Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 元件材料與異質整合學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93755
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳肇欣zh_TW
dc.contributor.advisorChao-Hsin Wuen
dc.contributor.author邱致銓zh_TW
dc.contributor.authorChih-Chuan Chiuen
dc.date.accessioned2024-08-07T17:05:11Z-
dc.date.available2024-08-08-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citation[1] Cheng, H. T., Yang, Y. C., Liu, T. H., & Wu, C. H. (2022, February). Recent advances in 850 nm VCSELs for high-speed interconnects. In Photonics (Vol. 9, No. 2, p. 107). MDPI.
[2] Extance, A. (2018). Faces light up over VCSEL prospects. SPIE Professional magazine, 9.
[3] Dummer, M., Johnson, K., Rothwell, S., Tatah, K., & Hibbs-Brenner, M. (2021, March). The role of VCSELs in 3D sensing and LiDAR. In Optical Interconnects XXI (Vol. 11692, pp. 42-55). SPIE.
[4] Iga, K. (2000). Surface-emitting laser-its birth and generation of new optoelectronics field. IEEE Journal of selected topics in Quantum Electronics, 6(6), 1201-1215.
[5] Moench, H., Carpaij, M., Gerlach, P., Gronenborn, S., Gudde, R., Hellmig, J., ... & van der Lee, A. (2016, March). VCSEL-based sensors for distance and velocity. In Vertical-Cavity Surface-Emitting Lasers XX (Vol. 9766, pp. 40-50). SPIE.
[6] Seurin, J. F., Zhou, D., Xu, G., Miglo, A., Li, D., Chen, T., ... & Ghosh, C. (2016, March). High-efficiency VCSEL arrays for illumination and sensing in consumer applications. In Vertical-Cavity Surface-Emitting Lasers XX (Vol. 9766, pp. 60-68). SPIE.
[7] https://www.yolegroup.com/product/report/vcsel-2023/
[8] https://www.yolegroup.com/product/report/lidar-for-automotive-2024/
[9] Fanning, T. R., Wang, J., Feng, Z. W., Keever, M., Chu, C., Sridhara, A., ... & Giovane, L. (2014, February). 28-Gbps 850-nm oxide VCSEL development and manufacturing progress at Avago. In Vertical-Cavity Surface-Emitting Lasers XVIII (Vol. 9001, p. 900102). SPIE.
[10] Wang, J., Murty, M. R., Wang, C., Hui, D., Harren, A. L., Chang, H. H., ... & Giovane, L. M. (2017). 50Gb/s PAM-4 oxide VCSEL development progress at Broadcom. Vertical-Cavity Surface-Emitting Lasers XXI, 10122, 1012202.
[11] Wang, J., Murty, M. R., Feng, Z. W., Taslim, S. J., Sridhara, A., Cai, X., ... & Giovane, L. M. (2022). High speed 850nm oxide VCSEL development for 100Gb/s ethernet at Broadcom. Vertical-Cavity Surface-Emitting Lasers XXVI, 12020, 52-58.
[12] https://www.ieee802.org/3/ad_hoc/ngrates/public/calls/20_0323/BWA_Tutorial_a_200323.pdf
[13] IEEE Standard Association, “IEEE Standard for Ethernet Amendment 9: Media Access Control Parameters for 800 Gb/s and Physical Layers and Management Parameters for 400 Gb/s and 800 Gb/s Operation,” in IEEE Std 802.3df-2024, vol., no., pp.1-278, 15 March 2024, DOI: 10.1109/IEEESTD.2024.10472445
[14] M. V. Ramana Murty, Jingyi Wang, David Dolfi, Sizhu Jiang, An-Nien Cheng, Zheng-Wen Feng, Sumitro T. Joyo, Aadi Sridhara, Jason Chu, Laura M. Giovane, “100G VCSELs for bidirectional multi-mode links,” in Proc. SPIE 12439, Vertical-Cavity Surface-Emitting Lasers XXVII, 124390B, 15 March 2023
[15] Sizhu Jiang, Jingyi Wang, M. V. Ramana Murty, Zheng-Wen Feng, Gim-Hong Koh, Sumtro-Joyo Taslim, Aadi Sridhara, Xinle Cai, Nelvin Leong, David W. Dolfi, Jason Chu, Laura M. Giovane, “Development and characterization of 100Gb/s 940nm VCSELs for multimode optical links,” in Proc. SPIE 12904, Vertical-Cavity Surface-Emitting Lasers XXVIII, 1290406, 13 March 2024, DOI: 10.1117/12.3002834
[16] A. M. R. Brusin, A. Nespola, G. Rizzelli, F. Aquilino, F. Forghieri, and A. Carena, “Maximizing 425G SWDM VCSEL-MMF Systems Reach Through Variable Rate per λ,” in Optical Fiber Communication Conference (OFC), Technical Digest Series (Optica Publishing Group, 2023), paper Th2A.23., 2023
[17] Bocchi, C., Ferrari, C., Franzosi, P., Bosacchi, A., & Franchi, S. (1993). Accurate determination of lattice mismatch in the epitaxial AlAs/GaAs system by high-resolution X-ray diffraction. Journal of crystal growth, 132(3-4), 427-434.
[18] Bosi, M., & Attolini, G. (2010). Germanium: Epitaxy and its applications. Progress in Crystal Growth and Characterization of Materials, 56(3-4), 146-174.
[19] Depuydt, B., Theuwis, A., & Romandic, I. (2006). Germanium: From the first application of Czochralski crystal growth to large diameter dislocation-free wafers. Materials Science in Semiconductor Processing, 9(4-5), 437-443.
[20] Johnson, A., Joel, A., Clark, A., Pearce, D., Geen, M., Wang, W., ... & Lim, S. W. (2021, March). High performance 940nm VCSELs on large area germanium substrates: the ideal substrate for volume manufacture. In Vertical-Cavity Surface-Emitting Lasers XXV (Vol. 11704, p. 1170404). SPIE.
[21] Zhao, Y., Guo, J., Feifel, M., Cheng, H. T., Yang, Y. C., Wang, L., ... & Xia, G. M. (2022). Monolithic integration of 940 nm AlGaAs distributed Bragg reflectors on bulk Ge substrates. Optical Materials Express, 12(3), 1131-1139.
[22] Baker, J., Gillgrass, S., Peach, T., Allford, C. P., Davies, J. I., Johnson, A. D., ... & Smowton, P. M. (2022, May). Impact of strain-induced bow on the performance of VCSELs on 150mm GaAs-and Ge-substrate wafers. In Semiconductor Lasers and Laser Dynamics X (p. PC1214108). SPIE.
[23] Gillgrass, S. J., Allford, C. P., Peach, T., Baker, J., Johnson, A. D., Davies, J. I., ... & Smowton, P. M. (2023). Impact of thermal oxidation uniformity on 150 mm GaAs-and Ge-substrate VCSELs. Journal of Physics D: Applied Physics, 56(15), 154002.
[24] Gillgrass, S. J., Allford, C. P., Johnson, A. D., Baker, J., Davies, I., Shutts, S., & Smowton, P. M. (2023, March). Characterisation of 200 mm GaAs and Ge substrate VCSELs for high-volume manufacturing. In Vertical-Cavity Surface-Emitting Lasers XXVII (p. PC124390B). SPIE.
[25] Zhao, Y., Wan, Z., Guo, J., Yang, Y. C., Cheng, H. T., Chrostowski, L., ... & Xia, G. (2023). Monolithically integrated 940 nm half VCSELs on bulk Ge substrates. IEEE Photonics Technology Letters.
[26] Yang, Y. C., Wan, Z., Hsu, G. T., Chiu, C. C., Chen, W. H., Feifel, M., ... & Wu, C. H. (2024). 25 Gb/s NRZ transmission at 85° C using a high-speed 940 nm AlGaAs oxide-confined VCSEL grown on a Ge substrate. Optics Letters, 49(3), 586-589.
[27] Wan, Z., Yang, Y. C., Chen, W. H., Chiu, C. C., Zhao, Y., Feifel, M., ... & Xia, G. (2024). Monolithically integrated 940 nm VCSELs on bulk Ge substrates. Optics Express, 32(4), 6609-6618.
[28] Gillgrass, S. J., Allford, C. P., Baker, J., Johnson, A., Davies, I., Shutts, S., & Smowton, P. M. (2024, March). Effect of Ge-substrate thickness on 940-nm VCSEL performance. In Vertical-Cavity Surface-Emitting Lasers XXVIII (p. PC1290408). SPIE.
[29] Seurin, J. F., Ghosh, C. L., Khalfin, V., Miglo, A., Xu, G., Wynn, J. D., ... & D'Asaro, L. A. (2008, January). High-power high-efficiency 2D VCSEL arrays. In Vertical-Cavity Surface-Emitting Lasers XII (Vol. 6908, pp. 45-58). SPIE.
[30] Scott, J. W., Geels, R. S., Corzine, S. W., & Coldren, L. A. (1993). Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance. IEEE journal of quantum electronics, 29(5), 1295-1308.
[31] Hegblom, E. R., Babic, D. I., Thibeault, B. J., & Coldren, L. A. (1996). Estimation of scattering losses in dielectrically apertured vertical cavity lasers. Applied physics letters, 68(13), 1757-1759.
[32] Wu, C. H., Tan, F., Wu, M. K., Feng, M., & Holonyak, N. (2011). The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity. Journal of Applied Physics, 109(5).
[33] Morgan, R. A., et al. "Transverse mode control of vertical-cavity top-surface-emitting lasers." IEEE Photonics Technology Letters 5.4 (1993): 374-377.
[34] Li, H., Wolf, P., Moser, P., Larisch, G., Mutig, A., Lott, J. A., & Bimberg, D. H. (2014). Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs. IEEE Journal of Quantum Electronics, 50(8), 613-621.
[35] Cheng, H. T., Yang, Y. C., & Wu, C. H. (2021, October). High thermal stability of 850 nm VCSELs with enhanced mask margin up to 85 C for 100G-SR4 Operation. In 2021 30th Wireless and Optical Communications Conference (WOCC) (pp. 49-53). IEEE.
[36] Yang, Y. C., Cheng, H. T., Liu, T. H., & Wu, C. H. (2022, March). Volume manufacturable oxide-confined 850-nm VCSELs operating at 25-50 Gbps up to 105° C without equalization and pre-emphasis. In Vertical-Cavity Surface-Emitting Lasers XXVI (Vol. 12020, pp. 65-72). SPIE.
[37] Yang, Y. C., Cheng, H. T., & Wu, C. H. (2021, October). 30 GHz Highly Damped Oxide Confined Vertical-Cavity Surface-Emitting Laser. In 2021 IEEE Photonics Conference (IPC) (pp. 1-2). IEEE.
[38] Cheng, H. T., Yang, Y. C., & Wu, C. H. (2023). Temperature-insensitive 850-nm dual-mode-VCSEL with 25.1-GHz bandwidth at 85° C. Journal of Lightwave Technology, 41(17), 5675-5687.
[39] Michalzik, R., & Ebeling, K. J. (2003). Operating principles of VCSELs. In Vertical-Cavity Surface-Emitting Laser Devices (pp. 53-98). Berlin, Heidelberg: Springer Berlin Heidelberg.
[40] Flick, T., Becks, K. H., Dopke, J., Mättig, P., & Tepel, P. (2011). Measurement of the thermal resistance of VCSEL devices. Journal of Instrumentation, 6(01), C01021.
[41] Nakwaski, W., and M. Osiński. "Erratum: Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional arrays." Electronics Letters 28.13 (1992): 1283-1283.
[42] Karim, Abid. "Measurement of junction temperature of a semiconductor laser diode." 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004.. IEEE, 2004.
[43] 盧廷昌, 尤信介. VCSEL 技術原理與應用. 五南, 2019.
[44] Westbergh, P., Gustavsson, J. S., Kögel, B., Haglund, Å., & Larsson, A. (2011). Impact of photon lifetime on high-speed VCSEL performance. IEEE Journal of Selected Topics in Quantum Electronics, 17(6), 1603-1613.
[45] Coldren, L. A., Corzine, S. W., & Mashanovitch, M. L. (2012). Diode lasers and photonic integrated circuits (Vol. 218). John Wiley & Sons.
[46] Cheng, K. Y. (2020). III–V Compound Semiconductors and Devices.
[47] Tignon, J., Heller, O., Roussignol, P., Bastard, G., Piermarrochi, C., Planel, R., & Thierry-Mieg, V. (1998). Carrier dynamics in shallow GaAs/AlGaAs quantum wells. Physica E: Low-dimensional Systems and Nanostructures, 2(1-4), 126-130.
[48] K. Ng, Appendix D: Physical Properties (John Wiley & Sons, Ltd., 2009), pp. 671–696.
[49] Suzuki, N., Hatakeyama, H., Fukatsu, K., Anan, T., Yashiki, K., & Tsuji, M. (2006, March). 25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections. In Optical Fiber Communication Conference (p. OFA4). Optica Publishing Group.
[50] Tucker, R. S. (1985). High-speed modulation of semiconductor lasers. IEEE transactions on electron devices, 32(12), 2572-2584.
[51] Al-Omari, A. N., & Lear, K. L. (2004). Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth. IEEE Photonics Technology Letters, 16(4), 969-971.
[52] Nagarajan, R., Fukushima, T., Bowers, J. E., Geels, R. S., & Coldren, L. A. (1991). Single quantum well strained InGaAs/GaAs lasers with large modulation bandwidth and low damping. Electronics letters, 27(12), 1058-1060.
[53] Lau, K., & Yariv, A. (1985). Ultra-high speed semiconductor lasers. IEEE Journal of Quantum Electronics, 21(2), 121-138.
[54] Tanigawa, T., Onishi, T., Nagai, S., & Ueda, T. (2005, May). High-speed 850nm AlGaAs/GaAs Vertical Cavity Surface Emitting Laser with low parasitic capacitance fabricated using BCB planarization technique. In Conference on Lasers and Electro-Optics (p. CWI3). Optica Publishing Group.
[55] Adachi, S. (1985). GaAs, AlAs, and Al x Ga1− x As: Material parameters for use in research and device applications. Journal of applied physics, 58(3), R1-R29.
[56] Säckinger, E. (2017). Analysis and design of transimpedance amplifiers for optical receivers. John Wiley & Sons.
[57] Ogawa, K., Tzeng, L. D., Park, Y. K., & Sano, E. (1997). Advances in high bitrate transmission systems. Optical Fiber Telecommunications IIIA, 336-372.
[58]Müller, M., Stephens, R., & McHugh, R. (2005). Total jitter measurement at low probability levels, using optimized BERT scan method. Design and Test for Multiple Gbps Communication Devices and Systems, 379.
[59] IEEE Standard for Ethernet - Amendment 3: Physical Layer Specifications and Management Parameters for 40 Gb/s and 100 Gb/s Operation over Fiber Optic Cables," in IEEE Std 802.3bm-2015 (Amendment to IEEE Std 802.3-2012 as amended by IEEE Std 802.3bk-2013 and IEEE Std 802.3bj-2014 ) , vol., no., pp.1-172, 27 March 2015, doi: 10.1109/IEEESTD.2015.7435210.
[60] IEEE Standard for Ethernet - Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation," in IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3-2015 as amended by IEEE's 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Cor1-2017) , vol., no., pp.1-372, 12 Dec. 2017, doi: 10.1109/IEEESTD.2017.8207825.
[61] IEEE Standard for Ethernet - Amendment 3: Media Access Control Parameters for 50 Gb/s and Physical Layers and Management Parameters for 50 Gb/s, 100 Gb/s, and 200 Gb/s Operation," in IEEE Std 802.3cd-2018 (Amendment to IEEE Std 802.3-2018 as amended by IEEE Std 802.3cb-2018 and IEEE Std 802.3bt-2018) , vol., no., pp.1-401, 14 Feb. 2019, doi: 10.1109/IEEESTD.2019.8649797
[62] Echeverri-Chacón, S., Mohr, J. J., Olmos, J. J. V., Dawe, P., Pedersen, B. V., Franck, T., & Christensen, S. B. (2019). Transmitter and dispersion eye closure quaternary (TDECQ) and its sensitivity to impairments in PAM4 waveforms. Journal of Lightwave Technology, 37(3), 852-860.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93755-
dc.description.abstract因應當今自動化光感測、光通訊高速互聯與虛擬實境等次世代光電半導體科技的蓬勃發展,使得身為各系統中關鍵光源零組件的氧化物限制-垂直共振腔面射型雷射(VCSELs)市場需求與日俱增。近年來,基於鍺基板之VCSELs元件因材料散熱特性優異,且可以銜接大尺吋晶圓製造等因素,逐漸被視為具經濟效益與高溫穩定性元件生產的新途徑。本文主要在分析基於鍺基板VCSELs元件直流、高頻訊號調制、元件物理模型與大訊號調制之相關特性,並與成長於砷化鎵基板之元件進行比較,以確認鍺基板元件製造的可行性與元件表現。
第一章主要將針對氧化物限制-垂直共振腔面射型雷射進行元件介紹,並提出有關於本研究之研究動機,以及鍺基板元件之研究背景需求。
第二章將會針對近幾年研究鍺基板VCSELs之相關文獻進行介紹,並運用與加拿大UBC大學合作之鍺基板磊晶進行標準化製程,再透過量測元件的直流特性以分析鍺基板在環境溫度變化下與砷化鎵基板元件之差異,從結果中得知鍺基板元件在氧化孔徑6 um時,於1.6 mA有0.54 W/A之良好的斜率效率,因而在高頻訊號調制時可以提供更快的光學響應與轉換線性度並減少資料傳輸的失真,後續熱阻的分析由於鍺基板良好的熱導率,具有極小的熱阻值使其半導體接面溫度隨電流上升較砷化鎵基板元件緩慢,在10 mA操作下兩種基板元件接面溫差約42 K。
第三章將運用網路分析儀對元件進行高頻響應的量測,以探討鍺基板元件是否能滿足當今光通訊系統所需光源之操作頻寬,從量測結果得知鍺基板於光孔徑3 um具有最快之調製頻寬為19.85 GHz,另外由於鍺基板優異的散熱性能與低缺陷密度,使其元件的響應頻寬隨環境溫度上升而下降的情況較砷化鎵基板元件緩慢,也間接證明鍺基板元件在高溫操作下具有較好的穩定性與可靠度。
第四章則利用了先前量測元件高頻響應的結果,搭配VCSELs元件的物理模型進行擬合,以萃取鍺基板與砷化鎵基板元件的小訊號模型,並分析兩種基板元件的本質響應與外部寄生效應的影響情況,發現鍺基板的接面電阻相較於砷化鎵基板較小且隨溫度變化較不劇烈。後續也透過量測大訊號調制之眼圖分析兩種基板元件的高速傳輸速率能力,而鍺基板元件最高可達到80 Gbps的高速傳輸速率,基於各樣元件特性分析,皆表明鍺基板極有潛力可成為VCSELs製造的全新方針。
zh_TW
dc.description.abstractIn response to the rapid development of next-generation optoelectronic semiconductor technologies such as automated optical sensing, high-speed optical communication, and virtual reality, the market demand for oxide-confined vertical cavity surface emitting lasers (VCSELs), which are critical optical source components in various systems, has been increasing daily. In recent years, VCSELs based on germanium (Ge) substrate have gradually been seen as a new approach for the cost-effective production of high-temperature stable devices due to their excellent thermal dissipation properties and the ability to integrate with large-size wafer manufacturing. This paper primarily analyzes the DC, high-frequency signal modulation, device small-signal model, and large-signal modulation characteristics of VCSELs based on Ge substrate, comparing them with devices grown on gallium arsenide (GaAs) substrate to confirm the feasibility and performance of Ge substrate device manufacturing.
The first chapter introduces the VCSELs, presenting the research motivation for this study and the research background needs for Ge substrate devices.
The second chapter introduces the relevant literature on Ge substrate VCSELs research in recent years, using the standardized process of Ge substrate epitaxy in cooperation with the University of British Columbia, Canada. The DC characteristics of the devices are measured to analyze the differences between Ge substrate and GaAs substrate devices under varying environmental temperatures. Results show that Ge substrate devices exhibit a good slope efficiency of 0.54 W/A at 1.6 mA with an oxide aperture of 6 μm, providing faster optical response and conversion linearity during high-frequency signal modulation, thus reducing data transmission distortion. Subsequent thermal resistance analysis indicates that due to the excellent thermal conductivity of Ge substrate, they have extremely low thermal resistance, causing the semiconductor junction temperature to rise more slowly than in GaAs substrate devices at 10 mA operation, with a junction temperature difference of about 42 K between the two types of substrate devices.
The third chapter employs a network analyzer to measure the high-frequency response of the devices to explore whether Ge substrate devices can meet the operating bandwidth requirements of current optical communication systems. Measurement results show that Ge substrate with a light aperture of 3 μm have the fastest modulation bandwidth of 19.85 GHz. Additionally, due to the superior thermal performance and low defect density of Ge substrate, their response bandwidth decreases more slowly with increasing ambient temperature compared to GaAs substrate devices, directly demonstrating the better stability and reliability of Ge substrate devices under high-temperature operation.
The fourth chapter uses the previously measured high-frequency response results of the devices, fitting them with the physical model of VCSELs to extract the small-signal models of Ge and GaAs substrate devices. The intrinsic response and the impact of external parasitic effects of the two types of substrate devices are analyzed, revealing that the junction resistance of Ge substrate is relatively lower than that of GaAs substrate and varies less with temperature changes. Subsequent eye diagram measurements of large-signal modulation analyze the high-speed transmission rate capabilities of the two types of substrate devices, with Ge substrate devices achieving a maximum high-speed transmission rate of up to 80 Gbps. Based on various device characteristic analyses, it is evident that Ge substrate have great potential to become a new direction for VCSELs manufacturing.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T17:05:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T17:05:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 vii
圖次 x
表次 xvi
Chapter 1 緒論 1
1.1 垂直共振腔面射型雷射之介紹 1
1.2 研究動機 2
Chapter 2 940 nm鍺基板與砷化鎵基板之VCSELs 5
2.1 成長於鍺基板VCSELs之文獻回顧 5
2.2 940 nm VCSELs之磊晶結構與基板差異 8
2.3 940 nm VCSELs 製程流程與光罩設計 13
2.3.1 940 nm VCSELs製程流程 13
正極金屬(P-type)沉積- P-metal evaporation 14
元件外結構平台乾蝕刻- Mesa dry etch 15
水氧製程- Wet oxidation 16
負極金屬(N-type)沉積- N-metal evaporation 17
使用聚合物材料BCB進行元件鈍化處理- BCB passivation 18
共平面金屬沉積- Metal pad evaporation 19
2.4 940 nm 鍺基板與砷化鎵基板之VCSELs直流特性分析 21
2.4.1 直流特性量測實驗架構 21
2.4.2 鍺基板與砷化鎵基板VCSELs直流特性 22
基板厚度330 um之鍺基板磊晶DC特性 22
基板厚度625 um之砷化鎵基板磊晶DC特性 26
鍺基板與砷化鎵基板VCSELs室溫與變溫下DC特性比較 29
鍺基板與砷化鎵基板VCSELs在室溫下熱阻特性比較 32
2.5 Conclusion 37
Chapter 3 鍺基板與砷化鎵基板之 VCSELs小訊號特性分析與比較 38
3.1 940 nm VCSELs小訊號特性分析(RF Characteristic) 38
3.1.1 高頻特性量測實驗架構 38
3.1.2 鍺基板與砷化鎵基板VCSELs高頻特性 39
基板厚度330 um之鍺基板磊晶RF特性 41
基板厚度625 um之砷化鎵基板磊晶RF特性 43
鍺基板與砷化鎵基板VCSELs 室溫與變溫下RF特性比較 44
3.2 Conclusion 49
Chapter 4 小訊號模型參數萃取與大訊號特性比較 50
4.1 鍺基板與砷化鎵基板VCSELs小訊號模型參數萃取 50
基板厚度330 um之鍺基板VCSELs小訊號模型參數萃取 54
基板厚度625 um之砷化鎵基板VCSELs小訊號模型參數萃取 59
鍺基板與砷化鎵基板VCSELs 室溫與變溫下小訊號模型比較 62
4.2 大訊號特性比較( Large-Signal Characteristics ) 63
4.2.1 大訊號調制量測實驗架構 63
4.3 Conclusion 71
Chapter 5 Conclusion 72
REFERENCE 73
-
dc.language.isozh_TW-
dc.title成長於鍺基板高速940 nm垂直共振腔面射型雷射之研究zh_TW
dc.titleInvestigation of 940 nm High-Speed Vertical-Cavity Surface-Emitting Lasers on Ge Substrateen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李三良;吳育任;黃定洧zh_TW
dc.contributor.oralexamcommitteeSan-Liang Lee;Yuh-Renn Wu;Ding-wei Huangen
dc.subject.keyword垂直共振腔面射型雷射,鍺基板,單晶整合,小訊號模型,眼圖,zh_TW
dc.subject.keywordVertical cavity surface emitting laser,Germanium substrate,Monolithic integration,Small-signal model,Eye diagram,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202402445-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-02-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept元件材料與異質整合學位學程-
dc.date.embargo-lift2029-07-27-
顯示於系所單位:元件材料與異質整合學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-07-27
8.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved