Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93771
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林璧鳳zh_TW
dc.contributor.advisorBi-Fong Linen
dc.contributor.author邱雅靖zh_TW
dc.contributor.authorYa-Ching Chiuen
dc.date.accessioned2024-08-07T17:14:47Z-
dc.date.available2024-08-08-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citation修淯琳 (2015)。高油飲食與葉酸營養狀況對免疫調節的影響。國立臺灣大學生化科技學系碩士論文。
辜祥霖 (2016)。不同葉酸含量對高油飲食小鼠腎臟的影響。國立臺灣大學生化科技學系碩士論文。
吳繼恆 (2017)。葉酸缺乏影響抗原呈現細胞功能與CD4+ T細胞分化之研究。國立臺灣大學生化科技學系博士論文。
黃薰儀 (2019)。探討 gamma-胺基丁酸對 VHL 基因剔除小鼠腎臟病與免疫調節的影響。國立臺灣大學生化科技學系博士論文。
陳駿威 (2023)。葉酸營養狀況對脂質代謝和慢性腎病變的影響之研究。國立臺灣大學生化科技學系博士論文。
衛生福利部國民健康署 (2022)。國民營養健康狀況變遷調查成果報告2017-2020年。
衛生福利部中央健康保險署 (2023)。2022 年全民健康保險醫療費用前二十大疾病。
Abdelmalek MF, Suzuki A, Guy C, Unalp‐Arida A, Colvin R, Johnson RJ, & Diehl AM. (2010). Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology, 51(6), 1961-1971. doi: 10.1002/hep.23535
Afsar B, Covic A, Ortiz A, Afsar RE, & Kanbay M. (2018). The future of IL-1 targeting in kidney disease. Drugs, 78(11), 1073-1083. doi: 10.1007/s40265-018-0942-2
Alam C, Kondo M, O’Connor DL, & Bendayan R. (2020). Clinical implications of folate transport in the central nervous system. Trends in Pharmacological Sciences, 41(5), 349-361. doi: 10.1016/j.tips.2020.02.004
Anders HJ, & Ryu M. (2011). Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney International, 80(9), 915-925. doi: 10.1038/ki.2011.217
Andres-Hernando A, Okamura K, Bhargava R, Kiekhaefer CM, Soranno D, Kirkbride-Romeo LA, Gil H, Altmann C, & Faubel S. (2017). Circulating IL-6 upregulates IL-10 production in splenic CD4+ T cells and limits acute kidney injury-induced lung inflammation. Kidney International, 91(5), 1057-1069. doi: 10.1016/j.kint.2016.12.014
Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Ortega-Lozano AJ, & Pedraza-Chaverri J. (2021). Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis. Free Radical Biology and Medicine, 172, 65-81. doi: 10.1016/j.freeradbiomed.2021.05.034
Bailey LB, Stover PJ, McNulty H, Fenech MF, Gregory JF, Mills JL, Pfeiffer CM, Fazili Z, Zhang M, Ueland PM, Molloy AM, Caudill AM, Shane B, Berry RJ, Bailey RL, HausmanDB, Raghavan R, & Raiten DJ. (2015). Biomarkers of nutrition for development—folate review. The Journal of Nutrition, 145(7), 1636S-1680S. doi: 10.3945/jn.114.206599
Balashova OA, Visina O, & Borodinsky LN. (2018). Folate action in nervous system development and disease. Developmental Neurobiology, 78(4), 391-402. doi: 10. 1002/dneu.22579
Bartley C, Brun T, Oberhauser L, Grimaldi M, Molica F, Kwak BR, Bosco D, Chanson M,& Maechler, P. (2019). Chronic fructose renders pancreatic β-cells hyper-responsive to glucose-stimulated insulin secretion through extracellular ATP signaling. American Journal of Physiology-Endocrinology and Metabolism, 317(1), E25-E41. doi: 10.1152/ajpendo.00456.2018
Bellomo R, Kellum JA, & Ronco C. (2012). Acute kidney injury. The Lancet, 380(9843), 756-766. doi: 10.1016/S0140-6736(11)61454-2
Bollée G, Dollinger C, Boutaud L, Guillemot D, Bensman A, Harambat J, Deteix P, Daudon M, Knebelmann B, & Ceballos-Picot I. (2010). Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. Journal of the American Society of Nephrology, 21(4), 679–688. doi: 10.1681/ASN.2009080808
Bradley JR. (2008). TNF‐mediated inflammatory disease. The Journal of Pathology, 214(2), 149-160. doi: 10.1002/path.2287
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, & Ruiz-Ortega M. (2021). Role of macrophages and related cytokines in kidney disease. Frontiers in Medicine, 8, 688060. doi: 10.3389/fmed.2021.688060
Chawla LS, Eggers PW, Star RA, & Kimmel PL. (2014). Acute kidney injury and chronic kidney disease as interconnected syndromes. New England Journal of Medicine, 371(1), 58-66. doi: 10.1056/NEJMra1214243
Cheng H, Zhou J, Sun Y, Zhan Q, & Zhang D. (2022). High fructose diet: A risk factor for immune system dysregulation. Human Immunology, 83(6), 538-546. doi: 10.1016/j.humimm.2022.03.007
Choi J, Choi MS, Jeon J, Moon J, Lee J, Kong E, LuciaSE, Hong S, Lee J, Lee EY, & Kim P. (2023). In vivo longitudinal 920 nm two-photon intravital kidney imaging of a dynamic 2, 8-DHA crystal formation and tubular deterioration in the adenine-induced chronic kidney disease mouse model. Biomedical Optics Express, 14(4), 1647-1658. doi: 10.1364/BOE.485187.
Dai C, Fei Y, Li J, Shi Y, & Yang X. (2021). A novel review of homocysteine and pregnancy complications. Biomed Research International, 2021(1), 6652231. doi: 10.1155/2021/6652231
De‐Regil LM, Peña‐Rosas JP, Fernández‐Gaxiola AC, & Rayco‐Solon P. (2015). Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database of Systematic Reviews, (12). doi: 10.1002/14651858.CD007950.pub2
Donnelly S. (2001). Why is erythropoietin made in the kidney? The kidney functions as a critmeter. American Journal of Kidney Diseases, 38(2), 415-425. doi: 10.1053/ajkd.2001.26111
Ducker GS, & Rabinowitz JD. (2017). One-carbon metabolism in health and disease. Cell metabolism, 25(1), 27-42. doi: 10.1016/j.cmet.2016.08.009
Duthie SJ. (2011). Epigenetic modifications and human pathologies: cancer and CVD. Proceedings of the Nutrition Society, 70(1), 47-56. doi: 10.1017/S0029665110003952
Dziadek K, Kopeć A, Piątkowska E, & Leszczyńska T. (2019). High-fructose diet-induced metabolic disorders were counteracted by the intake of fruit and leaves of sweet cherry in wistar rats. Nutrients, 11(11), 2638. doi: 10.3390/nu11112638
Ebara S. (2017). Nutritional role of folate. Congenital Anomalies, 57(5), 138-141. doi: 10.1111/cga.12233
Fatima N, Patel S, & Hussain T. (2021). Angiotensin AT2 receptor is anti-inflammatory and reno-protective in lipopolysaccharide mice model: role of IL-10. Frontiers in Pharmacology, 12, 600163. doi: 10.3389/fphar.2021.600163
Feigerlová E, & Battaglia-Hsu SF. (2017). IL-6 signaling in diabetic nephropathy: from pathophysiology to therapeutic perspectives. Cytokine & Growth Factor Reviews, 37, 57-65. doi: 10.1016/j.cytogfr.2017.03.003
Gersch M S, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, Sautin YY, Johnson RJ, & Nakagawa, T. (2007). Fructose, but not dextrose, accelerates the progression of chronic kidney disease. American Journal of Physiology Renal Physiology, 293(4), F1256-F1261. doi: 10.1152/ajprenal.00181.2007
Griffin BR, Faubel S, & Edelstein CL. (2019). Biomarkers of drug-induced kidney toxicity. Therapeutic Drug Monitoring, 41(2), 213-226. doi: 10.1097/FTD.0000000000000589
Gu YY, Liu XS, Huang XR, Yu XQ, & Lan HY. (2020). TGF-β in renal fibrosis: triumphs and challenges. Future Medicinal Chemistry, 12(9), 853-866. doi: 10.4155/fmc-2020-0005
Gumede NM, Lembede BW, Brooksbank RL, Erlwanger KH, & Chivandi E. (2020). β-Sitosterol shows potential to protect against the development of high-fructose diet-induced metabolic dysfunction in female rats. Journal of Medicinal Food, 23(4), 367-374. doi: 10.1089/jmf.2019.0120
Gupta A, Puri V, Sharma R, & Puri S. (2012). Folic acid induces acute renal failure (ARF) by enhancing renal prooxidant state. Experimental and Toxicologic Pathology, 64(3), 225-232. doi: 10.1016/j.etp.2010.08.010
Hannou SA, Haslam DE, McKeown NM, & Herman MA. (2018). Fructose metabolism and metabolic disease. The Journal of Clinical Investigation, 128(2), 545-555. doi: 10.1172/JCI96702
Hayeeawaema F, Muangnil P, Jiangsakul J, Tipbunjong C, Huipao N, & Khuituan P. (2023). A novel model of adenine-induced chronic kidney disease-associated gastrointestinal dysfunction in mice: The gut-kidney axis. Saudi Journal of Biological Sciences, 30(6), 103660. doi: 10.1016/j.sjbs.2023.103660
Henao Agudelo JS, Baia LC, Ormanji MS, Santos AR, Machado JR, Saraiva CNO, Navis GJ, Borst MH, & Heilberg IP. (2018). Fish oil supplementation reduces inflammation but does not restore renal function and klotho expression in an adenine-induced CKD model. Nutrients, 10(9), 1283. doi: 10.3390/nu10091283
Inci MK, Park SH, Helsley RN, Attia SL, & Softic S. (2023). Fructose impairs fat oxidation: Implications for the mechanism of western diet-induced NAFLD. The Journal of Nutritional Biochemistry, 114, 109224. doi: 10.1016/j.jnutbio.2022.109224
InterAct consortium d. romaguera-bosch@ imperial. ac. uk. (2013). Consumption of sweet beverages and type 2 diabetes incidence in European adults: results from EPIC-InterAct. Diabetologia, 56, 1520-1530. doi: 10.1007/s00125-013-2899-8
Ismail S, Eljazzar S, & Ganji V. (2023). Intended and unintended benefits of folic acid fortification—a narrative review. Foods, 12(8), 1612. doi: 10.3390/foods120 81612
Jameel F, Phang M, Wood LG, & Garg ML. (2014). Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation. Lipids in Health and Disease, 13, 1-7. doi: 10.1186/1476-511X-13-195
Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, Liu W, Tesz GJ, Birnbaum MJ, & Rabinowitz, J. D. (2018). The small intestine converts dietary fructose into glucose and organic acids. Cell Metabolism, 27(2), 351-361. doi: 10.1016/j.cmet.2017.12.016
Jia T, Olauson H, Lindberg K, Amin R, Edvardsson K, Lindholm B, Andersson G, Wernerson A, Sabbagh Y, Schiavi S, & Larsson TE. (2013). A novel model of adenine-induced tubulointerstitial nephropathy in mice. BMC Nephrology, 14, 116. doi: 10.1186/1471-2369-14-116
Jiang M, Bai M, Lei J, Xie Y, Xu S, Jia Z, & Zhang A. (2020). Mitochondrial dysfunction and the AKI-to-CKD transition. American Journal of Physiology-Renal Physiology, 319(6), F1105-F1116. doi: 10.1152/ajprenal.00285.2020
Jin Y, Liu R, Xie J, Xiong H, He JC, & Chen N. (2013). Interleukin-10 deficiency aggravates kidney inflammation and fibrosis in the unilateral ureteral obstruction mouse model. Laboratory Investigation, 93(7), 801-811. doi: 10.1038/labinvest.2013.64
Jung S, Bae H, Song WS, & Jang C. (2022). Dietary fructose and fructose-induced pathologies. Annual Review of Nutrition, 42(1), 45-66. doi: 10.1146/annurev-nutr-062220-025831
Khiabani SA, Asgharzadeh M, & Kafil HS. (2023). Chronic kidney disease and gut microbiota. Heliyon, 9(8), e18991. doi: 10.1016/j.heliyon.2023.e18991
Klinkhammer BM, Djudjaj S, Kunter U, Palsson R, Edvardsson VO, Wiech T, Thorsteinsdottir M, Hardarson S, Foresto-Neto O, Mulay SR, Moeller MJ, Jahnen-Dechent W, Floege J, Anders H, & Boor P. (2020). Cellular and molecular mechanisms of kidney injury in 2, 8-dihydroxyadenine nephropathy. Journal of the American Society of Nephrology, 31(4), 799-816. doi: 10.1681/ASN.2019080827
Kolb AF, & Petrie L. (2013). Folate deficiency enhances the inflammatory response of macrophages. Molecular Immunology, 54(2), 164-172. doi: 10.1016/j.molimm.2012.11.012
Kumakura S, Sato E, Sekimoto A, Hashizume Y, Yamakage S, Miyazaki M, Ito S, Harigae H., & Takahashi N. (2021). Nicotinamide attenuates the progression of renal Failure in a mouse model of adenine-induced chronic kidney disease. Toxins, 13(1), 50. doi: 10.3390/toxins13010050
Lanaspa MA, Sanchez-Lozada LG, Choi YJ, Cicerchi C, Kanbay M, Roncal-Jimenez CA, Ishimoto T, Li N, Marek G, Duranay M, Schreiner G, Rodriguez-Iturbe B, Nakagawa T, Kang D, Sautin YY, & Johnson, R. J. (2012). Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and-independent fatty liver. Journal of Biological Chemistry, 287(48), 40732-40744. doi: 10.1074/jbc.M112.399899
Lemos DR, McMurdo M, Karaca G, Wilflingseder J, Leaf IA, Gupta N, Miyoshi T, Susa K, Johnson BG, Soliman K, Wang G, Morizane R, Bonventre JV, & Duffield JS. (2018). Interleukin-1β activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis. Journal of the American Society of Nephrology, 29(6), 1690-1705. doi: 10.1681/ASN.2017121283
Levey AS. (2022). Defining AKD: the spectrum of AKI, AKD, and CKD. Nephron, 146(3), 302-305. doi: 10.1159/000516647
Levi A, Cohen E, Levi M, Goldberg E, Garty M, & Krause I. (2014). Elevated serum homocysteine is a predictor of accelerated decline in renal function and chronic kidney disease: a historical prospective study. European Journal of Internal Medicine, 25(10), 951-955. doi: 10.1016/j.ejim.2014.10.014
Li J, Shingde M, Nankivell BJ, Tchan MC, Bose B, Chapman JR, Kable K, Kim, SK, Vucak-Dzumhur M, & Rangan GK. (2019). Adenine phosphoribosyltransferase deficiency: a potentially reversible cause of CKD. Kidney International Reports, 4(8), 1161. doi: 10.1016/j.ekir.2019.04.021
Li JM, Yu R, Zhang LP, Wen SY, Wang SJ, Zhang XY, Xu Q, & Kong LD. (2019). Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids. Microbiome, 7, 1-14. doi: 10.1186/s40168-019-0713-7
Li JT, Yang H, Lei MZ, Zhu WP, Su Y, Li KY, ZhuWY, Wang J, Zhang L, Qu J, Lv L, Lu HJ, Chen ZJ, Wang L, Yin M, & Lei QY. (2022). Dietary folate drives methionine metabolism to promote cancer development by stabilizing MAT IIA. Signal Transduction and Targeted Therapy, 7(1), 192. doi: 10.1038/s41392-022-01017-8
Li M, Chen J, Li YS, Feng YB, & Zeng QT. (2007). Folic acid reduces chemokine MCP-1 release and expression in rats with hyperhomocystinemia. Cardiovascular Pathology, 16(5), 305-309. doi: 10.1016/j.carpath.2007.03.005
Liu Y, Xu K, Xiang Y, Ma B, Li H, Li Y, Shi Y, Li Y, & Bai Y. (2024). Role of MCP-1 as an inflammatory biomarker in nephropathy. Frontiers in Immunology, 14, 1303076. doi: 10.3389/fimmu.2023.1303076
Liu Y. (2011). Cellular and molecular mechanisms of renal fibrosis. Nature Reviews Nephrology, 7(12), 684-696. doi: 10.1038/nrneph.2011.149
Luig M, Kluger MA, Goerke B, Meyer M, Nosko A, Yan I, Scheller J, Mittrücker HW, Rose-John S, Stahl RAK, Panzer U, & Steinmetz OM. (2015). Inflammation-induced IL-6 functions as a natural brake on macrophages and limits GN. Journal of the American Society of Nephrology, 26(7), 1597-1607. doi: 10.1681/ASN.2014060620
Lv LL, Tang PMK, Li CJ, You YK, Li J, Huang XR, Ni J, Feng M, Liu BC, & Lan HY. (2017). The pattern recognition receptor, Mincle, is essential for maintaining the M1 macrophage phenotype in acute renal inflammation. Kidney International, 91(3), 587-602. doi: 10.1016/j.kint.2016.10.020
Ma X, Nan F, Liang H, Shu P, Fan X, Song X, Hou Y, & Zhang D. (2022). Excessive intake of sugar: An accomplice of inflammation. Frontiers in Immunology, 13, 988481. doi: 10.3389/fimmu.2022.988481
Maffoni S, Giuseppe RD, Stanford FC, & Cena H. (2017). Folate status in women of childbearing age with obesity: a review. Nutrition Research Reviews, 30(2), 265-271. doi: 10.1017/S0954422417000142
Malik VS, & Hu FB. (2015). Fructose and cardiometabolic health: what the evidence from sugar-sweetened beverages tells us. Journal of the American College of Cardiology, 66(14), 1615-1624. doi: 10.1016/j.jacc.2015.08.025
Martinelli RP, Rayego-Mateos S, Alique M, Márquez-Expósito L, Tejedor-Santamaria L, Ortiz A, González-Parra E, & Ruiz-Ortega M. (2023). Vitamin D, cellular senescence and chronic kidney diseases: what is missing in the equation? Nutrients, 15(6), 1349. doi: 10.3390/nu15061349
Menezo Y, Elder K, Clement A, & Clement P. (2022). Folic acid, folinic acid, 5 methyl tetrahydrofolate supplementation for mutations that affect epigenesis through the folate and one-carbon cycles. Biomolecules, 12(2), 197. doi: 10.3390/biom12020197
Meng XM, Nikolic-Paterson DJ, & Lan HY. (2014). Inflammatory processes in renal fibrosis. Nature Reviews Nephrology, 10(9), 493-503. doi: 10.1038/nrneph.2014.14
Meng XM, Nikolic-Paterson DJ, & Lan HY. (2016). TGF-β: the master regulator of fibrosis. Nature Reviews Nephrology, 12(6), 325-338. doi: 10.1038/nrneph.2016.48
Meng XM, WangS, Huang XR, Yang C, Xiao J, Zhang Y, To KF, Nikolic-Paterson DJ, & Lan HY. (2016). Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death & Disease, 7(12), e2495. doi: 10.1038/cddis.2016.402
Mikami D, Kobayashi M, Uwada J, Yazawa T, Kamiyama K, Nishimori K, Nishikawa Y, Nishikawa S, Yokoi S, Kimura H, Kimura I, Taniguchi T, & Iwano M. (2020). Short-chain fatty acid mitigates adenine-induced chronic kidney disease via FFA2 and FFA3 pathways. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1865(6), 158666. doi: 10.1016/j.bbalip.2020.158666
Morano AE, Dorneles GP, Peres A, & Lira FS. (2020). The role of glucose homeostasis on immune function in response to exercise: The impact of low or higher energetic conditions. Journal of Cellular Physiology, 235(4), 3169-3188. doi: 10.1002/jcp.29228
Mulay SR, Shi C, Ma X, & Anders HJ. (2018). Novel insights into crystal-induced kidney injury. Kidney Diseases, 4(2), 49-57. doi: 10.1159/000487671
Nakagawa T, Johnson RJ, Andres-Hernando A, Roncal-Jimenez C, Sanchez-Lozada LG, Tolan DR, & Lanaspa MA. (2020). Fructose production and metabolism in the kidney. Journal of the American Society of Nephrology, 31(5), 898-906. doi: 10.1681/ASN.2019101015
Ninomiya T, Kiyohara Y, Kubo M, Tanizaki Y, Tanaka K, Okubo K, Nakamura H, Hata J, Oishi Y, Kato I, Hirakata H, & Iida M. (2004). Hyperhomocysteinemia and the development of chronic kidney disease in a general population: the Hisayama study. American Journal of Kidney Diseases, 44(3), 437-445. doi: 10.1053/j.ajkd.2004.05.024
Omata N., Yasutomi M., Yamada A., Iwasaki H., Mayumi M, & Ohshima, Y. (2002). Monocyte chemoattractant protein-1 selectively inhibits the acquisition of CD40 ligand-dependent IL-12-producing capacity of monocyte-derived dendritic cells and modulates Th1 immune response. The Journal of Immunology, 169(9), 4861-4866. doi: 10.4049/jimmunol.169.9.4861
Ouyang W, & O’Garra A. (2019). IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity, 50(4), 871-891. doi: 10.1016/j.immuni.2019.03.020
Oxburgh L. (2018). Kidney nephron determination. Annual Review of Cell and Developmental Biology, 34, 427-450. doi: 10.1146/annurev-cellbio-100616-060647
Park SH, Helsley RN, Fadhul T, Willoughby JL, Noetzli L, Tu HC, Solheim MH, Fujisaka S, Pan H, Dreyfuss JM, Bons J, Rose J, King CD, Schilling B, Lusis AJ, Pan C, Gupta M, Kulkarni RN, Fitzgerald K, Kern PA, & Softic S. (2023). Fructose induced KHK-C can increase ER stress independent of its effect on lipogenesis to drive liver disease in diet-induced and genetic models of NAFLD. Metabolism, 145, 155591. doi: 10.1016/j.metabol.2023.155591
Pokharel SM, Chiok K, Shil NK, Mohanty I, & Bose S. (2021). Tumor Necrosis Factor-alpha utilizes MAPK/NFκB pathways to induce cholesterol-25 hydroxylase for amplifying pro-inflammatory response via 25-hydroxycholesterol-integrin-FAK pathway. Plos One, 16(9), e0257576. doi: 10.1371/journal.pone.0257576
Porto ML, Lírio LM, Dias AT, Batista AT, Campagnaro BP, Mill JG, Meyrelles SS, & Baldo MP. (2015). Increased oxidative stress and apoptosis in peripheral blood mononuclear cells of fructose-fed rats. Toxicology in Vitro, 29(8), 1977-1981. doi: 10.1016/j.tiv.2015.08.006
Qin X, Li Y, Yuan H, Xie D, Tang G, Wang B, Wang X, Xu X, Xu X, & Hou, F. (2015). Relationship of MTHFR gene 677C→ T polymorphism, homocysteine, and estimated glomerular filtration rate levels with the risk of new-onset diabetes. Medicine, 94(7), e563. doi: 10.1097/MD.0000000000000563
Rayego-Mateos S, Marquez-Expósito L, Rodrigues-Diez R, Sanz AB, Guiteras R, Doladé N, Rubio-Soto I, Manonelles A, Codina S, Ortiz A, Cruzado JM, Ruiz-Ortega M, & Sola A. (2022). Molecular mechanisms of kidney injury and repair. International Journal of Molecular Sciences, 23(3), 1542. doi: 10.3390/ijms 23031542
Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents:final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition. (1993) 123:1939-51.
Rivera-Valdés JJ, Garcia-Banuelos J, Salazar-Montes A, Garcia-Benavides L, Rosales-Dominguez A, Armendariz-Borunda J, & Sandoval-Rodriguez A. (2017). Human adipose derived stem cells regress fibrosis in a chronic renal fibrotic model induced by adenine. Plos One, 12(12), e0187907. doi: 10.1371/journal.pone.0187907
Ross SH, & Cantrell DA. (2018). Signaling and function of interleukin-2 in T lymphocytes. Annual Review of Immunology, 36(1), 411-433. doi: 10.1146/ annurev-immunol-042617-053352
Sakai K, Nozaki Y, Murao Y, Yano T, Ri J, Niki K, Kinoshita K, Funauchi M, Matsumura I, & Matsumura, I. (2019). Protective effect and mechanism of IL-10 on renal ischemia-reperfusion injury. Laboratory Investigation, 99(5), 671-683. doi: 10.1038/s41374-018-0162-0
Samblas M, Martínez JA, & Milagro F. (2018). Folic acid improves the inflammatory response in LPS‐activated THP‐1 macrophages. Mediators of Inflammation, 2018(1), 1312626. doi: 10.1155/2018/1312626
Samodelov SL, Gai Z, Kullak-Ublick GA, & Visentin M. (2019). Renal reabsorption of folates: pharmacological and toxicological snapshots. Nutrients, 11(10), 2353. doi: 10.3390/nu11102353
Santana AC, Degaspari S, Catanozi S, Dellê H, Lima L, Silva C, Blanco P, Solez K, Scavone C, & Noronha IL. (2013). Thalidomide suppresses inflammation in adenine-induced CKD with uraemia in mice. Nephrology Dialysis Transplantation, 28(5), 1140-1149. doi: 10.1093/ndt/gfs569
Scaglione F, & Panzavolta G. (2014). Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica, 44(5), 480-488. doi: 10.3109/00498254.2013.845705
Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. (2011). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta, 1813(5):878-88. doi: 10.1016/j.bbamcr.2011.01.034
Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC, & Hu FB. (2004). Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA, 292(8), 927-934. doi: 10.1001/jama.292.8.927
Shoham DA, Durazo-Arvizu R, Kramer H, Luke A, Vupputuri S, Kshirsagar A, & Cooper RS. (2008). Sugary soda consumption and albuminuria: results from the National Health and Nutrition Examination Survey, 1999–2004. Plos One, 3(10), e3431. doi: 10.1371/journal.pone.0003431
Singh S, Anshita D, & Ravichandiran V. (2021). MCP-1: Function, regulation, and involvement in disease. International Immunopharmacology, 101, 107598. doi: 10.1016/j.intimp.2021.107598
Socha DS, DeSouza SI, Flagg A, Sekeres M, & Rogers HJ. (2020). Severe megaloblastic anemia: Vitamin deficiency and other causes. Cleveland Clinic Journal of Medicine, 87(3), 153-164. doi: 10.3949/ccjm.87a.19072
Solini A, Santini E, & Ferrannini E. (2006). Effect of short-term folic acid supplementation on insulin sensitivity and inflammatory markers in overweight subjects. International Journal of Obesity, 30(8), 1197-1202. doi: 10.1038/sj.ijo. 0803265
Souza SD, Obeid W, Hernandez J, Hu D, Wen Y, Moledina DG, Albert A, Gregg A, Wheeler A, Philbrook HT, & Parikh CR. (2024). The development of lateral flow devices for urinary biomarkers to assess kidney health. Scientific Reports, 14(1), 8516. doi: 10.1038/s41598-024-59104-5
Speer T, Dimmeler S, Schunk SJ, Fliser D, & Ridker PM. (2022). Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nature Reviews Nephrology, 18(12), 762-778. doi: 10.1038/s41581-022-00621-9
Strobbe S, & Straeten DVD. (2017). Folate biofortification in food crops. Current Opinion in Biotechnology, 44, 202-211. doi: 10.1016/j.copbio.2016.12.003
Sureshbabu A, Muhsin SA, & Choi ME. (2016). TGF-β signaling in the kidney: profibrotic and protective effects. American Journal of Physiology-Renal Physiology, 310(7), F596-F606. doi: 10.1152/ajprenal.00365.2015
Taguchi S, Azushima K, Yamaji T, Urate S, Suzuki T, Abe E, Tanaka S, Tsukamoto S, Kamimura D, Kinguchi S, Yamashita A, Wakui H, & Tamura, K. (2021). Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy. Scientific Reports, 11(1), 23587. doi: 10.1038/s41598-021-02864-1
Tamura M, Aizawa R, Hori M, & Ozaki H. (2009). Progressive renal dysfunction and macrophage infiltration in interstitial fibrosis in an adenine-induced tubulointerstitial nephritis mouse model. Histochemistry and Cell Biology, 131, 483-490. doi: 10.1007/s00418-009-0557-5
Tan RZ, ZhongX, Li JC, Zhang YW, Yan Y, Liao Y, Wen D, Diao H, Wang L, & Shen, HC. (2019). An optimized 5/6 nephrectomy mouse model based on unilateral kidney ligation and its application in renal fibrosis research. Renal Failure, 41(1), 555-566. doi: 10.1080/0886022X.2019.1627220
Tang JS, Cait A, White RM, Arabshahi HJ, O’Sullivan D, & Gasser O. (2022). MR1-dependence of unmetabolized folic acid side-effects. Frontiers in Immunology, 13, 946713. doi: 10.3389/fimmu.2022.946713
Vercalsteren E, Vranckx C, Corbeels K, Van BV, Velde GV, Lijnen R, & Scroyen I. (2021). Carbohydrates to prevent and treat obesity in a murine model of diet-induced obesity. Obesity Facts, 14(4), 370-381. doi: 10.1159/000516630
Vidmar M., Grželj J, Mlinarič-Raščan I, Geršak K, & Dolenc MS. (2019). Medicines associated with folate–homocysteine–methionine pathway disruption. Archives of Toxicology, 93, 227-251. doi: 10.1007/s00204-018-2364-z
Wang B, Yang LN, Yang LT, Liang Y, Guo F, Fu P, & Ma L. (2023). Fisetin ameliorates fibrotic kidney disease in mice via inhibiting ACSL4-mediated tubular ferroptosis. Acta Pharmacologica Sinica, 45(1), 150-165. doi: 10.1038/s41401-023-01156-w
Wang L, Tan X, Wang H, Wang Q, Huang P, Li Y, Li Jianzhong, Huang Jing, Yang Huansheng, & Yin, Y. (2021). Effects of varying dietary folic acid during weaning stress of piglets. Animal Nutrition, 7(1), 101-110. doi: 10.1016/j.aninu.2020.12.002
Wang W, Huang XR, Li AG, Liu F, Li JH, Truong LD, Wang XJ, & Lan HY. (2005). Signaling mechanism of TGF-β1 in prevention of renal inflammation: role of Smad7. Journal of the American Society of Nephrology, 16(5), 1371-1383. doi: 10.1681/ASN.2004121070
Wei W, Zhao Y, Zhang Y, Jin H, & Shou S. (2022). The role of IL-10 in kidney disease. International Immunopharmacology, 108, 108917. doi: 10.1016/j.intimp.2022. 108917
Wen Y, Lu X, Privratsky JR, Ren J, Ali S, Yang B, Rudemiller NP, Zhang J, Nedospasov SA, & Crowley SD. (2024). TNF-α from the proximal nephron exacerbates aristolochic acid nephropathy. Kidney, 360, 10-34067. doi: 10.34067/KID.0000000000000314
Yan LJ. (2021). Folic acid‐induced animal model of kidney disease. Animal Models and Experimental Medicine, 4(4), 329-342. doi: 10.1002/ame2.12194
Yang Q, Su S, Luo N, & Cao G. (2024). Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Renal Failure, 46(1), 2336128. doi: 10.1080/0886022X.2024.2336128
Yi H, Huang C, Shi Y, Cao Q, Chen J, Chen XM, & Pollock CA. (2021). Metformin attenuates renal fibrosis in a mouse model of adenine-induced renal injury through inhibiting TGF-β1 signaling pathways. Frontiers in Cell and Developmental Biology, 9, 603802. doi: 10.3389/fcell.2021.603802
Zaaba NE, Al-Salam S, Beegam S, Elzaki O, Yasin J, & Nemmar A. (2023). Catalpol attenuates oxidative stress and inflammation via mechanisms involving sirtuin-1 activation and NF-κB inhibition in experimentally-induced chronic kidney disease. Nutrients, 15(1), 237. doi: 10.3390/nu15010237
Zaidan M, Palsson R, Merieau E, Cornec-Le GE, Garstka A, Maggiore U, Deteix P, Battista M, Gagné E, Ceballos-Picot I, Huyen JDV, Legendre C, Daudon M, Edvardsson VO, & Knebelmann B. (2014). Recurrent 2, 8-dihydroxyadenine nephropathy: a rare but preventable cause of renal allograft failure. American Journal of Transplantation, 14(11), 2623-2632. doi: 10.1111/ajt.12926
Zhang C, Li L, Zhang Y, & Zeng C. (2020). Recent advances in fructose intake and risk of hyperuricemia. Biomedicine & Pharmacotherapy, 131, 110795. doi: 10.1016/j. biopha.2020.110795
Zhang R, Ma J, Xia M, Zhu H, & Ling W. (2004). Mild hyperhomocysteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes. The Journal of Nutrition, 134(4), 825-830. doi: 10.1093/jn/134.4.825
Zhang WR, & Parikh CR. (2019). Biomarkers of acute and chronic kidney disease. Annual Review of Physiology, 81(1), 309-333. doi: 10.1146/annurev-physiol-020518-114605
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93771-
dc.description.abstract國人末期腎臟病的盛行率是世界第一,且罹患率逐年上升。現代生活型態的外食比例高,傾向高油脂、含糖飲料與少蔬果的攝食習慣,易導致肥胖與葉酸攝取不足。本研究室先前研究指出,葉酸缺乏會促進高油高果糖飲食小鼠的發炎介質分泌,進而加劇慢性腎病變。因此,本研究欲探討葉酸不足與果糖對腺嘌呤誘發腎損傷小鼠的免疫反應之影響。
實驗一以 7 週齡 C57BL/6 小鼠分 4 組:正常飼料組 (Ctrl)、高果糖組 (Hfru(ade))、高果糖+腺嘌呤組(Hfru+ade)、高果糖葉酸不足+腺嘌呤組 (Hfru-f+ade)。22 週齡時,以 0.1% (w/w) 腺嘌呤加入飼料誘發小鼠腎損傷共 22 週。44 週齡時犧牲小鼠,分析相關指標。結果顯示,腺嘌呤誘發組 (+ade) 的免疫細胞浸潤、腎纖維化面積、腎臟 MCP-1 和TGF-β 的含量,均顯著較 Ctrl 組高,確認腺嘌呤誘發腎損傷和腎炎。Hfru(ade) 組比 Ctrl 組腎臟有顯著較高的 MCP-1 和 TGF-β、顯著較低的 IL-10,顯示高果糖可能不利於腎發炎的調控。Hfru-f+ade 組脾臟細胞 TNF-α、IL-6、IL-2 的分泌量顯著高於 Hfru+ade 組。此外,脾臟 IL-2 與腎臟 MCP-1、TGF-β 呈正相關,腎臟 MCP-1 與 TGF-β亦呈正相關,可能葉酸不足使 T 細胞出現代償性反應,促進脾臟 IL-2 分泌,增加腎臟促發炎 MCP-1 分泌並促進具抗發炎功能的 TGF-β 分泌,然而,過多的 TGF-β 則促進腎臟走向纖維化。
實驗二以 8 週齡 C57BL/6 小鼠分 6 組: Ctrl、Hfru、Ctrl +ade、Hfru+ade、高果糖低葉酸+腺嘌呤組 (Hfru-f+ade)、高果糖葉酸補充+腺嘌呤組 (Hfru+f10+ade)。18 週齡時,以 0.1~0.2% (w/w) 腺嘌呤誘發小鼠腎損傷共 7 週,於 25 週齡時犧牲小鼠,分析相關指標。結果顯示,腺嘌呤誘發組 (+ade) 的免疫細胞浸潤、腎纖維化面積、腎臟 MCP-1 和 TGF-β 的含量,均顯著較 Ctrl 組高,確認腺嘌呤誘發腎損傷和腎炎。Hfru 組與 Ctrl 組的腎臟和脾臟細胞激素分泌量均無顯著差異,可能是餵予高果糖飲食的時間不夠久所導致。Ctrl+ade 組比 Ctrl 組腎臟有顯著較高的 MCP-1、IL-6 和 TGF-β、顯著較低的IL-1β 和 IL-10,顯示腺嘌呤會促進腎臟發炎,降低抗發炎能力,導致腎臟纖維化。Hfru-f+ade 組脾臟重量和細胞數目為組間最低,TNF-α、IL-6、IL-10、IFN-γ 和 IL-2分泌量均低於 Hfru+ade 組,顯示較高劑量的腺嘌呤可能會降低攝取低葉酸飲食小鼠的免疫反應。Hfru+f10+ade 組比 Hfru+ade 組腎臟有顯著較低MCP-1、趨勢性較低 TNF-α、趨勢性較高 IL-6和IL-10,顯示葉酸補充有利於抗發炎細胞激素的分泌和調控發炎反應。
綜合上述結果,葉酸不足可能使體內處於較高的發炎傾向,在誘發腎損傷下更易引起腎臟發炎和纖維化,加劇小鼠腎損傷。
zh_TW
dc.description.abstractTaiwan has the highest global prevalence of end-stage renal disease (ESRD), with an increasing incidence annually. Western diet and sweetened beverages may result in obesity and inadequate folate intake. Previous studies have demonstrated that folate deficiency promotes the secretion of inflammatory mediators and exacerbates chronic nephropathy in high-fat high-fructose diet-fed mice. Therefore, this study aims to investigate the effects of fructose and folate on immune response in adenine-induced kidney injury murine model.
In experiment 1, 7-week-old C57BL/6 mice were divided into four groups: AIN-93 diet (Ctrl), high-fructose diet (Hfru(ade)), Hfru with adenine (Hfru+ade), Hfru+ade with 0.2 mg/kg folate (Hfru-f+ade). Mice were treated with 0.1% (w/w) adenine on 22-week-old to induce kidney injury, and were sacrificed on 44-week-old. Adenine-induced groups significantly increased immune cell infiltration, renal fibrosis area, the secretion of renal MCP-1 and TGF-β compared to Ctrl, confirming adenine-induced kidney injury and nephritis. Hfru(ade) group showed significantly increased secretion of renal MCP-1 and TGF-β, but decreased IL-10 level, indicating high fructose is detrimental to renal inflammation regulation. Hfru-f+ade group increased secretion of TNF-α, IL-6, and IL-2 in splenocytes compared to Hfru+ade. In addition, splenic IL-2 level was positively correlated with renal MCP-1 and TGF-β, while renal TGF-β level was positively correlated with MCP-1. It shows that folate insufficiency triggers a compensatory T cell response, resulting in secretion of IL-2 in the spleen and pro-inflammatory MCP-1 in the kidney, and promoting the secretion of TGF-β. However, excessive TGF-β can lead to renal fibrosis.
In experiment 2, 8-week-old C57BL/6 mice were divided into six groups: Ctrl, Hfru, Ctrl+ade, Hfru+ade, Hfru+ade with 0.2 mg/kg folate (Hfru-f+ade), Hfru+ade with 20 mg/kg folate (Hfru+f10+ade). Mice were treated with 0.1%-0.2% (w/w) adenine on 18-week-old and were sacrificed on 25-week-old. Adenine-induced groups significantly increased immune cell infiltration, renal fibrosis area, the secretion of renal MCP-1 and TGF-β compared to Ctrl, confirming adenine-induced kidney injury and nephritis. The Hfru group did not significantly differ from Ctrl, possibly due to insufficient duration. Ctrl+ade group showed increased secretion of renal MCP-1, IL-6 and TGF-β, but decreased IL-1β and IL-10 levels to Ctrl group, indicating that adenine can promote kidney inflammation and reduce anti-inflammatory ability, further leading to renal fibrosis. The spleen weight and cell number of the mice in Hfru-f+ade group were the lowest among the groups, and the secretion of TNF-α, IL-6, IL-10, IFN-γ and IL-2 were all lower than those in the Hfru+ade group, showing higher doses of adenine may reduce immune responses in mice fed a low-folate diet. Compared with Hfru+ade group, Hfru+f10+ade group had lower MCP-1, trending lower TNF-α, and higher IL-6 and IL-10, indicating folate supplement stimulates anti-inflammatory cytokine secretion to regulate inflammatory responses.
Based on the above results, folate insufficiency may predispose to a pro-inflammatory state, and enhance renal inflammation and fibrosis during kidney injury, thereby worsening kidney damage in mice.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T17:14:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T17:14:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
摘要 iii
Abstract v
目次 I
圖次 IV
表次 V
縮寫對照表 VI
第一章 文獻回顧 1
第一節 葉酸 1
一、葉酸簡介 1
二、葉酸的吸收與代謝 2
三、葉酸的生理功能 2
四、葉酸與疾病 4
五、葉酸與免疫反應 6
六、葉酸營養狀況 7
第二節 果糖 8
一、果糖簡介 8
二、果糖吸收與代謝 8
三、果糖與疾病 9
四、果糖與免疫反應 11
第三節 腎臟 12
一、腎臟構造與功能 12
二、腎臟疾病 13
三、腎臟發炎反應 15
四、腎臟相關細胞激素 16
第四節 腺嘌呤誘發腎損傷動物模式 20
一、腎損傷動物模式 20
二、腺嘌呤誘發腎損傷模式之建立 21
三、腺嘌呤誘發腎損傷模式之應用 22
四、2,8-DHA 晶體與發炎反應 22
第五節 研究動機與目的 23
第二章 實驗設計與材料方法 25
第一節 實驗設計 25
一、實驗一:葉酸不足對腺嘌呤誘發腎損傷小鼠免疫反應的影響 25
二、實驗二:葉酸與果糖對腺嘌呤誘發腎損傷小鼠免疫反應的影響 25
第二節 動物飼養 26
一、建立腺嘌呤誘發腎損傷小鼠模式 26
第三節 實驗方法 29
一、血清 29
(一) 採集方法 29
(二) 血清葉酸濃度測定 29
(三) 血液尿素氮測定 30
二、尿液 31
(一) 採集方法 31
(二) 尿液肌酸酐測定 31
(三) 尿蛋白測定 31
三、腎臟 32
(一) 腎臟組織均質 32
(二) 腎臟組織蛋白質含量測定 32
(三) 腎臟細胞激素含量分析 33
(四) 腎臟 mRNA 表現量分析 35
(五) 腎臟組織切片染色 38
四、脾臟 38
(一) 脾臟淋巴細胞分離與培養 38
(二) 免疫細胞表型分析 40
(三) 脾臟細胞激素含量分析 42
五、肝臟 42
(一) 肝臟組織均質 42
(二) 肝臟葉酸含量測定 43
第四節、統計分析 44
第三章 實驗結果 45
第一節 葉酸不足對腺嘌呤誘發腎損傷小鼠之免疫反應影響 45
一、葉酸不足與腺嘌呤對小鼠生長、腎功能及血清葉酸濃度之影響 45
(一) 因體重劇降及血清 BUN 未增而調整飲食及腺嘌呤劑量 45
(二) 攝食熱量及血清葉酸含量 47
(三) 飲水量 48
(四) 組織器官重 49
二、葉酸不足與腺嘌呤對小鼠腎臟之影響 50
(一) 腎臟外觀顏色及剖面圖 50
(二) 腎臟 H&E 染色 51
(三) 腎臟纖維化程度 52
三、葉酸不足對腎損傷小鼠之腎臟免疫反應影響 53
四、葉酸不足對腎損傷小鼠之脾臟免疫反應影響 54
五、葉酸不足對腎損傷小鼠之脾臟 IL-2 與腎臟細胞激素含量之相關性 57
第二節 葉酸與果糖對腺嘌呤誘發腎損傷小鼠之免疫反應影響 58
一、葉酸與果糖對腺嘌呤誘發小鼠生長、葉酸濃度及腎功能之影響 58
(一) 因體重劇降而調整飲食及腺嘌呤劑量 58
(二) 低葉酸或葉酸補充對小鼠肝臟重量及葉酸含量之影響 61
(三) 組織器官重 63
二、葉酸與果糖對腎損傷小鼠之脾臟免疫反應影響 64
(一) 脾臟調節型 T 細胞 64
(二) 脾臟細胞激素含量 65
三、葉酸與果糖對腎損傷小鼠腎臟之影響 68
(一) 腎臟外觀顏色 68
(二) 葉酸與果糖對腎損傷小鼠之腎臟免疫反應影響 69
(三) 腎臟 H&E 染色結果 71
(四) 腎臟纖維化基因表現量 72
(五) 腎臟纖維化程度 73
第四章 綜合討論與結論 75
第一節 綜合討論 75
一、葉酸營養狀況對小鼠血清及肝臟葉酸含量的影響 75
二、葉酸不足降低小鼠體重及攝食量的可能原因 76
三、腺嘌呤降低小鼠體重及攝食量的可能原因 76
四、以腺嘌呤誘發小鼠腎損傷的可行性 77
五、高果糖飲食是否會引起小鼠肥胖 78
六、腎臟 TGF-β 分泌量與纖維化基因表現量的關係 79
七、葉酸與果糖對腺嘌呤誘發腎損傷小鼠的腎臟細胞激素分泌量之影響 80
八、葉酸與果糖對腺嘌呤誘發腎損傷小鼠的脾臟細胞激素分泌量之影響 83
九、小鼠犧牲指標之選用 85
第二節 結論 87
參考文獻 89
-
dc.language.isozh_TW-
dc.subject果糖zh_TW
dc.subject葉酸zh_TW
dc.subject免疫反應zh_TW
dc.subject腎損傷zh_TW
dc.subject腺嘌呤zh_TW
dc.subjectadenineen
dc.subjectkidney injuryen
dc.subjectimmune responseen
dc.subjectfructoseen
dc.subjectfolateen
dc.title葉酸與果糖對腺嘌呤誘發腎損傷小鼠免疫反應的影響zh_TW
dc.titleEffects of folate and fructose on immune response in adenine-induced kidney injury murine modelen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee江孟燦;許瑞芬;謝佳倩;洪永瀚zh_TW
dc.contributor.oralexamcommitteeMeng-Tsan Chiang;Rwei-Fen S. Huang;Chia-Chien Hsieh;Yong-Han Hongen
dc.subject.keyword葉酸,果糖,腺嘌呤,腎損傷,免疫反應,zh_TW
dc.subject.keywordfolate,fructose,adenine,kidney injury,immune response,en
dc.relation.page101-
dc.identifier.doi10.6342/NTU202402698-
dc.rights.note未授權-
dc.date.accepted2024-08-05-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
11.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved