請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93757完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鐘嘉德 | zh_TW |
| dc.contributor.advisor | Char-Dir Chung | en |
| dc.contributor.author | 林韋廷 | zh_TW |
| dc.contributor.author | Wei-Ting Lin | en |
| dc.date.accessioned | 2024-08-07T17:07:14Z | - |
| dc.date.available | 2024-08-08 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | [1] R. Hadani et al., “Orthogonal time frequency space modulation,” in Proc. IEEE Wireless Commun. Netw. Conf., San Francisco, CA, USA, Mar. 2017, pp. 1-6.
[2] R. Hadani et al., “Orthogonal time frequency space modulation,” 2018, arXiv:1808.00519. [3] P. Raviteja et al., “Interference cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501-6515, Oct. 2018. [4] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 957-961, Jan. 2019. [5] S. Tiwari, S. S. Das, and V. R. Rangamgari, “Low complexity LMMSE receiver for OTFS,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2205-2209, Dec. 2019. [6] P. Raviteja, K. T. Phan, and Y. Hong, “Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4906-4917, May 2019. [7] S. Wang, J. Guo, X. Wang, W. Yuan, and Z. Fei, “Pilot design and optimization for OTFS modulation,” IEEE Wireless Commun. Lett., vol. 10, no. 8, pp. 1742-1746, Aug. 2021. [8] F. Liu, Z. Yuan, Q. Guo, Z. Wang, and P. Sun, “Message passing-based structured sparse signal recovery for estimation of OTFS channels with fractional Doppler shifts,” IEEE Trans. Commun., vol. 20, no. 12, pp. 7773-7785, Dec. 2021. [9] Z. Wei, W. Yuan, S. Li, J. Yuan, and D. W. K. Ng, “Off-grid channel estimation with sparse Bayesian learning for OTFS systems,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7407-7426, Sep. 2022. [10] V. Khammammetti and S. K. Mohammed, “OTFS-based multiple-access in high Doppler and delay spread wireless channels,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 528-531, Apr. 2019. [11] Y. Ge, Q. Deng, D. González G., Y. L. Guan, and Z. Ding “OTFS signaling for SCMA with coordinated multi-point vehicle communications,” IEEE Trans. Veh. Technol., vol. 72, no. 7, pp. 9044-9057, Jul. 2023. [12] A. Chatterjee, V. Rangamgari, S. Tiwari, and S. S. Das, “Nonorthogonal multiple access with orthogonal time-frequency space signal transmission,” IEEE Syst. J., vol. 15, no. 1, pp. 383-394, Mar. 2021. [13] W. Shen, L. Dai, J. An, P. Fan, and R. W. Heath, Jr., “Channel estimation for orthogonal time frequency space (OTFS) massive MIMO,” IEEE Trans. Signal Process., vol. 67, no. 16, pp. 4204-4217, Aug. 2019. [14] Y. Liu, S. Zhang, F. Gao, J. Ma, and X. Wang, “Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1994-2009, Sep. 2020. [15] G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “Peak-to-average power ratio of OTFS modulation,” IEEE Commun. Lett., vol. 23, no. 6, pp. 999-1002, Jun. 2019. [16] G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “On the diversity of uncoded OTFS modulation in doubly-dispersive channels,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3049-3063, Jun. 2019. [17] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Effective diversity of OTFS modulation,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 249-253, Feb. 2020. [18] K. Sinha, S. K. Mohammed, P. Raviteja, Y. Hong, and E. Viterbo, “OTFS based random access preamble transmission for high mobility scenarios,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15078-15094, Dec. 2020. [19] M. S. Khan, Y. J. Kim, Q. Sultan, J. Joung, and Y. S. Cho, “Downlink synchronization for OTFS-based cellular systems in high Doppler environments,” IEEE Access, vol. 9, pp. 73575-73589, May 2021. [20] M. Bayat and A. Farhang, “Time and frequency synchronization for OTFS,” IEEE Wireless Commun. Lett., vol. 11, no. 12, pp. 2670-2674, Dec. 2022. [21] C. D. Chung, M. Z. Xu, and W. C. Chen, “Initial time synchronization for OTFS,” IEEE Trans. Veh. Technol., accepted for publication, Jul, 2024. [22] M. Z. Xu, C. D. Chung, and W. C. Chen, “Coarse initial time synchronization for OTFS,” in Proc. IEEE Veh. Technol. Conf., Hong Kong, Oct. 2023. [23] T. Thaj and E. Viterbo, “Orthogonal time sequency multiplexing modulation,” in Proc. IEEE Wireless Commun. Netw. Conf., Nanjing, China, Mar./Apr. 2021, pp. 1-7. [24] T. Thaj, E. Viterbo, and Y. Hong, “Orthogonal time sequency multiplexing modulation: Analysis and low-complexity receiver design,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7842-7855, Dec. 2021. [25] S. G. Neelam and P. R. Sahu, “Iterative channel estimation and data detection of OTSM with superimposed pilot scheme and PAPR analysis,” IEEE Commun. Lett., vol. 27, no. 8, pp. 2147-2151, Aug. 2023. [26] A. Farhang, A. Rezazadeh-Reyhani, L. E. Doyle, and B. Farhang-Boroujeny, “Low complexity modem structure for OFDM-based orthogonal time frequency space modulation,” IEEE Wireless Commun. Lett., vol. 7, no. 3, pp. 344-347, Jun. 2018. [27] R. Hadani and A. Monk, “OTFS: A new generation of modulation addressing the challenges of 5G,” arXiv:1802.02623 [cs.IT], www.arxiv.org, Feb. 2018. [28] M. Hsieh and C. Wei, “Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels,” IEEE Trans. Consum. Electron., vol. 44, no. 1, pp. 217-225, Feb. 1998. [29] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques based on pilot arrangement in OFDM systems,” IEEE Trans. Broadcast., vol. 48, no. 3, pp. 223-229, Sep. 2002. [30] M. Li, S. Zhang, F. Gao, P. Fan, and O. A. Dobre, “A new path division multiple access for the massive MIMO-OTFS networks,” IEEE J. Select. Areas Commun., vol. 39, no. 4, pp. 903-918, Apr. 2021. [31] Technical Specification Group Radio Access Network; Study Channel Model for Frequencies From 0.5 to 100 GHz (Release 16), document 3GPP 38.901, Rev. 16.1.0, Dec. 2019 [32] Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio Transmission and Reception, 3GPP Standard TS 36.104 V15.3.0, 2018. [33] B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB. Boca Raton, FL, USA: CRC Press, 2013. [34] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2010. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93757 | - |
| dc.description.abstract | 正交時頻間距(orthogonal time frequency space; OTFS)調變是一種新型的多載波調變(multicarrier modulation)技術,適用於具有稀疏延遲和都普勒擴散性質的雙重選擇性通道,且不同於以往多載波調變的靜態多路徑通道之性質,OTFS系統考慮的是線性時變(linear time-varying; LTV)多路徑通道。因此,在OTFS系統中的初始同步(initial synchronization; IS),需要針對LTV多路徑通道的特性進行設計和優化,以確保能準確地估計出訊號在傳送過程中的時間和頻率偏移,使後續通道估計與解調等工作能夠順利進行。
本論文採用承載離散傅立葉變換(discrete Fourier transform; DFT)序列的梳狀前導幀(comb-type preamble frame; CPF)波形,透過計算接收訊號和本地離散頻率偏移的CPF波形之間的交互模稜測度(cross-ambiguity measure; CAM),提出以選擇最大識別(select-the-largest identification; SLI)方法為基礎的牛頓法化選擇最大識別(Newtonized select-the-largest identification; NSLI)方法和選擇最大群識別(select-the-largest group identification; SLGI)方法,來估計前導幀在主導路徑上的起始時間點和都普勒偏移,進而實現OTFS系統的初始同步。 透過對提出的方法進行均方根誤差(root mean square error; RMSE)的性能分析,並檢視在具有寬時間採集範圍(timing acquisition range; TAR)但存在資料自干擾(data self-interference; DSI)的概略初始同步(coarse initial synchronization; CIS)和可調整的窄TAR且無DSI的精確初始同步(fine initial synchronization; FIS)系統中的模擬結果,發現在前導信號功率訊雜比(signal-to-noise ratio; SNR)足夠高時,其估計準確度和穩定性在多種的通道環境中皆表現出色,特別是當通道存在強主導(直視)路徑、實數值的延遲偏移與較大的實數值都普勒範圍時,有更為顯著的優勢。此外,在結合CIS和FIS系統的概略結合精確初始同步(coarse and fine initial synchronization; CFIS)系統中,應用所提出的方法將能得到更為精準的估計結果。 | zh_TW |
| dc.description.abstract | Orthogonal time frequency space (OTFS) modulation is a novel multicarrier modulation technique designed for doubly-selective channels with sparse delays and Doppler spread. Unlike traditional multicarrier modulation which deals with static multipath channels, OTFS systems address the characteristics of linear time-varying (LTV) multipath channels. Therefore, in OTFS systems, initial synchronization (IS) needs to be designed and optimized to account for the LTV multipath channel characteristics to accurately estimate the time and frequency shifts of the received signal, ensuring that subsequent channel estimation and demodulation can proceed smoothly.
In this paper, we employs a comb-type preamble frame (CPF) waveform carrying the discrete-Fourier-transform (DFT) sequences and calculate the cross-ambiguity measures (CAMs) between the received signal and the local discrete-frequency-shifted CPF waveform to facilitate accurate IS. Based on the select-the-largest identification (SLI) rule, the proposed Newtonized select-the-largest identification (NSLI) rule and the select-the-largest group identification (SLGI) rule are used to estimate the start time and Doppler shift of the preamble frame on the leading path, thus achieving IS for the OTFS systems. By performing root mean square error (RMSE) analysis on the proposed method and examining the simulation results in systems with a wide timing acquisition range (TAR) but with data self-interference (DSI) in coarse initial synchronization (CIS) system and an adjustable narrow TAR without DSI in fine initial synchronization (FIS) system, the estimation accuracy and robustness outperform other synchronization methods across various channel environments if the signal-to-noise ratio (SNR) of the preamble frame is sufficiently high. Particularly, when the channel exhibits a strong leading path, real-valued delay shifts, and wide ranges of real-valued Doppler shifts, the performances demonstrate significant advantages. Additionally, in a combined coarse and fine initial synchronization (CFIS) system, applying the proposed methods yields more precise estimation results. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T17:07:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T17:07:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目次 iv 圖次 vi 表次 vii 符號 viii 中英對照表 ix 第一章 緒論與簡介 1 1.1 矩形脈波正交時頻間距調變介紹 1 1.2 初始同步簡介 3 1.2.1 概略與精確初始同步系統 4 1.2.2 正交時頻間距之初始同步 4 1.3 研究動機與貢獻 9 第二章 系統模型 11 2.1 傳送訊號模型 11 2.1.1 正交時頻間距概念及符號 11 2.1.2 梳狀前導幀波形 12 2.1.3 前導訊號之限制 13 2.1.4 離散傅立葉變換序列 14 2.2 接收訊號模型 15 2.2.1 概略初始同步 16 2.2.2 精確初始同步 18 第三章 同步方法 20 3.1 初始時間同步 20 3.1.1 交互模稜測度 20 3.1.2 選擇最大識別 23 3.2 初始同步 24 3.2.1 牛頓方法 24 3.2.2 牛頓法化選擇最大識別 26 3.2.3 選擇最大群識別 28 第四章 性能展示 30 4.1 隨機通道參數設定 30 4.2 前置延遲估計之性能比較 32 4.2.1 概略初始同步系統比較 32 4.2.2 精確初始同步系統比較 37 4.2.3 概略結合精確初始同步系統模擬 38 4.3 前置都普勒估計之性能比較 40 4.4 計算複雜度比較 42 第五章 結論 44 參考文獻 45 附錄 49 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 正交時頻間距 | zh_TW |
| dc.subject | 線性時變多路徑通道 | zh_TW |
| dc.subject | 初始同步 | zh_TW |
| dc.subject | 梳狀前導幀波形 | zh_TW |
| dc.subject | 牛頓方法 | zh_TW |
| dc.subject | Newton’s method | en |
| dc.subject | Orthogonal time frequency space | en |
| dc.subject | linear time-varying multipath channel | en |
| dc.subject | initial synchronization | en |
| dc.subject | comb-type preamble frame waveform | en |
| dc.title | 矩形脈波正交時頻間距調變系統之初始同步 | zh_TW |
| dc.title | Initial Synchronization for Rectangular-pulsed Orthogonal Time Frequency Space Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳維昌 | zh_TW |
| dc.contributor.coadvisor | Wei-Chang Chen | en |
| dc.contributor.oralexamcommittee | 古孟霖;蘇育德;謝欣霖 | zh_TW |
| dc.contributor.oralexamcommittee | Meng-Lin Ku;Yu-De Su;Shin-Lin Shieh | en |
| dc.subject.keyword | 正交時頻間距,線性時變多路徑通道,初始同步,梳狀前導幀波形,牛頓方法, | zh_TW |
| dc.subject.keyword | Orthogonal time frequency space,linear time-varying multipath channel,initial synchronization,comb-type preamble frame waveform,Newton’s method, | en |
| dc.relation.page | 49 | - |
| dc.identifier.doi | 10.6342/NTU202402684 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
