Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93773
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉志文zh_TW
dc.contributor.advisorChih-Wen Liuen
dc.contributor.author鍾騏zh_TW
dc.contributor.authorChi Chungen
dc.date.accessioned2024-08-07T17:15:31Z-
dc.date.available2024-08-08-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation[1] M. Gobbi, A. Sattar, R. Palazzetti, and G. Mastinu, "Traction Motors for Electric Vehicles: Maximization of Mechanical Efficiency – A Review," Applied Energy, vol. 357, p. 122496, Mar. 2024.
[2] A. B. Plunkett, "Direct Flux and Torque Regulation in a PWM Inverter-Induction Motor Drive," IEEE Transactions on Industry Applications, vol. IA-13, no. 2, pp. 139-146, Mar. 1977.
[3] L. Yen-Shin and C. Jian-Ho, "A New Approach to Direct Torque Control of Induction Motor Drives for Constant Inverter Switching Frequency and Torque Ripple Reduction," IEEE Transactions on Energy Conversion, vol. 16, no. 3, pp. 220-227, Sep. 2001.
[4] C. M. F. S. Reza, M. D. Islam, and S. Mekhilef, "A Review of Reliable and Energy Efficient Direct Torque Controlled Induction Motor Drives," Renewable and Sustainable Energy Reviews, vol. 37, pp. 919-932, Sep. 2014.
[5] T. Lixin, Z. Limin, M. F. Rahman, and H. Yuwen, "A Novel Direct Torque Control for Interior Permanent-Magnet Synchronous Machine Drive with Low Ripple in Torque and Flux-A Speed Sensorless Approach," IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1748-1756, Nov.-Dec. 2003.
[6] M. Fu and L. Xu, "A Sensorless Direct Torque Control Technique for Permanent Magnet Synchronous Motors," in Power Electronics in Transportation (Cat. No. 98TH8349), 1998: IEEE, pp. 21-28.
[7] J. Jing-Ping and R. S. Marleau, "Digitally Controlled DC Drive Motors," IEEE Transactions on Industry Applications, vol. IA-18, no. 6, pp. 728-735, Nov. 1982.
[8] M. Veerachary and G. Satish, "First-order Pseudo Dead-Beat Current Controller For Buck Converter," in INTELEC 2009 - 31st International Telecommunications Energy Conference, 2009, pp. 1-6.
[9] B. H. Kenny and R. D. Lorenz, "Stator- and Rotor-Flux-Based Deadbeat Direct Torque Control of Induction Machines," IEEE Transactions on Industry Applications, vol. 39, no. 4, pp. 1093-1101, July-Aug. 2003.
[10] J. S. Lee, C. H. Choi, J. K. Seok, and R. D. Lorenz, "Deadbeat-Direct Torque and Flux Control of Interior Permanent Magnet Synchronous Machines With Discrete Time Stator Current and Stator Flux Linkage Observer," IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1749-1758, July-Aug. 2011.
[11] G. Scarcella, G. Scelba, M. Pulvirenti, and R. D. Lorenz, "Fault-Tolerant Capability of Deadbeat-Direct Torque and Flux Control for Three-Phase PMSM Drives," IEEE Transactions on Industry Applications, vol. 53, no. 6, pp. 5496-5508, Nev.-Dec. 2017.
[12] A. U. Rehman, B. A. Basit, H. H. Choi, and J. W. Jung, "Computationally Efficient Deadbeat Direct Torque Control Considering Speed Dynamics for a Surface-Mounted PMSM Drive," IEEE/ASME Transactions on Mechatronics, vol. 27, no. 5, pp. 3407-3418, Oct. 2022.
[13] X. Lin, W. Huang, W. Jiang, Y. Zhao, and S. Zhu, "Deadbeat Direct Torque and Flux Control for Permanent Magnet Synchronous Motor Based on Stator Flux Oriented," IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 5078-5092, May 2020.
[14] P. Wang, N. Li, X. Sun, and C. Wang, "Deadbeat Predictive Current Control for PMSM Based on Improved Luenberger Observer," in 2020 39th Chinese Control Conference (CCC), 2020, pp. 2373-2377.
[15] Y. Chen, D. Sun, B. Lin, T. W. Ching, and W. Li, "Dead-beat Direct Torque and Flux Control Based on Sliding-Mode Stator Flux Observer for PMSM in Electric Vehicles," in IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 2015, pp. 002270-002275.
[16] J. Lai, C. Zhou, J. Su, M. Xie, J. Liu, and T. Xie, "A Permanent Magnet Flux Linkage Estimation Method Based on Luenberger Observer for Permanent Magnet Synchronous Motor," in 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 2019, pp. 1-6.
[17] M. N. Uddin, H. Zou, and F. Azevedo, "Online Loss-Minimization-Based Adaptive Flux Observer for Direct Torque and Flux Control of PMSM Drive," IEEE Transactions on Industry Applications, vol. 52, no. 1, pp. 425-431, Jan.-Feb. 2016.
[18] D. Casadei, G. Serra, A. Stefani, A. Tani, and L. Zarri, "DTC Drives for Wide Speed Range Applications Using a Robust Flux-Weakening Algorithm," IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2451-2461, Oct. 2007.
[19] M. N. Uddin, T. S. Radwan, and M. A. Rahman, "Performance of Interior Permanent Magnet Motor Drive Over Wide Speed Range," IEEE Transactions on Energy Conversion, vol. 17, no. 1, pp. 79-84, Mar. 2002.
[20] B. Nurtay, B. Duisenbay, and T. D. Do, "Direct-Torque Control System Design Using Maximum Torque Per Ampere method for Interior Permanent Magnet Synchronous Motors," in 2018 ELEKTRO, 2018, pp. 1-6.
[21] P. Naganathan and S. Srinivas, "Maximum Torque Per Ampere Based Direct Torque Control Scheme of IM Drive for Electrical Vehicle Applications," in 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), 2018, pp. 256-261.
[22] T. Inoue, Y. Inoue, S. Morimoto, and M. Sanada, "Maximum Torque Per Ampere Control of a Direct Torque-Controlled PMSM in a Stator Flux Linkage Synchronous Frame," IEEE Transactions on Industry Applications, vol. 52, no. 3, pp. 2360-2367, May-June 2016.
[23] C. Sain, S. Padmanaban, A. Banerjee, and P. K. Biswas, "An Efficient Flux Weakening Control Strategy of a Speed Controlled Permanent Magnet Synchronous Motor Drive for Light Electric Vehicle Applications," in 2017 IEEE Calcutta Conference (CALCON), 2017, pp. 304-308.
[24] C. Li and T. Meng, "A New Design Concept of PMSM for Flux Weakening Operation," in 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 2016, pp. 1-5.
[25] P. Y. Lin, W. T. Lee, S. W. Chen, J. C. Hwang, and Y. S. Lai, "Infinite Speed Drives Control with MTPA and MTPV for Interior Permanent Magnet Synchronous Motor," in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, pp. 668-674.
[26] L. Sepulchre, M. Fadel, M. Pietrzak-David, and G. Porte, "MTPV Flux-Weakening Strategy for PMSM High Speed Drive," IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 6081-6089, Nov.-Dec. 2018.
[27] C. Miguel-Espinar, D. Heredero-Peris, G. Gross, M. Llonch-Masachs, and D. Montesinos-Miracle, "Maximum Torque per Voltage Flux-Weakening Strategy With Speed Limiter for PMSM Drives," IEEE Transactions on Industrial Electronics, vol. 68, no. 10, pp. 9254-9264, Oct. 2021.
[28] S. G. Chen, F. J. Lin, C. H. Liang, and C. H. Liao, "Development of FW and MTPV Control for SynRM via Feedforward Voltage Angle Control," IEEE/ASME Transactions on Mechatronics, vol. 26, no. 6, pp. 3254-3264, Dec. 2021.
[29] A. Hekmati, I. Sadeghi Mahalli, and M. Siamaki, "A Survey on Permanent Magnet Synchronous Machines: Recent Applications and Trends," (in en), Electromechanical Energy Conversion Systems, vol. 1, no. 3, pp. 42-50, Oct. 2021.
[30] C. Zhou, X. Huang, Y. Fang, and L. Wu, "Comparison of PMSMs with Different Rotor Structures for EV Application," in 2018 XIII International Conference on Electrical Machines (ICEM), 2018, pp. 609-614.
[31] K. V. Kumar, P. A. Michael, J. P. John, and S. S. Kumar, "Simulation and Comparison of SPWM and SVPWM Control for Three Phase Inverter," ARPN Journal of Engineering and Applied Sciences, vol. 5, no. 7, pp. 61-74, July 2010.
[32] W.-F. Zhang and Y.-H. Yu, "Comparison of Three SVPWM Strategies," Journal of Electronic Science and Technology, vol. 5, no. 3, pp. 283-287, Sep. 2007.
[33] L. Zhong, M. F. Rahman, W. Y. Hu, and K. Lim, "Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drives," IEEE Transactions on Power Electronics, vol. 12, no. 3, pp. 528-536, May 1997.
[34] M. Merzoug and F. Naceri, "Comparison of Field-Oriented Control and Direct Torque Control for Permanent Magnet Synchronous Motor (PMSM)," International Journal of Electrical and Computer Engineering, vol. 2, no. 9, pp. 1797-1802, 2008.
[35] J. Luukko, "Direct Torque Control of Permanent Magnet Synchronous Machines-Analysis and Implementation," 2000.
[36] L. Zhu and R. Wang, "A Novel Direct Torque Control System based on Space Vector PWM," in The 4th International Power Electronics and Motion Control Conference, 2004. IPEMC 2004., 2004, vol. 2, pp. 755-760 Vol.2.
[37] C. Lascu, I. Boldea, and F. Blaabjerg, "A Modified Direct Torque Control for Induction Motor Sensorless Drive," IEEE Transactions on industry applications, vol. 36, no. 1, pp. 122-130, Jan.-Feb. 2000.
[38] D. Wilson. "Teaching Your PI Controller to Behave (Part I)." https://www.ti.com/document-viewer/lit/html/SSZTCG3 (accessed 2024/04/17, 2024).
[39] D. Wilson. "Teaching Your PI Controller to Behave (Part II)." https://www.ti.com/lit/ta/ssztcg4/ssztcg4.pdf (accessed 2024/04/17, 2024).
[40] W. Wang, C. Liu, H. Zhao, and Z. Song, "Improved Deadbeat-Direct Torque and Flux Control for PMSM With Less Computation and Enhanced Robustness," IEEE Transactions on Industrial Electronics, vol. 70, no. 3, pp. 2254-2263, Mar. 2023.
[41] K. D. Hoang, Z. Q. Zhu, and M. Foster, "Online Optimized Stator Flux Reference Approximation for Maximum Torque Per Ampere Operation of Interior Permanent Magnet Machine Drive under Direct Torque Control," in 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), 2012, pp. 1-6.
[42] T. J. Ypma, "Historical Development of the Newton-Raphson Method," SIAM Review, vol. 37, no. 4, pp. 531-551, Dec. 1995.
[43] L. Dongyun and N. C. Kar, "A Review of Flux-Weakening Control in Permanent Magnet Synchronous Machines," in 2010 IEEE Vehicle Power and Propulsion Conference, 2010, pp. 1-6.
[44] K. Jang-Mok and S. K. Sul, "Speed Control of Interior Permanent Magnet Synchronous Motor Drive for the Flux Weakening Operation," IEEE Transactions on Industry Applications, vol. 33, no. 1, pp. 43-48, Jan.-Feb. 1997.
[45] S. Wang, J. Kang, M. Degano, A. Galassini, and C. Gerada, "An Accurate Wide-Speed Range Control Method of IPMSM Considering Resistive Voltage Drop and Magnetic Saturation," IEEE Transactions on Industrial Electronics, vol. 67, no. 4, pp. 2630-2641, Apr. 2020.
[46] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, "Delay Compensation in Model Predictive Current Control of a Three-Phase Inverter," IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1323-1325, Feb. 2012.
[47] Y. Wang, H. Flieh, S. C. Lee, and R. D. Lorenz, "Implementation Issues and Performance Evaluation of Deadbeat-Direct Torque and Flux Control Drives," in 2015 IEEE International Electric Machines & Drives Conference (IEMDC), 2015, pp. 953-959.
[48] N. T. West and R. D. Lorenz, "Digital Implementation of Stator and Rotor Flux-Linkage Observers and a Stator-Current Observer for Deadbeat Direct Torque Control of Induction Machines," IEEE Transactions on Industry Applications, vol. 45, no. 2, pp. 729-736, Mar.-Apr. 2009.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93773-
dc.description.abstract本研究採用直接轉矩控制作為主要架構,結合無差拍控制理論以及空間向量調變技術並應用於內藏式永磁同步電機,來達到快速的動態響應與較低的響應漣波。其中,採用定子電流與定子磁通鏈觀測器加強了此策略應用於數位訊號處理器的性能,並透過觀測器所觀測到的回授訊號,給予無差拍直接轉矩控制正確時脈的訊號輸入。為了達到拓展電機的運轉範圍,提升電機於高轉速時的電磁轉矩響應,採用了寬廣速度範圍控制演算法,其中包含每安培最大轉矩控制、弱磁控制以及每伏特最大轉矩控制,分別應用於定轉矩區以及定功率區。為了進一步增加電機於高轉速時的性能,改良了寬廣速度範圍控制的控制訊號切換規則,提升電機於低轉矩命令時的定轉矩操作範圍,同時改良了弱磁控制與每伏特最大轉矩控制的電壓限制式,其優化了電機運轉於高速時的轉矩響應並避免其振盪的情況發生。為了驗證控制策略之可行性與性能,透過Matlab/Simulink模擬軟體進行電機模型以及演算法的建模,並與採用比例積分控制器的直接轉矩控制進行對比,確認了無差拍直接轉矩控制的優勢。zh_TW
dc.description.abstractThis study employs direct torque control (DTC) as the principal framework, combined with deadbeat control theory and space vector modulation (SVM) techniques, and applied to interior permanent magnet synchronous machines (IPMSM) to achieve rapid dynamic response and reduced response ripple. It utilizes a stator current and stator flux observer to enhance the strategy's performance on digital signal processors (DSP), providing the deadbeat direct torque control with the correct timing of signal inputs through the feedback signals observed. To expand the operating range of the machines and improve the electromagnetic torque response at high speeds, a wide speed range control algorithm is adopted, including maximum torque per ampere (MTPA) control, flux-weakening (FW) control, and maximum torque per voltage (MTPV) control, each applied in the constant torque and constant power regions respectively. To further enhance machines performance at high speeds, the control signal switching rules of the wide speed range control are refined, extending the constant torque operation range during low torque commands, while the voltage limitation strategies for flux-weakening and maximum torque per voltage control are improved, optimizing the torque response of the motor at high speeds and preventing oscillations. To validate the feasibility and performance of the control strategy, the motor model and algorithms are simulated using Matlab/Simulink software, and compared with a proportional-integral (PI) controller-based direct torque control, confirming the advantages of the deadbeat-direct torque control.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T17:15:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T17:15:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目次 vi
圖次 ix
表次 xiii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 研究貢獻 3
1.4 章節摘要 4
第二章 永磁同步電機理論 5
2.1 前言 5
2.2 永磁同步電機簡介 5
2.2.1 表貼式永磁同步電機特性 6
2.2.2 內藏式永磁同步電機特性 6
2.3 座標軸轉換理論 7
2.3.1 靜止座標軸轉換 8
2.3.2 同步旋轉座標軸轉換 10
2.4 永磁同步電機之模型 11
2.4.1 永磁同步電機之三相座標軸數學模型與推導 11
2.4.2 永磁同步電機之同步旋轉座標軸數學模型與推導 15
2.5 空間向量調變理論 19
2.5.1 三相逆變器介紹 19
2.5.2 空間向量脈寬調變 21
2.6 基於空間向量調變技術之直接轉矩控制理論 25
2.6.1 傳統的直接轉矩控制理論 25
2.6.2 基於空間向量調變之直接轉矩控制理論 28
第三章 寬廣速度範圍之無差拍直接轉矩控制 33
3.1 前言 33
3.2 無差拍直接轉矩控制 33
3.2.1 傳統之無差拍直接轉矩控制 34
3.2.2 基於定子磁通簡化的無差拍直接轉矩控制 37
3.3 寬廣速度範圍控制演算法 40
3.3.1 每安培最大轉矩控制 42
3.3.2 弱磁控制 49
3.3.3 每伏特最大轉矩控制 54
3.3.4 演算法控制訊號切換規則 59
3.4 定子電流與定子磁通鏈觀測器 67
3.4.1 定子電流觀測器 68
3.4.2 定子磁通鏈觀測器 70
3.4.3 觀測器結合與應用 71
第四章 控制策略模擬與結果 72
4.1 模擬平台與架構 73
4.2 模擬結果 77
4.2.1 理想與實際之數位控制 77
4.2.2 寬廣速度範圍控制 79
4.2.3 性能模擬 91
第五章 結論與未來展望 105
5.1 結論 105
5.2 未來研究方向 105
參考文獻 106
-
dc.language.isozh_TW-
dc.subject每伏特最大轉矩zh_TW
dc.subject每安培最大轉矩zh_TW
dc.subject弱磁zh_TW
dc.subject定子電流與定子磁通鏈觀測器zh_TW
dc.subject無差拍直接轉矩控制zh_TW
dc.subject內藏式永磁同步電機zh_TW
dc.subject寬廣速度範圍控制zh_TW
dc.subjectMaximum Torque per Ampere (MTPA)en
dc.subjectInterior Permanent Magnet Synchronous machines (IPMSM)en
dc.subjectDeadbeat-Direct Torque Control (DB-DTC)en
dc.subjectStator Current and Stator Flux Linkage Observeren
dc.subjectWide Speed Range Controlen
dc.subjectFlux-Weakening (FW)en
dc.subjectMaximum Torque per Voltage (MTPV)en
dc.title內藏式永磁同步電機之寬廣速度範圍無差拍直接轉矩控制研究zh_TW
dc.titleResearch of Wide-Speed-Range Deadbeat-Direct Torque Control Applied to Interior Permanent Magnet Synchronous Machinesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee賴炎生;黃世杰;陳耀銘zh_TW
dc.contributor.oralexamcommitteeYen-Shin Lai;Shyh-Jier Huang;Yaow-Ming Chenen
dc.subject.keyword內藏式永磁同步電機,無差拍直接轉矩控制,定子電流與定子磁通鏈觀測器,寬廣速度範圍控制,每安培最大轉矩,弱磁,每伏特最大轉矩,zh_TW
dc.subject.keywordInterior Permanent Magnet Synchronous machines (IPMSM),Deadbeat-Direct Torque Control (DB-DTC),Stator Current and Stator Flux Linkage Observer,Wide Speed Range Control,Maximum Torque per Ampere (MTPA),Flux-Weakening (FW),Maximum Torque per Voltage (MTPV),en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202403033-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2028-03-13-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2028-03-13
12.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved