynamics as a New Tool for Catalyst Discrimination: An Example from Ammonia Decomposition. Industrial & Engineering Chemistry Research 2019, 58(24), 10238-10248. 30. Ganley JC, Thomas FS, Seebauer EG, Masel RI. A Priori Catalytic Activity Correlations: The Difficult Case of Hydrogen Production from Ammonia. Catalysis Letters 2004, 96(3), 117-122. 31. Zhang Q, Bao W, Gong A, Gong T, Ma D, Wan J, et al. A highly sensitive, highly transparent, gel-gated MoS2 phototransistor on biodegradable nanopaper. Nanoscale 2016, 8(29), 14237-14242. 32. Zhang X, Liu B, Gao L, Yu H, Liu X, Du J, et al. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nature Communications 2021, 12(1), 1522. 33. Blöchl PE. Projector augmented-wave method. Physical Review B 1994, 50(24), 17953-17979. 34. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59(3), 1758-1775. 35. Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140(4A), A1133-A1138. 36. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77(18), 3865-3868. 37. Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry 2008, 29(13), 2044-2078. 38. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6(1), 15-50. 39. Kang Z, He HY, Ding R, Chen J, Pan BC. Structures of WxNy Crystals and Their Intrinsic Properties: First-Principles Calculations. Crystal Growth & Design 2018, 18(4), 2270-2278. 40. Crisostomo CP, Yao L-Z, Huang Z-Q, Hsu C-H, Chuang F-C, Lin H, et al. Robust Large Gap Two-Dimensional Topological Insulators in Hydrogenated III–V Buckled Honeycombs. Nano Letters 2015, 15(10), 6568-6574. 41. Hsu C-H, Huang Z-Q, Chuang F-C, Kuo C-C, Liu Y-T, Lin H, et al. The nontrivial electronic structure of Bi/Sb honeycombs on SiC(0001). New Journal of Physics 2015, 17(2), 025005. 42. Yao Y-C, Wu B-Y, Chin H-T, Yen Z-L, Ting C-C, Hofmann M, et al. Nitrogen Pretreatment of Growth Substrates for Vacancy-Saturated MoS2. ACS Applied Materials & Interfaces 2023, 15(36), 42746-42752. 43. Liu D, Ai H, Li J, Fang M, Chen M, Liu D, et al. Surface Reconstruction and Phase Transition on Vanadium–Cobalt–Iron Trimetal Nitrides to Form Active Oxyhydroxide for Enhanced Electrocatalytic Water Oxidation. Advanced Energy Materials 2020, 10(45), 2002464. 44. Zhou D, Shu H, Hu C, Jiang L, Liang P, Chen X. Unveiling the Growth Mechanism of MoS2 with Chemical Vapor Deposition: From Two-Dimensional Planar Nucleation to Self-Seeding Nucleation. Crystal Growth & Design 2018, 18(2), 1012-1019. 45. Markov I. Method for evaluation of the Ehrlich-Schwoebel barrier to interlayer transport in metal homoepitaxy. Physical Review B 1996, 54(24), 17930-17937. 46. Jo S, Jung J-W, Baik J, Kang J-W, Park I-K, Bae T-S, et al. Surface-diffusion-limited growth of atomically thin WS2 crystals from core–shell nuclei. Nanoscale 2019, 11(18), 8706-8714. 47. Chin H-T, Nguyen H-T, Chen S-H, Chen Y-F, Chen W-H, Chou Z-Y, et al. Reaction-limited graphene CVD surpasses silicon production rate. 2D Materials 2021, 8(3), 035016. 48. Jiang Z, Qin P, Fang T. Theoretical study of NH3 decomposition on Pd-Cu (111) and Cu-Pd (111) surfaces: A comparison with clean Pd (111) and Cu (111). Applied Surface Science 2016, 371, 337-342. 49. Kim YC, Boudart M. Recombination of oxygen, nitrogen, and hydrogen atoms on silica: kinetics and mechanism. Langmuir 1991, 7(12), 2999-3005. 50. Novikova NN, Vinogradov EA, Yakovlev VA, Malin TV, Mansurov VG, Zhuravlev KS. Nitridation effect on sapphire surface polaritons. Surface and Coatings Technology 2013, 227, 58-61. 51. Singh AK, Hennig RG, Davydov AV, Tavazza F. Al2O3 as a suitable substrate and a dielectric layer for n-layer MoS2. Applied Physics Letters 2015, 107(5), 053106. 52. Naik VM, Weber WH, Uy D, Haddad D, Naik R, Danylyuk YV, et al. Ultraviolet and visible resonance-enhanced Raman scattering in epitaxial Al1−xInxN thin films. Applied Physics Letters 2001, 79(13), 2019-2021. 53. Lu D, Jiang Q, Ma X, Zhang Q, Fu X, Fan L. Defect-Related Etch Pits on Crystals and Their Utilization. Crystals 2022, 12(11), 1549. 54. Guo W, Kirste R, Bryan I, Bryan Z, Hussey L, Reddy P, et al. KOH based selective wet chemical etching of AlN, AlxGa1−xN, and GaN crystals: A way towards substrate removal in deep ultraviolet-light emitting diode. Applied Physics Letters 2015, 106(8), 082110. 55. Behrens M, Lotnyk A, Gerlach JW, Rauschenbach B. Strain-induced phase selection in epitaxial Ge2Sb2Te5 thin films. Physical Review Materials 2020, 4(1), 015001. 56. Gao Q, Chan Y-h, Wang Y, Zhang H, Jinxu P, Cui S, et al. Evidence of high-temperature exciton condensation in a two-dimensional semimetal. Nature Communications 2023, 14(1), 994. 57. Gulo DP, Yeh H, Chang W-H, Liu H-L. Temperature-dependent optical and vibrational properties of PtSe2 thin films. Scientific Reports 2020, 10(1), 19003. 58. Zhao Z, Bao K, Duan D, Tian F, Huang Y, Yu H, et al. The low coordination number of nitrogen in hard tungsten nitrides: a first-principles study. Physical Chemistry Chemical Physics 2015, 17(20), 13397-13402. 59. Pankove JI. Optical processes in semiconductors. Courier Corporation, 1975. 60. Jia Z, Li C, Li X, Shi J, Liao Z, Yu D, et al. Thermoelectric signature of the chiral anomaly in Cd3As2. Nature Communications 2016, 7(1), 13013. 61. Shen P-C, Su C, Lin Y, Chou A-S, Cheng C-C, Park J-H, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021, 593(7858), 211-217. 62. Son J, Kwon J, Kim S, Lv Y, Yu J, Lee J-Y, et al. Atomically precise graphene etch stops for three dimensional integrated systems from two dimensional material heterostructures. Nature Communications 2018, 9(1), 3988. 63. Hwang S-W, Kim D-H, Tao H, Kim T-i, Kim S, Yu KJ, et al. Materials and Fabrication Processes for Transient and Bioresorbable High-Performance Electronics. Advanced Functional Materials 2013, 23(33), 4087-4093. 64. Namgung S, Koester SJ, Oh S-H. Ultraflat Sub-10 Nanometer Gap Electrodes for Two-Dimensional Optoelectronic Devices. ACS Nano 2021, 15(3), 5276-5283. 65. Du F, Jiang Y, Qiao Z, Wu Z, Tang C, He J, et al. Atomic layer etching technique for InAlN/GaN heterostructure with AlN etch-stop layer. Materials Science in Semiconductor Processing 2022, 143, 106544. 66. Chen S-H, Hofmann M, Yen Z-L, Hsieh Y-P. 2D Material Enabled Offset-Patterning with Atomic Resolution. Advanced Functional Materials 2020, 30(40), 2004370. 67. Yu H, Yang X, Xiao X, Chen M, Zhang Q, Huang L, et al. Atmospheric-Pressure Synthesis of 2D Nitrogen-Rich Tungsten Nitride. Advanced Materials 2018, 30(51), 1805655. 68. Xu W, Li S, Zhou S, Lee JK, Wang S, Sarwat SG, et al. Large Dendritic Monolayer MoS2 Grown by Atmospheric Pressure Chemical Vapor Deposition for Electrocatalysis. ACS Applied Materials & Interfaces 2018, 10(5): 4630-4639. 69. Xu W, Jung GS, Zhang W, Wee ATS, Warner JH. Atomically sharp jagged edges of chemical vapor deposition-grown WS2 for electrocatalysis. Materials Today Nano 2022, 18, 100183. 70. Zhang Y, Liu K, Wang F, Shifa TA, Wen Y, Wang F, et al. Dendritic growth of monolayer ternary WS2(1−x)Se2x flakes for enhanced hydrogen evolution reaction. Nanoscale 2017, 9(17), 5641-5647. 71. Shao G, Xue X-X, Zhou X, Xu J, Jin Y, Qi S, et al. Shape-Engineered Synthesis of Atomically Thin 1T-SnS2 Catalyzed by Potassium Halides. ACS Nano 2019, 13(7), 8265-8274. 72. Sun L, Xu H, Cheng Z, Zheng D, Zhou Q, Yang S, et al. A heterostructured WS2/WSe2 catalyst by heterojunction engineering towards boosting hydrogen evolution reaction. Chemical Engineering Journal 2022, 443, 136348. 73. Zhu Y, Chen G, Zhong Y, Zhou W, Shao Z. Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogen-Rich Graphene-Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst. Advanced Science 2018, 5(2), 1700603. 74. Li Y, Zhang L, Xiao J, Zhang W. Feather-like few-layer WSe2 nanosheets grown on W substrates: an excellent electrocatalyst for the hydrogen evolution reaction. Nanoscale Advances 2022, 4(15), 3142-3148. 75. Yang N, Chen Z, Ding D, Zhu C, Gan X, Cui Y. Tungsten–Nickel Alloy Boosts Alkaline Hydrogen Evolution Reaction. The Journal of Physical Chemistry C 2021, 125(49), 27185-27191. 76. Wu A, Gu Y, Yang B, Wu H, Yan H, Jiao Y, et al. Porous cobalt/tungsten nitride polyhedra as efficient bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A 2020, 8(43), 22938-22946. 77. Frey GL, Rothschild A, Sloan J, Rosentsveig R, Popovitz-Biro R, Tenne R. Investigations of Nonstoichiometric Tungsten Oxide Nanoparticles. Journal of Solid State Chemistry 2001, 162(2), 300-314. 78. Lee S-H, Cheong HM, Park N-G, Tracy CE, Mascarenhas A, Benson DK, et al. Raman spectroscopic studies of Ni–W oxide thin films. Solid State Ionics 2001, 140(1), 135-139. 79. Berkdemir A, Gutiérrez HR, Botello-Méndez AR, Perea-López N, Elías AL, Chia C-I, et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports 2013, 3(1), 1755. 80. Falahati K, Khatibi A, Shokri B. Light-matter interaction in tungsten Sulfide-based Janus monolayers: A First-Principles study. Applied Surface Science 2022, 599, 153967. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93797 | - |
dc.description.abstract | 二維過渡金屬氮化物因其獨特且可調節的鍵合性質,展現出創新電子和機械能力的光明前景,使其有別於其他二維材料。然而,在相關規模上實現均勻合成是一項相當大的挑戰。本研究展示了受限生長技術在調控和提升二維金屬氮化物形貌方面的潛力。通過在氣-液-固過程中限制反應體積,我們獲得了更高的前驅物濃度,從而降低了成核密度、增大了晶粒尺寸並抑制了多層生長。我們說明了強鍵合如何提升二維氮化鎢的形貌和功能。我們的自下而上合成揭示了一種獨特的基板穩定效應,超越了范德華外延,促進了W5N6的形成,而非較低的金屬氮化物。通過全面的結構和電子特性表徵,我們展示了使用銅受限的VLS外延技術進行大規模合成單層W5N6。這種材料表現出具有有趣的間接能帶結構的半金屬行為。此外,它在抗機械損傷和化學反應方面表現出卓越的韌性。利用這些電子性質和穩健特性,我們證明了W5N6作為原子尺度乾蝕刻阻擋層的實用性,促進了高性能二維材料接觸的集成。我們通過石墨受限的VLS過程創新形貌控制技術,生成邊緣富集的二維氮化鎢,顯著提升了氫演化能力,證據是前所未有的55 mV/dec的Tafel斜率。W5N6 卓越的化學穩定性可實現有效的選擇區域硫化製程,從而形成二維橫向結構 W5N6/WS2。半金屬W5N6和半導體WS2之間的界面表現出高品質的相互作用,使得WS2的電氣性能比傳統金屬電極提高十倍以上。二維過渡金屬氮化物在推進電子設備和功能界面方面的潛力 | zh_TW |
dc.description.abstract | Two-dimensional transition metal nitrides offer promising prospects for innovative electronic and mechanical capabilities owing to their distinct and adjustable bonding properties, distinguishing them from other 2D materials. However, achieving uniform synthesis at a relevant scale poses a considerable challenge. This research showcases the potential of confined growth techniques in regulating and enhancing the morphology of 2D metal nitrides. By confining the reaction volume in vapor-liquid-solid processes, we attained a higher precursor concentration, resulting in reduced nucleation density, larger grain sizes, and suppressed multilayer growth. We illustrate how robust bonding elevates the morphology and functionality of 2D tungsten nitrides. Our bottom-up synthesis reveals a unique substrate stabilization effect, surpassing van der Waals epitaxy and promoting the formation of W5N6 over lower metal nitrides. Through thorough structural and electronic characterization, we demonstrate the large-scale synthesis of monolayer W5N6 using copper confined VLS epitaxy. This material exhibits semimetallic behavior characterized by an intriguing indirect band structure. Moreover, it displays remarkable resilience against both mechanical damage and chemical reactions. Leveraging these electronic properties and robust characteristics, we demonstrate the practicality of W5N6 as atomic-scale dry etch stops, facilitating the integration of high-performance 2D material contacts. Our innovation in morphology control through the graphite confined VLS process has been utilized to generate edge-enriched 2D tungsten nitrides, resulting in significantly enhanced hydrogen evolution ability, as evidenced by an unprecedented Tafel slope of 55 mV/dec. The exceptional chemical stability of W5N6 allows for effective selective sulfurization, resulting in the formation of a 2D lateral structure W5N6/WS2. The interface between the semimetal W5N6 and semiconductor WS2 demonstrates a high-quality interaction, leading to a more than tenfold enhancement in the electrical performance of WS2 compared to conventional metal electrodes. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:15:56Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-08T16:15:56Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii Abstract iv Chapter 1 Introduction 1 1.1 2D W5N6 growth 1 1.2 2D WOxNy formation 4 Chapter 2 Theoretical background 6 2.1 Vapor–Liquid–Solid method (VLS) 6 2.1.1 Salt-assisted VLS process for growth 2D material 8 2.2 The concept of confined gas flow 10 2.3 NH3 decomposition process 19 Chapter 3 Experimental process 23 3.1 Confined VLS growth process 23 3.2 Transfer of W5N6 25 3.3 Sample Characterizations 25 3.4 Electrical Measurements 27 3.5 MoS2/W5N6 Heterojunction characterization through Kelvin Probe Force Microscopy (KPFM) 27 3.6 Computational Methods 29 3.7 Fabrication process of 2D device (MoS2/W5N6) 30 3.8 Hydrogen Evolution Reaction (HER) 33 3.9 2D heterostructure WO3/WON (WOxNy) formation 35 3.10 2D heterostructure 3L WS2/1L WSN synthesis 36 3.11 Selective deposition 36 Chapter 4 Results and discussion 37 4.1 2D W5N6 growth via Vapor–Liquid–Solid (VLS) method 37 4.2 Confined VLS Growth 47 4.3 Van-der-Waals epitaxy growth W5N6 on c-sapphire 52 4.4 Semimetallic properties in 2D W5N6 56 4.5 Argon and Oxygen plasma bombardment testing 61 4.6 Application in W5N6 with different morphology 64 4.6.1 Film W5N6 - 2D electrode 64 4.6.2 MoS2/W5N6 2D Schottky diode 67 4.6.3 Dendritic W5N6 in Hydrogen evolution reaction (HER) 68 4.7 2D heterostructure WO3/WON (WOxNy) 73 4.8 2D heterostructure 3L WS2/1L WSN 80 Conclusion 89 References 91 | - |
dc.language.iso | en | - |
dc.title | 二維氮化鎢(W5N6)的合成方法、表徵分析與潛在應用 | zh_TW |
dc.title | Synthesis, characterization and application of 2D Tungsten Nitride (W5N6) | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 謝馬利歐;梁啟德;陳永芳;劉祥麟 | zh_TW |
dc.contributor.oralexamcommittee | Mario Hofmann;Chi-Te Liang;Yang-Fang Chen;Hsiang-Lin Liu | en |
dc.subject.keyword | 氮化鎢,半金屬,侷限式VLS生長,原子級蝕刻控制,電極,析氫反應,二維二極體, | zh_TW |
dc.subject.keyword | tungsten nitride,semimetal,confined VLS growth,atomic etch stop,electrode,HER,2D diode, | en |
dc.relation.page | 104 | - |
dc.identifier.doi | 10.6342/NTU202402569 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-02 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 分子科學與技術國際研究生博士學位學程 | - |
顯示於系所單位: | 分子科學與技術國際研究生博士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。