請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93781完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲 | zh_TW |
| dc.contributor.advisor | Ming-Syan Chen | en |
| dc.contributor.author | 莊于萱 | zh_TW |
| dc.contributor.author | Yu-Syuan Chuang | en |
| dc.date.accessioned | 2024-08-08T16:10:29Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | [1] A. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical One-Way Functions. Science, vol. 297, no. 5589, pp. 2026-2030, 2002.
[2] J. Maes, R. Maes, I. Verbauwhede. Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions. In: Cryptographic Hardware and Embedded Systems (CHES), 2010. [3] Y. Dodis, R. Ostrovsky, L. Reyzin, A. Smith. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Computing, vol. 38, no. 1, pp. 97-139, 2008. [4] B. Gassend, D. Clarke, M. van Dijk, S. Devadas. Silicon Physical Random Functions. In: ACM Conference on Computer and Communications Security (CCS),2002. [5] G. E. Suh, C. W. O’Donnell, I. Lee, and S. Devadas. A Low-Cost Physical Unclonable Function Based on Subthreshold-Voltage Variability. In: Cryptographic Hardware and Embedded Systems (CHES), 2007. [6] J. Guajardo, S. Kumar, G. Schrijen, and P. Tuyls. FPGA Intrinsic PUFs and Their Use for IP Protection. In: International Workshop on Cryptographic Hardware and Embedded Systems (CHES), 2007. [7] C. Obermaier, C. Beckhoff, and G. Sigl. Secure Key Storage and IP Protection Using Physical Unclonable Functions on FPGA. In: International Conference on Field-Programmable Technology (ICFPT), 2011. [8] T. van der Leest, J. Plusquellic, and M. van Dijk. Machine Learning Attacks on XOR Arbiter PUFs. In: IEEE Transactions on Information Forensics and Security, vol. 13, no. 12, pp. 3070-3085, 2018. [9] Y. Liu, C. Zhang, and H. Li. Feature Selection for Machine Learning Attacks on XOR PUFs. In: International Conference on Cryptographic Hardware and Embedded Systems (CHES), 2019. [10] S. Lee, J. Plusquellic, and M. van Dijk. Adaptive CRP Expansion for Physical Unclonable Functions using Bayesian Optimization. In: IEEE Transactions on Information Forensics and Security, vol. 15, pp. 1017-1032, 2020. [11] P. Nguyen, A. Rahmati, and L. Carloni. Error-Correcting Codes for Physical Unclonable Functions. In: International Conference on Cryptographic Hardware and Embedded Systems (CHES), 2018. [12] U. R ̈uhrmair, F. Sehnke, J. S ̈olter, G. Dror, S. Devadas, and J. Schmidhuber. Modeling Attacks on Physical Unclonable Functions. In Proceedings of the 17th ACM conference on Computer and communications security (CCS ’10), Association for Computing Machinery, New York, NY, USA, pp. 237–249, 2010. https://doi.org/10.1145/1866307.1866335 [13] C. Zhou, K. K. Parhi, and C. H. Kim, Secure and Reliable XOR Arbiter PUF Design: An Experimental Study Based on 1 Trillion Challenge Response Pair Measurements, 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 2017, pp. 1-6, doi: 10.1145/3061639.3062315. [14] L. Bolotnyy and G. Robins, Physically Unclonable Function-Based Security and Privacy in RFID Systems, Proceedings of the IEEE International Conference on Pervasive Computing and Communications, 2007, pp. 211-220, doi:10.1109/PERCOM.2007.79. [15] M. Majzoobi, F. Koushanfar, and S. Devadas, Lightweight Secure PUFs, Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 670-673, doi: 10.1145/1509456.1509604. [16] M.-D. Yu and S. Devadas, Secure and Robust Error Correction for Physical Unclonable Functions, IEEE Design & Test of Computers, vol. 27, no. 1, pp.48-65, Jan.-Feb. 2010, doi: 10.1109/MDT.2010.27. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93781 | - |
| dc.description.abstract | 物理不可克隆函數(PUF)是一種技術,利用硬件製造過程中引入的微小隨機性來生成獨特且無法復制的響應特徵。PUF廣泛應用於硬件安全領域,如身份驗證和密鑰生成。然而,傳統的PUF結構,如XOR PUF,面臨來自機器學習攻擊的風險,這些攻擊可以通過分析挑戰-響應對(CRP)推斷出PUF的內部結構,從而破壞其安全性。
本研究旨在改進XOR PUF結構,提出一種新設計:Selected XOR PUF,以增強其抵抗機器學習攻擊的能力,同時提高CRP的使用效率。通過引入新的設計和算法,我們希望顯著提升PUF的安全性,使其在實際應用中更加可靠和高效。實驗結果表明,改進後的PUF在抵抗機器學習攻擊方面表現出更高的效果,並顯著提高了CRP的使用效率,為未來的PUF應用提供了更強的保障。 此外,我們還開發了另一種設計:Twice Selected XOR PUF,其在抵抗機器學習攻擊方面表現出更顯著的效果。我們還研究了不穩定的CRP空間對PUF的影響,並總結了結論與未來可能的延伸方向。 | zh_TW |
| dc.description.abstract | A Physical Unclonable Function (PUF) is a technology that leverages the tiny randomness introduced during the hardware manufacturing process to generate unique and unreplicable response characteristics. PUFs are widely used in the field of hardware security, such as authentication and key generation. However, traditional PUF structures, like XOR PUF, face risks from machine learning attacks, which can infer the internal structure of the PUF by analyzing Challenge-Response Pairs (CRPs), thereby compromising its security.
This study aims to improve the XOR PUF structure by introducing a new design: Selected XOR PUF, to enhance its resistance to machine learning attacks while increasing the efficiency of CRP usage. By incorporating new designs and algorithms, we aim to significantly boost the security of PUFs, making them more reliable and efficient in practical applications. Experimental results show that the improved PUF exhibits higher effectiveness in resisting machine learning attacks and significantly enhances CRP usage efficiency, providing stronger assurance for future PUF applications. Furthermore, we have developed an additional design: Twice Selected XOR PUF, which demonstrates even more significant resistance to machine learning attacks. We also investigated the impact of unstable CRP Space on PUFs, concluding with potential future directions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:10:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:10:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | List of Tables iii
List of Figures iv 1 Introduction 1 2 Related Work 4 2.1 Physical Unclonable Function . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Vulnerability of Physical Unclonable Functions to Machine Learning Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Challenge Response Pair(CRP) Space Decreasing . . . . . . . . . . . 6 3 Preliminary 10 3.1 Mathematical Principles of PUFs . . . . . . . . . . . . . . . . . . . . 10 3.1.1 PUF Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.2 PUF Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.3 XOR PUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Method 13 4.1 Protocol Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 PUF Label Decoder and PUF label String Design . . . . . . . . . . . 15 4.3 PUF Side Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.4 CRP space Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.5 Twice selected XOR PUF design . . . . . . . . . . . . . . . . . . . . 17 4.6 Psedocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 Experiment 21 5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2 Experiment Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.1 Selected PUF Result . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.2 Twice Selected PUF Result . . . . . . . . . . . . . . . . . . . 27 5.3.3 Extending Unstable Percentage Experiment . . . . . . . . . . 30 6 Conclusion 35 Bibliography 36 | - |
| dc.language.iso | en | - |
| dc.subject | CRP效率 | zh_TW |
| dc.subject | Selected XOR PUF | zh_TW |
| dc.subject | 不穩定CRP空間 | zh_TW |
| dc.subject | 機器學習攻擊 | zh_TW |
| dc.subject | PUF | zh_TW |
| dc.subject | 物理不可克隆函數 | zh_TW |
| dc.subject | XOR PUF | zh_TW |
| dc.subject | CRP Efficiency | en |
| dc.subject | PUF | en |
| dc.subject | Physical Unclonable Function | en |
| dc.subject | Machine Learning Attack | en |
| dc.subject | Selected XOR PUF | en |
| dc.subject | Unstable CRP Space | en |
| dc.subject | XOR PUF | en |
| dc.title | Selected XOR PUF: 抵抗機器學習攻擊與擴展挑戰-響應對空間的設計策略 | zh_TW |
| dc.title | Selected XOR PUF: Design Strategies for Resisting Machine Learning Attacks and Expanding CRP Space | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊得年;王凡;陳怡伶 | zh_TW |
| dc.contributor.oralexamcommittee | De-Nian Yang;Farn Wang;Yi-Ling Chen | en |
| dc.subject.keyword | 物理不可克隆函數,PUF,機器學習攻擊,XOR PUF,Selected XOR PUF,不穩定CRP空間,CRP效率, | zh_TW |
| dc.subject.keyword | PUF,Physical Unclonable Function,Machine Learning Attack,Selected XOR PUF,CRP Efficiency,Unstable CRP Space,XOR PUF, | en |
| dc.relation.page | 38 | - |
| dc.identifier.doi | 10.6342/NTU202402524 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-03 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | 2029-07-29 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 807.24 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
