請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93758完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉志文 | zh_TW |
| dc.contributor.advisor | Chih-Wen Liu | en |
| dc.contributor.author | 張家瑞 | zh_TW |
| dc.contributor.author | Chia-Jui Chang | en |
| dc.date.accessioned | 2024-08-07T17:07:47Z | - |
| dc.date.available | 2024-08-08 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-04 | - |
| dc.identifier.citation | [1] M. A. Torres L, L. A. C. Lopes, L. A. Morán T, and J. R. Espinoza C, "Self-Tuning Virtual Synchronous Machine: A Control Strategy for Energy Storage Systems to Support Dynamic Frequency Control," IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 833-840, 2014, doi: 10.1109/TEC.2014.2362577.
[2] Real Power Balancing Control Performance, NERC. [Online]. Available: https://www.nerc.com/pa/Stand/Reliability%20Standards/BAL-001-1.pdf [3] Calculating and Using Reporting ACE in a Tie Line Bias Control Program, NERC, 2015. [Online]. Available: https://www.nerc.com/pa/Stand/Project%2020101421%20Phase%202%20DL/White_Paper_on_the_Calculation_of_Reporting_ACE-D3-20150518.pdf [4] L. Wang, "Automatic Generation Control ( AGC ) Dynamic Simulation in PSS," 2011. [5] D. Chen and L. Wang, "Adaptive automatic generation control based on gain scheduling and neural networks," in 2017 IEEE Power & Energy Society General Meeting, 16-20 July 2017 2017, pp. 1-5, doi: 10.1109/PESGM.2017.8274457. [6] J. Talaq and F. Al-Basri, "Adaptive fuzzy gain scheduling for load frequency control," IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 145-150, 1999, doi: 10.1109/59.744505. [7] M. R. I. Sheikh and N. Mondol, "Application of Self-Tuning FPIC to AGC for Load Frequency Control in wind farm interconnected large power system," in 2012 International Conference on Informatics, Electronics & Vision (ICIEV), 18-19 May 2012 2012, pp. 812-816, doi: 10.1109/ICIEV.2012.6317408. [8] Y. Gong and C. Y. Chung, "Available capacity based AGC signal distribution strategy with energy storage system," in 2017 IEEE Power & Energy Society General Meeting, 16-20 July 2017, pp. 1-5, doi: 10.1109/PESGM.2017.8274229. [9] Y. U. Tao, Y. M. Wang, W. J. Ye, B. Zhou, and K. W. Chan, "Stochastic optimal generation command dispatch based on improved hierarchical reinforcement learning approach," Generation, Transmission & Distribution, IET, vol. 5, pp. 789-797, 09/01 2011, doi: 10.1049/iet-gtd.2010.0600. [10] J. Seekuka, R. Rattanawaorahirunkul, S. Sansri, S. Sangsuriyan, and A. Prakonsant, "AGC using Particle Swarm Optimization based PID controller design for two area power system," in 2016 International Computer Science and Engineering Conference (ICSEC), 14-17 Dec. 2016 2016, pp. 1-4, doi: 10.1109/ICSEC.2016.7859951. [11] M. Ghazavi, Fast Frequency Response from Inverter-Based Technologies: System Resilience Benefits and Challenges. 2022. [12] M. A. P. Peter W. Sauer, POWER SYSTEM DYNAMICS AND STABILITY. John Wiley & Sons Inc, 1997. [13] I. Siemens Industry, "PSS®E 33.4 MODEL LIBRARY," 2013. [14] James Weber, PowerWorld Corporation, "Description of Machine Models GENROU, GENSAL, GENTPF and GENTPJ," 2015. [Online]. Available: https://www.powerworld.com/files/GENROU-GENSAL-GENTPF-GENTPJ.pdf [15] R. Li et al., "Adaptive Fuzzy PID Controller-based Automatic Generation Control of Pumped Storage Power Station," in 2023 26th International Conference on Electrical Machines and Systems (ICEMS), 5-8 Nov. 2023 2023, pp. 5343-5347, doi: 10.1109/ICEMS59686.2023.10345086. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93758 | - |
| dc.description.abstract | 隨著全球對於永續能源的需求愈來愈加顯著,帶動我國再生能源滲透率的不斷提高,因此導致電力系統慣量逐年下降。當系統發生偶發性事故時,將會影響系統頻率響應,進而使得頻率變化率快速增加,且需要更多調頻備轉資源來維持頻率穩定性。因此調頻服務於電力系統之應用至關重要,本研究著重於二次調頻中輔助頻率回復之自動發電控制策略,借此策略維持電力系統頻率穩定性和經濟效益。
本研究探討使用適應性控制方法在自動發電控制器中之應用,自動發電控制包括負載頻率控制和經濟化調度兩部分,於負載頻率控制部分利用電網系統頻率偏差和響應評分機制,根據適應性控制實時調整控制器,以得出精準之控制需求,使控制器能更準確地反應系統之頻率響應情況,實現高效的控制效果。經濟化調度部分則在滿足二次調頻要求的前提下,通過優化發電機組出力分配,達到最佳經濟效益,並考慮發電設備的可用自動發電控制能力,以此提升電力系統的頻率響應和整體穩定性。透過此些策略以影響系統於偶發事故時獲得更快的頻率回復以及更少的有效功率出力,利於我國面對未來更高再生能源佔比之電網情況,並提供與人民較高電網韌性、穩定之用電環境。 | zh_TW |
| dc.description.abstract | As global environmental awareness rises, the demand for sustainable energy becomes increasingly significant, driving the continuous increase in the penetration rate of renewable energy in our country. However, renewable energy equipment is highly uncertain and lacks the inertia of traditional generators, leading to a yearly decline in power system inertia. When contingency occurs in the system, the low system inertia affects frequency response, causing the rate of change of frequency (RoCoF) to increase rapidly and requiring more frequency regulation reserves to maintain frequency stability. Therefore, frequency regulation services are crucial for power systems. This study focuses on the automatic generation control (AGC) strategy for auxiliary frequency restoration in secondary frequency regulation to maintain power system frequency stability and economic benefits.
This study explores the application of adaptive control methods in AGC. AGC consists of two parts: load frequency control (LFC) and economic dispatch control. In the LFC part, the frequency deviation and response scoring mechanism of the power system are used to adjust the controller in real time based on adaptive control to derive precise control demands, enabling the controller to respond more accurately to the system's frequency response and achieve efficient control. The economic dispatch part optimizes the output distribution of generation units to achieve financial benefits while meeting the requirements of secondary frequency regulation, considering the available AGC capacity of the generating equipment. This approach enhances the power system's frequency response and overall stability. These strategies influence the system's response during contingency, benefiting our country's power grid with higher renewable energy penetration and providing the public with a more resilient and stable power supply environment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T17:07:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T17:07:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Motivations 1 1.2 Literature Review 4 1.3 Objective 6 1.4 Organization of this Thesis 8 Chapter 2 Power System Model and Frequency Regulation 10 2.1 Power System Frequency Regulation 10 2.1.1 Primary Frequency Regulation 11 2.1.2 Secondary Frequency Regulation 13 2.2 Power System Model 15 2.2.1 Governor Model 16 2.2.2 Generator Model 21 2.3 Control Performance Standard 23 2.4 PID Control Architecture 25 2.5 Fuzzy Control Applied to PID Controller Parameters 27 Chapter 3 Adaptive Control Applied to AGC Strategy 30 3.1 Introduction 30 3.2 AGC and Adaptive Control Principles 32 3.2.1 AGC Architecture 32 3.2.2 Controller Design 33 3.2.3 Generation Command Dispatch 35 3.2.4 Generation Command Dispatch by Allocation Factor 38 3.2.5 Adaptive Control 41 3.3 Adaptive Control Applied to AGC 43 3.3.1 Adaptive Control for AGC Architecture 43 3.3.2 Frequency Response Evaluation Metrics 44 3.3.3 Controller Parameter Adjustment Method 48 Chapter 4 Simulation and Analysis 55 4.1 Introduction to the simulation system 55 4.2 Introduction to Simulation Scenarios 58 4.3 Simulation and analysis based on PSSE 61 4.3.1 Impact of Using AGC Strategies 61 4.3.2 Adaptive Control Applied to AGC Strategy 65 4.3.3 Impact of Allocation Factors on GCD 74 Chapter 5 Conclusion and Further Work 87 5.1 Conclusion 87 5.2 Further Work 89 References 91 | - |
| dc.language.iso | en | - |
| dc.subject | 自動發電控制策略 | zh_TW |
| dc.subject | 適應性控制 | zh_TW |
| dc.subject | 發電命令調度 | zh_TW |
| dc.subject | Generation Command Dispatch | en |
| dc.subject | Adaptive Control | en |
| dc.subject | Automatic Generation Control | en |
| dc.title | 基於適應性增益之自動發電控制策略 | zh_TW |
| dc.title | Adaptive Gain Control based AGC Strategy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 賴炎生;陳耀銘;黃世杰 | zh_TW |
| dc.contributor.oralexamcommittee | Yen-Shin Lai;Yaow-Ming Chen;Shyh-Jier Huang | en |
| dc.subject.keyword | 適應性控制,自動發電控制策略,發電命令調度, | zh_TW |
| dc.subject.keyword | Adaptive Control,Automatic Generation Control,Generation Command Dispatch, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU202403176 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
