Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 統計與數據科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93770
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丘政民zh_TW
dc.contributor.advisorJENG-MIN CHIOUen
dc.contributor.author鄭君淑zh_TW
dc.contributor.authorJYUN-SHU JHENGen
dc.date.accessioned2024-08-07T17:14:25Z-
dc.date.available2024-08-08-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citationBasellini, U., Camarda, C. G., and Booth, H. (2023). Thirty years on: A review of the lee–carter method for forecasting mortality. International Journal of Forecasting, 39(3):1033–1049.
Booth, H., Maindonald, J., and Smith, L. (2002). Applying lee-carter under conditions of variable mortality decline. Population studies, 56(3):325–336.
Booth, H. and Tickle, L. (2008). Mortality modelling and forecasting: A review of methods. Annals of actuarial science, 3(12):3–43
Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications. Number 66 in Monographs on statistics and applied probability series. Chapman & Hall, London [u.a.]
Hilton, J., Dodd, E., Forster, J. J., and Smith, P. W. (2019). Projecting uk mortality by using bayesian generalized additive models. Journal of the Royal Statistical Society Series C: Applied Statistics, 68(1):29–49
Huang, J. Z., Shen, H., and Buja, A. (2009). The analysis of two way functional data using twoway regularized singular value decompositions. Journal of the American Statistical Association, 104(488):1609–1620.
Hyndman, R. J. and Ullah, M. S. (2007). Robust forecasting of mortality and fertility rates: A functional data approach. Computational Statistics & Data Analysis, 51(10):4942–4956.
Lee, R. D. and Carter, L. R. (1992). Modeling and forecasting us mortality. Journal of the American statistical association, 87(419):659–671.
Levantesi, S. and Pizzorusso, V. (2019). Application of machine learning to mortality modeling and forecasting. Risks, 7(1):26.
Li, N. and Lee, R. (2005). Coherent mortality forecasts for a group of populations: An extension of the lee-carter method. Demography, 42:575–594.
Liu, X. and Yu, H. (2011). Assessing and extending the lee-carter model for long-term mortality prediction. In Living to 100 Symposium.
Nigri, A., Levantesi, S., Marino, M., Scognamiglio, S., and Perla, F. (2019). A deep learning integrated lee–carter model. Risks, 7(1):33.
Pedroza, C. (2006). A bayesian forecasting model: predicting us male mortality. Biostatistics, 7(4):530–550.
Reinsch, C. H. (1967). Smoothing by spline functions. Numerische mathematik, 10(3):177–183
Renshaw, A. E. and Haberman, S. (2006). A cohort based extension to the lee–carter model for mortality reduction factors. Insurance: Mathematics and economics, 38(3):556–570
Shang, H. L., Booth, H., and Hyndman, R. J. (2011). Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods. Demographic Research, 25:173–214.
Shang, H. L., Smith, P. W., Bijak, J., and Wiśniowski, A. (2016). A multilevel functional data method for forecasting population, with an application to the united kingdom. International Journal of Forecasting, 32(3):629–649.
Tuljapurkar, S., Li, N., and Boe, C. (2000). A universal pattern of mortality decline in the g7 countries. Nature, 405(6788):789–792.
Wilmoth, J. R. (1993). Computational methods for fitting and extrapolating the lee-carter model of mortality change.
Yang, W., Müller, H.G., and Stadtmüller, U. (2011). Functional singular component analysis. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(3):303–324
Yao, F., Müller, H.G., and Wang, J.L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American statistical association, 100(470):577–590.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93770-
dc.description.abstract隨著人口結構的變化和社會老齡化的加劇,死亡率的建模和預測越來越受到關注,特別是在保險領域,準確預測死亡率有助於保險公司有效制定保單。在這項研究中,我們從Lee-Carter 模型出發,將原始的奇異值分解拓展到函數型奇異值分解,進而得到與時間和年齡有關的一對奇異函數,接著我們根據年份相關的奇異函數進行局部線性外推做預測,並將其預測表現與Lee-Carter模型進行比較。在實際數據分析中,我們使用了台灣的死亡率數據,結果我們的預測結果比Lee-Carter模型更準確,在模擬實驗亦得到相同的結論。zh_TW
dc.description.abstractWith demographic changes and society aging, the modeling and prediction of mortality rates have garnered increasing attention, especially in the insurance sector. Accurate mortality forecasts assist insurance companies in formulating policies effectively. In this study, we begin with the Lee-Carter model and extend the original singular value decomposition to a functional version, yielding a pair of time-specific and age-specific singular functions. Subsequently, we conduct local linear extrapolation based on these year-specific singular functions for forecasting, comparing their performance with that of the Lee-Carter model. In our real data analysis, we use mortality data from Taiwan to demonstrate that our forecasting performance is more accurate than that of the Lee-Carter model. This conclusion is further supported by our simulation study.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T17:14:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T17:14:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract iii
Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Related methodology 5
2.1 Lee carter model 5
2.2 Hyndman–Ullah model 7
Chapter 3 Method 9
3.1 Functional singular component analysis 9
3.1.1 Estimation 11
3.1.1.1 Estimation of mean function 11
3.1.1.2 Estimation of cross covariance function 11
3.1.2 Estimation of singular elements 12
3.2 Regularized singular value decomposition 12
3.3 Local Linear Extrapolation 14
Chapter 4 Mortality data application 17
4.1 Historical data 17
4.2 Model fitting 18
4.3 Forecasting 21
4.4 Forecasting accuracy 24
Chapter 5 Simulation study 29
5.1 Simulation setting 29
5.2 Simulation result 31
Chapter 6 Conclusion and discussion 37
6.1 Conclusion 37
6.2 Future work 37
References 39
Appendix A — Table of MAE between rank-one and rank-two using FSVD, RSVD 43
A.1 Female 43
A.2 Male 44
-
dc.language.isoen-
dc.subject函數型資料zh_TW
dc.subject死亡率zh_TW
dc.subject奇異值分解zh_TW
dc.subject局部線性外插zh_TW
dc.subject預測zh_TW
dc.subjectforecasten
dc.subjectfunctional data analysisen
dc.subjectage-specific mortalityen
dc.subjectsingular value decompositionen
dc.subjectlocal linear extrapolationen
dc.title預測年齡死亡率之比較研究zh_TW
dc.titleA comparative study of age-specific mortality forecasten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李百靈;蔡碧紋zh_TW
dc.contributor.oralexamcommitteePai-Ling Li;Pi-Wen Tsaien
dc.subject.keyword函數型資料,死亡率,奇異值分解,局部線性外插,預測,zh_TW
dc.subject.keywordfunctional data analysis,age-specific mortality,singular value decomposition,local linear extrapolation,forecast,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU202402699-
dc.rights.note未授權-
dc.date.accepted2024-08-05-
dc.contributor.author-college理學院-
dc.contributor.author-dept統計與數據科學研究所-
顯示於系所單位:統計與數據科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
1.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved