請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93767完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林新智 | zh_TW |
| dc.contributor.advisor | Hsin-Chih Lin | en |
| dc.contributor.author | 周天靖 | zh_TW |
| dc.contributor.author | Tien-Ching Chou | en |
| dc.date.accessioned | 2024-08-07T17:12:13Z | - |
| dc.date.available | 2024-08-08 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | Liang, C.-J., In-situ impedance spectroscopy studies of the plasma electrolytic oxidation coating process. 2013, University of Sheffield.
Totten, G.E. and D.S. MacKenzie, Handbook of aluminum: vol. 1: physical metallurgy and processes. Vol. 1. 2003: CRC press. Reed-Hill, R.E., R. Abbaschian, and R. Abbaschian, Physical metallurgy principles. Vol. 17. 1973: Van Nostrand New York. Dehnavi, V., Surface modification of aluminum alloys by plasma electrolytic oxidation. 2014: The University of Western Ontario (Canada). Yerokhin, A.L., et al., Plasma electrolysis for surface engineering. Surface and Coatings Technology, 1999. 122(2-3): p. 73-93. Clyne, T.W. and S.C. Troughton, A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. International Materials Reviews, 2018. 64(3): p. 127-162. Nyby, C., et al., Electrochemical metrics for corrosion resistant alloys, Sci. Data. 8 (2021) 58. Scientific Data, 2021. 8(1). Armstrong, R.W., 60 Years of Hall-Petch: Past to Present Nano-Scale Connections. Materials Transactions, 2014. 55(1): p. 2-12. Edwards, G.A., et al., The precipitation sequence in Al–Mg–Si alloys. Acta Materialia, 1998. 46(11): p. 3893-3904. Chen, J.H., et al., Atomic Pillar-Based Nanoprecipitates Strengthen AlMgSi Alloys. Science, 2006. 312(5772): p. 416-419. Mavhungu, S.T., et al., Aluminum Matrix Composites for Industrial Use: Advances and Trends. Procedia Manufacturing, 2017. 7: p. 178-182. Carneiro, Í., J.V. Fernandes, and S. Simões, Strengthening Mechanisms of Aluminum Matrix Nanocomposites Reinforced with CNTs Produced by Powder Metallurgy. Metals, 2021. 11(11): p. 1711. 李沛勇, 高性能铝基复合材料研究进展. Journal of Materials Engineering/Cailiao Gongcheng, 2023. 51(4). Jayalakshmi, S. and M. Gupta, Metallic amorphous alloy reinforcements in light metal matrices. 2015: Springer. Ozben, T., E. Kilickap, and O. Çakır, Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. Journal of Materials Processing Technology, 2008. 198(1-3): p. 220-225. Ahn, H. and C. Yu, Effect of SiC volume fraction on the age-hardening behavior in SiC particulate-reinforced 6061 aluminum alloy composites. Metals and Materials International, 2001. 7: p. 1-7. Chen, H.-J., et al., Study of Atomic Layer Deposition Nano-Oxide Films on Corrosion Protection of Al-SiC Composites. Materials, 2023. 16(18): p. 6149. Lin, K., et al., Improving the corrosion and wear resistance of CoCrNiSi0.3 Medium-Entropy Alloy by magnetron sputtered (CrN/Cr)x multilayer films. Surface and Coatings Technology, 2024. 478: p. 130407. LIAO, Y.-z., et al., Growth and characterization of plasma electrolytic oxidation coating on 60% SiCp/2009 aluminum matrix composite. Transactions of Nonferrous Metals Society of China, 2024. 34(2): p. 435-452. Huang, Y., et al., Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS). Corrosion Science, 2008. 50(12): p. 3569-3575. Zhai, H., et al., Non-isothermal crystallization behavioral analysis of detonation sprayed Fe-based amorphous coating. Journal of Materials Research and Technology, 2023. 23: p. 6115-6126. Chintada, S., S.P. Dora, and D. Kare, Mechanical Behavior and Metallographic Characterization of Microwave Sintered Al/SiC Composite Materials – an Experimental Approach. Silicon, 2021. 14(12): p. 7341-7352. Bhoi, N.K., H. Singh, and S. Pratap, Developments in the aluminum metal matrix composites reinforced by micro/nano particles – A review. Journal of Composite Materials, 2019. 54(6): p. 813-833. Verma, A.S., et al., Corrosion Behavior of Aluminum Base Particulate Metal Matrix Composites: A Review. Materials Today: Proceedings, 2015. 2(4-5): p. 2840-2851. Myriounis, D.P., S.T. Hasan, and T.E. Matikas, Microdeformation behaviour of Al–SiC metal matrix composites. Composite Interfaces, 2012. 15(5): p. 495-514. Rooy, E.L., Properties and selection: nonferrous alloys and special-purpose materials. Introduction to Aluminum and Aluminum Alloys, 1990. 2: p. 1-27. Nam, T.H., G. Requena, and H.-P. Degischer, Modelling and numerical computation of thermal expansion of aluminium matrix composite with densely packed SiC particles. Technische Mechanik-European Journal of Engineering Mechanics, 2008. 28(3-4): p. 259-267. Hetnarski, R.B., Encyclopedia of Thermal Stresses. 2014: Springer Netherlands Dordrecht. Association, A., Aluminum: properties and physical metallurgy. 1984: ASM international. Callister, W.D., et al., Materials science and engineering: an introduction. Vol. 7. 2007: John wiley & sons New York. Gladman, T., Precipitation hardening in metals. Materials Science and Technology, 2013. 15(1): p. 30-36. Silcock, J.M., T.J. Heal, and H.K. Hardy, STRUCTURAL AGEING CHARACTERISTICS OF BINARY ALUMINIUM-COPPER ALLOYS. J. Inst. Metals, 1954. Vol: 82: p. Pages: 239-248. Feufel, H., et al., Investigation of the Al-Mg-Si system by experiments and thermodynamic calculations. Journal of Alloys and Compounds, 1997. 247(1-2): p. 31-42. Ozturk, F., et al., Influence of aging treatment on mechanical properties of 6061 aluminum alloy. Materials & Design, 2010. 31(2): p. 972-975. Chakrabarti, D.J. and D.E. Laughlin, Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Progress in Materials Science, 2004. 49(3-4): p. 389-410. Ravi, C., First-principles study of crystal structure and stability of Al?Mg?Si?(Cu) precipitates. Acta Materialia, 2004. 52(14): p. 4213-4227. Chen, Y., B.Q. Lu, and H.A. Zhang, Hardening and precipitation of a commercial 6061 Al alloy during natural and artificial ageing. IOP Conference Series: Materials Science and Engineering, 2020. 770(1): p. 012065. Aouabdia, Y., A. Boubertakh, and S. Hamamda, Precipitation kinetics of the hardening phase in two 6061 aluminium alloys. Materials Letters, 2010. 64(3): p. 353-356. Winter, L., et al., Influence of Pre-Aging on the Artificial Aging Behavior of a 6056 Aluminum Alloy after Conventional Extrusion. Metals, 2021. 11(3): p. 385. Martinsen, F.A., et al., Reversal of the negative natural aging effect in Al–Mg–Si alloys. Acta Materialia, 2012. 60(17): p. 6091-6101. Starink, M.J., L.F. Cao, and P.A. Rometsch, A model for the thermodynamics of and strengthening due to co-clusters in Al–Mg–Si-based alloys. Acta Materialia, 2012. 60(10): p. 4194-4207. Zhu, S.Z., et al., Effects of natural aging on precipitation behavior and hardening ability of peak artificially aged SiCp/Al-Mg-Si composites. Composites Part B: Engineering, 2022. 236: p. 109851. Thomas, M.P. and J.E. King, Comparison of the ageing behaviour of PM 2124 Al alloy and Al-SiCp metal-matrix composite. Journal of Materials Science, 1994. 29(20): p. 5272-5278. Arockiasamy, A., et al., DSC analysis of Al6061 aluminum alloy powder by rapid solidification. Journal of Thermal Analysis and Calorimetry, 2009. 100(1): p. 361-366. Tao, G.H., et al., The influence of Mg/Si ratio on the negative natural aging effect in Al–Mg–Si–Cu alloys. Materials Science and Engineering: A, 2015. 642: p. 241-248. Zhu, S., et al., Design of solute clustering during thermomechanical processing of AA6016 Al–Mg–Si alloy. Acta Materialia, 2021. 203: p. 116455. Saga, M., et al., Effect of pre-aging on aging behavior in the early stage of aging at high temperatures for Al-Mg-Si alloys. Journal of Japan Institute of Light Metals, 2003. 53(11): p. 516-522. Zhu, S.Z., et al., Suppressed negative effects of natural aging by pre-aging in SiCp/6092Al composites. Composites Part B: Engineering, 2021. 212: p. 108730. Talbot, D.E. and J.D. Talbot, Corrosion science and technology. 2018: CRC press. Szklarska-Smialowska, Z., Pitting corrosion of aluminum. Corrosion Science, 1999. 41(9): p. 1743-1767. Foley, R.T., Localized Corrosion of Aluminum Alloys—A Review. Corrosion, 1986. 42(5): p. 277-288. Donatus, U., et al., Corrosion pathways in aluminium alloys. Transactions of Nonferrous Metals Society of China, 2017. 27(1): p. 55-62. Frankel, G.S., Pitting Corrosion of Metals: A Review of the Critical Factors. Journal of The Electrochemical Society, 2019. 145(6): p. 2186-2198. Nunes, P. and L. Ramanathan, Corrosion behavior of alumina-aluminum and silicon carbide-aluminum metal-matrix composites. Corrosion, 1995. 51(08). Bertolini, L., M.F. Brunella, and S. Candiani, Corrosion Behavior of a Particulate Metal-Matrix Composite. Corrosion, 1999. 55(4): p. 422-431. Zhu, J. and L.H. Hihara, Corrosion of continuous alumina-fibre reinforced Al–2 wt.% Cu–T6 metal–matrix composite in 3.15 wt.% NaCl solution. Corrosion Science, 2010. 52(2): p. 406-415. Salazar, J.M.G.D., et al., Corrosion behaviour of AA6061 and AA7005 reinforced with Al2O3 particles in aerated 3.5% chloride solutions: potentiodynamic measurements and microstructure evaluation. Corrosion Science, 1998. 41(3): p. 529-545. Abbass, M.K., K.S. Hassan, and A.S. Alwan, Study of Corrosion Resistance of Aluminum Alloy 6061/SiC Composites in 3.5% NaCl Solution. International Journal of Materials, Mechanics and Manufacturing, 2015. 3(1): p. 31-35. Panjan, P., et al., Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings, 2020. 10(5): p. 447. Mohedano, M., Lu, X., Matykina, E., Blawert, C., Arrabal, R., Zheludkevich, M.L., Plasma Electrolytic Oxidation (PEO) of Metals and Alloys. 2018. 423-438. Sikdar, S., et al., Plasma Electrolytic Oxidation (PEO) Process—Processing, Properties, and Applications. Nanomaterials, 2021. 11(6): p. 1375. Mastai, Y., Materials Science - Advanced Topics. 2013: BoD–Books on Demand. Van, T.B., S.D. Brown, and G.P. Wirtz, Mechanism of anodic spark deposition. Am. Ceram. Soc. Bull.;(United States), 1977. 56(6). Krysmann, W., et al., Process characteristics and parameters of Anodic Oxidation by spark discharge (ANOF). Crystal Research and Technology, 2006. 19(7): p. 973-979. Hickling, A. and M.D. Ingram, Contact glow-discharge electrolysis. Transactions of the Faraday Society, 1964. 60: p. 783. Yerokhin, A.L., et al., Discharge characterization in plasma electrolytic oxidation of aluminium. Journal of Physics D: Applied Physics, 2003. 36(17): p. 2110-2120. Hussein, R.O., et al., Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. Journal of Physics D: Applied Physics, 2010. 43(10): p. 105203. Hussein, R.O., X. Nie, and D.O. Northwood, Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure. Surface and Coatings Technology, 2010. 205(6): p. 1659-1667. Cheng, Y.-l., et al., New findings on properties of plasma electrolytic oxidation coatings from study of an Al–Cu–Li alloy. Electrochimica Acta, 2013. 107: p. 358-378. Dehnavi, V., et al., Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy – The effect of the PEO process stage. Materials Chemistry and Physics, 2015. 161: p. 49-58. Lu, X., et al., Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles. Electrochimica Acta, 2016. 196: p. 680-691. Matykina, E., et al., Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions. Applied Surface Science, 2008. 255(5): p. 2830-2839. Lee, K.M., et al., Evaluation of plasma temperature during plasma oxidation processing of AZ91 Mg alloy through analysis of the melting behavior of incorporated particles. Electrochimica Acta, 2012. 67: p. 6-11. Wang, S., et al., Influence of electrolyte components on the microstructure and growth mechanism of plasma electrolytic oxidation coatings on 1060 aluminum alloy. Surface and Coatings Technology, 2020. 381: p. 125214. Krishna, L.R., P.S.V.N.B. Gupta, and G. Sundararajan, The influence of phase gradient within the micro arc oxidation (MAO) coatings on mechanical and tribological behaviors. Surface and Coatings Technology, 2015. 269: p. 54-63. Li, J., et al., The outward–inward growth behavior of microarc oxidation coatings in phosphate and silicate solution. Materials Letters, 2010. 64(19): p. 2102-2104. Zhu, L., et al., A mechanism for the growth of a plasma electrolytic oxide coating on Al. Electrochimica Acta, 2016. 208: p. 296-303. Zhu, L., et al., Growth mechanisms for initial stages of plasma electrolytic oxidation coating on Al. Surfaces and Interfaces, 2021. 25: p. 101186. Matykina, E., et al., Investigation of the growth processes of coatings formed by AC plasma electrolytic oxidation of aluminium. Electrochimica Acta, 2009. 54(27): p. 6767-6778. Dai, W., et al., A review on the fatigue performance of micro-arc oxidation coated Al alloys with micro-defects and residual stress. Journal of Materials Research and Technology, 2023. 25: p. 4554-4581. Dean, J., T. Gu, and T.W. Clyne, Evaluation of residual stress levels in plasma electrolytic oxidation coatings using a curvature method. Surface and Coatings Technology, 2015. 269: p. 47-53. Curran, J.A. and T.W. Clyne, Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surface and Coatings Technology, 2005. 199(2-3): p. 168-176. Raj, V. and M. Mubarak Ali, Formation of ceramic alumina nanocomposite coatings on aluminium for enhanced corrosion resistance. Journal of Materials Processing Technology, 2009. 209(12-13): p. 5341-5352. Lu, X., et al., Plasma electrolytic oxidation coatings with particle additions – A review. Surface and Coatings Technology, 2016. 307: p. 1165-1182. Xin, S., et al., Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminum alloy prepared by micro-arc oxidation process. Thin Solid Films, 2006. 515(1): p. 326-332. Tsai, D.-S. and C.-C. Chou, Review of the Soft Sparking Issues in Plasma Electrolytic Oxidation. Metals, 2018. 8(2): p. 105. Martin, J., et al., Effects of electrical parameters on plasma electrolytic oxidation of aluminium. Surface and Coatings Technology, 2013. 221: p. 70-76. Khan, R.H.U., et al., Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current. Surface and Coatings Technology, 2005. 200(5-6): p. 1580-1586. Dehnavi, V., et al., Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior. Surface and Coatings Technology, 2013. 226: p. 100-107. Arrabal, R., et al., Coating formation by plasma electrolytic oxidation on ZC71/SiC/12p-T6 magnesium metal matrix composite. Applied Surface Science, 2009. 255(9): p. 5071-5078. Liao, Y., et al., Acoustic emission characteristics of micro-discharges in initial pulsed PEO process on 60% SiCp/Al composite. Ultrasonics, 2024. 138: p. 107213. Xue, W., et al., Anti-corrosion film on 2024/SiC aluminum matrix composite fabricated by microarc oxidation in silicate electrolyte. Journal of Alloys and Compounds, 2006. 425(1-2): p. 302-306. 杜正恭, 王凱正, and 蔡淑月, 電子微探儀. 科儀新知, 2009(170): p. 69-76. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93767 | - |
| dc.description.abstract | 鋁基碳化矽複材(AMC)為鋁合金發展的重要項目之一,能夠在維持一定延展性的同時大幅提升材料的機械強度,因而廣受多方學者關注,本實驗聚焦於兩個部分,分別在於機械性質與表面抗腐蝕防護。
6061雖然作為析出強化型鋁合金在各種領域皆有其應用,但近年來有許多學者發現在固溶處理後若至於室溫下不立即進行人工時效,會在室溫下產生微小析出物(Cluster),減少後續人工時效所能提升的硬度,因此本研究之前半聚焦在此,首先利用光學顯微鏡與EPMA了解SiC顆粒大小、在AMC當中的分佈,確認顆粒大小最大不超過5微米並平均分散在基地當中,並透過不同檢測方式,包含維氏硬度試驗、ASTM拉伸試驗、示差掃描熱分析儀(DSC)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)等,以了解6061鋁合金及AMC之析出強化行為,熱處理包含前期自然時效、人工時效以了解6061及AMC兩者之硬化行為,以及後續探討自然時效對於人工時效(T6)以及烤漆製程(短時間人工時效)的負面影響,最後利用70^o C與90^o C兩種不同溫度的預時效減少6061當中的自然時效負面效應;結果顯示自然時效負面效應對於長時間人工時效(T6)影響不大,析出之cluster會在持溫時重新溶回基地並析出成強化相 β''但對於烤漆製程影響較大,而在自然時效前添加預時效能有效減少自然時效對於烤漆製程的負面效應;此外亦發現AMC具和6061不同的析出硬化行為,並提出相對應假說。 實驗後半部分則針對AMC的抗腐蝕性質進行改善,首先確認添加在AMC內部的SiC顆粒對於微弧氧化反應的影響,利用電壓改變的趨勢搭配SEM得到的表面、橫截面形貌以及XPS確立不同反應階段,分別為(i)傳統陽極氧化, (ii)SiC顆粒影響放電行為使電壓上升減緩, (iii)鋁合金表面產生輝光放電與微小電弧, (iv)微弧氧化反應加劇,使表面SiC顆粒熔融混合於膜層中, (v)進入一般微弧氧化平坦區,產生劇烈放電;確立反應機制後測量不同反應佔空比、頻率下的微弧氧化膜層之動電位極化曲線,找到最佳電參數,後續再藉由改變反應時間已找到最佳微弧氧化參數為佔空比0.15、反應頻率100Hz、反應時間15分鐘,能有效降低腐蝕電流密度約兩個數量級;此外也同時對AMC進行不同反應時間之陽極處理以進行比較,在經過SEM橫截面影像及動電位極化曲線測量後,發現陽極處理可以有效提升材料的腐蝕電位,並且能夠減少腐蝕電流密度約三個數量級。 | zh_TW |
| dc.description.abstract | The Aluminum Matrix Composite (AMC) has been a significant topic of interest within the field of aluminum research due to its ability to achieve enhanced strength while maintaining relatively good ductility. This thesis primarily addresses two key aspects of AMC. The first area of focus is the mechanical property, while the second is corrosion resistance.
Although 6061, a type of precipitation-hardening aluminum alloy, has been widely used in numerous fields, some scholars have recently proposed that natural aging may have a negative effect on the alloy if artificial aging is not conducted immediately after solution heat treatment. This could reduce the ability of the 6061 alloy to undergo precipitation hardening. Some scholars have indicated that the phenomenon may be caused by the formation of Si-rich clusters during natural aging. The initial section of the thesis addresses the adverse effects associated with the aforementioned issues. Initially, an optical microscope and an electron probe microanalyzer (EPMA) technique were employed to ascertain the particle size and distribution in AMC. This analysis revealed that the SiC particles exhibited uniform distribution and a particle size that was generally smaller than 5 microns. Subsequently, the precipitation hardening effect, encompassing both natural and artificial aging, was investigated through a series of tests and instrumentation, including Vickers hardness testing, ASTM tensile testing, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Following an understanding of the fundamentals of precipitation hardening, further experiments were conducted to investigate the impact of natural aging on artificial aging and paint baking (a form of short-term artificial aging). The results indicate that the negative effect is not significant in the context of long-term artificial aging, as the Si-rich cluster would remelt into the matrix and form β'' precipitates. However, the effect is more pronounced in the case of paint baking. Lastly, two kinds of pre-aging (at 70°C and 90°C for 30 minutes) were added to the 6061 alloy immediately following solution treatment, prior to the natural aging process. The results demonstrated that this approach can effectively mitigate the negative effects observed. Furthermore, the investigation revealed that AMC undergoes a two-step hardening mechanism during the artificial aging stage. A potential hypothesis for this mechanism was proposed. The latter portion of the thesis is dedicated to enhancing the corrosion resistance of AMC. In this section, the same MAO (micro-arc oxidation) process is conducted on both the 6061 alloy and AMC. This experiment serves to confirm that SiC particles will indeed exert an influence on the MAO process. By dividing the stages of MAO for AMC based on voltage change during the process and using SEM top view, cross-section morphologies, and XPS, it was proposed that there are five stages in the MAO process for AMC, which differs from that of pure 6061 alloy. The five stages are as follows: (i) Traditional anodization, (ii) Voltage growth slow down owing to SiCp presented in AMC, (iii) Fine arc arise on Al surface, (iv) Arc getting more intense and melting the SiC particles into MAO film, (v) Maintaining high, stable voltage with severe arc hitting the MAO film. Once the mechanism had been elucidated, a potentiostat was employed to conduct potentiodynamic polarization (PDP) on specimens with varying MAO duty ratio and frequency, with the objective of identifying the optimal electro parameter. Subsequently, the process time was modified, resulting in the optimal parameter set of a duty ratio of 0.15 and a frequency of 100 Hz, with a process time of 15 minutes. The MAO film is capable of reducing the corrosion current density by approximately two orders of magnitude when the aforementioned parameters are employed. Furthermore, anodization was conducted with varying process times on AMC. The SEM cross-section images and PDP results demonstrate that anodization effectively increases the corrosion potential of the material and reduces the corrosion current density by approximately three orders of magnitude. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T17:12:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T17:12:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv 目次 vii 圖次 x 表次 xvi 第1章 前言 1 第2章 文獻回顧 3 2.1 鋁基複材的特性 3 2.1.1 鋁合金及AMC介紹 3 2.1.2 析出強化(Precipitation Hardening) 5 2.1.3 自然時效負面效應 13 2.1.4 預時效(Pre-aging)抑制自然時效負面效應 15 2.1.5 鋁合金及複合材的腐蝕行為 17 2.2 AMC的腐蝕防護 20 2.2.1 微弧氧化反應原理 21 2.2.2 微弧氧化之放電行為 22 2.2.3 微弧氧化之成長階段 26 2.2.4 微弧氧化之膜層結構 29 2.2.5 製程參數的影響 32 2.2.6 複合材的微弧氧化 38 第3章 實驗流程與方法 42 3.1 實驗流程與試片製備 42 3.1.1 熱處理流程 43 3.1.2 雙極脈衝微弧氧化薄膜 45 3.1.3 陽極處理 48 3.2 分析方式與儀器 49 3.2.1 維氏硬度(Vickers hardness)試驗 49 3.2.2 ASTM 拉伸試驗 49 3.2.3 示差掃描熱分析儀(Differential Scanning Calorimetry, DSC) 50 3.2.4 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 51 3.2.5 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 51 3.2.6 電子微探儀(Electron Probe Microanalyzer, EPMA) 52 3.2.7 動電位極化測試(Potentiodynamic Polarization, PDP) 53 3.2.8 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 53 第4章 結果與討論 55 4.1 析出強化與時效行為 55 4.1.1 鋁基碳化矽複材表面形貌及顆粒分佈 55 4.1.2 自然時效(NA)與人工時效(AA) 55 4.1.3 自然時效負面效應 62 4.1.4 預時效對自然時效負面效應的影響 64 4.1.5 鋁基碳化矽複材之硬化行為 65 4.2 表面防護 68 4.2.1 6061 鋁合金與 AMC 之微弧氧化反應 68 4.2.2 AMC 微弧氧化之反應階段 71 4.2.3 佔空比對微弧氧化膜層的影響 76 4.2.4 頻率對於微弧氧化膜層的影響 80 4.2.5 時間對於微弧氧化膜層的影響 84 4.2.6 陽極處理 89 第5章 結論 92 5.1 析出強化與時效行為 92 5.2 表面防護 92 參考資料 94 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鋁基碳化矽複合材(AMC) | zh_TW |
| dc.subject | 自然時效負面效應 | zh_TW |
| dc.subject | 烤漆製程 | zh_TW |
| dc.subject | 預時效 | zh_TW |
| dc.subject | 微弧氧化 | zh_TW |
| dc.subject | 陽極處理 | zh_TW |
| dc.subject | 動電位極化曲線 | zh_TW |
| dc.subject | Natural aging negative effect | en |
| dc.subject | Potentiodynamic polarization (PDP) | en |
| dc.subject | Anodization | en |
| dc.subject | Micro-arc oxidation (MAO) | en |
| dc.subject | Pre-aging | en |
| dc.subject | Paint baking | en |
| dc.subject | Aluminum matrix composite (AMC) | en |
| dc.title | 鋁基碳化矽複材之時效硬化與表面防護 | zh_TW |
| dc.title | Precipitation hardening and surface protection of SiCp containing Aluminum matrix composite | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊木榮;林昆明;鍾采甫 | zh_TW |
| dc.contributor.oralexamcommittee | Mu-Rong Yang;Kun-Ming Lin;Tsai-Fu Chung | en |
| dc.subject.keyword | 鋁基碳化矽複合材(AMC),自然時效負面效應,烤漆製程,預時效,微弧氧化,陽極處理,動電位極化曲線, | zh_TW |
| dc.subject.keyword | Aluminum matrix composite (AMC),Natural aging negative effect,Paint baking,Pre-aging,Micro-arc oxidation (MAO),Anodization,Potentiodynamic polarization (PDP), | en |
| dc.relation.page | 100 | - |
| dc.identifier.doi | 10.6342/NTU202401513 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 52.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
