請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93727完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳柏鋒 | zh_TW |
| dc.contributor.advisor | Po-Feng Wu | en |
| dc.contributor.author | 陳琮棋 | zh_TW |
| dc.contributor.author | Tsung-Chi Chen | en |
| dc.date.accessioned | 2024-08-07T16:44:12Z | - |
| dc.date.available | 2025-06-16 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-29 | - |
| dc.identifier.citation | Abazajian, K., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2003, AJ, 126, 2081, doi: 10.1086/378165
Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., et al. 2007, ApJS, 172, 634, doi: 10.1086/518864 Aguado, D. S., Ahumada, R., Almeida, A., et al. 2019, ApJS, 240, 23, doi: 10.3847/1538-4365/aaf651 Aihara, H., Arimoto, N., Armstrong, R., et al. 2018a, PASJ, 70, S4, doi: 10.1093/pasj/psx066 Aihara, H., Armstrong, R., Bickerton, S., et al. 2018b, PASJ, 70, S8, doi: 10.1093/pasj/psx081 Aihara, H., Arimoto, N., Armstrong, R., et al. 2018c, PASJ, 70, S4, doi: 10.1093/pasj/psx066 Aihara, H., Armstrong, R., Bickerton, S., et al. 2018d, PASJ, 70, S8, doi: 10.1093/pasj/psx081 Aihara, H., AlSayyad, Y., Ando, M., et al. 2022, PASJ, 74, 247, doi: 10.1093/pasj/psab122 Anbajagane, D., Evrard, A. E., & Farahi, A. 2022, MNRAS, 509, 3441, doi: 10.1093/mnras/stab3177 Bagchi, J., Sankhyayan, S., Sarkar, P., et al. 2017, ApJ, 844, 25, doi: 10.3847/1538-4357/aa7949 Bai, L., Yee, H. K. C., Yan, R., et al. 2014, ApJ, 789, 134, doi: 10.1088/0004-637X/789/2/134 Baldry, I. K., Liske, J., Brown, M. J. I., et al. 2018, MNRAS, 474, 3875, doi: 10.1093/mnras/stx3042 Basilakos, S. 2003, MNRAS, 344, 602, doi: 10.1046/j.1365-8711.2003.06845.x Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013, ApJ, 762, 109, doi: 10.1088/0004-637X/762/2/109 Binggeli, B. 1982, A&A, 107, 338 Bonaventura, N. R., Webb, T. M. A., Muzzin, A., et al. 2017, MNRAS, 469, 1259, doi: 10.1093/mnras/stx722 Bosch, J., Armstrong, R., Bickerton, S., et al. 2018, PASJ, 70, S5, doi: 10.1093/pasj/psx080 Bradshaw, E. J., Almaini, O., Hartley, W. G., et al. 2013, MNRAS, 433, 194, doi: 10.1093/mnras/stt715 Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000, doi: 10.1046/j.1365-8711.2003.06897.x Bundy, K., Bershady, M. A., Law, D. R., et al. 2015, ApJ, 798, 7, doi: 10.1088/0004-637X/798/1/7 Busha, M. T., Adams, F. C., Wechsler, R. H., & Evrard, A. E. 2003, ApJ, 596, 713, doi: 10.1086/378043 Castignani, G., Chiaberge, M., Celotti, A., Norman, C., & De Zotti, G. 2014, ApJ, 792, 114, doi: 10.1088/0004-637X/792/2/114 Chiang, Y.-K., Overzier, R. A., Gebhardt, K., & Henriques, B. 2017, ApJL, 844, L23, doi: 10.3847/2041-8213/aa7e7b Chon, G., & Böhringer, H. 2012, A&A, 538, A35, doi: 10.1051/0004-6361/201117996 Chon, G., Böhringer, H., & Nowak, N. 2013, MNRAS, 429, 3272, doi: 10.1093/mnras/sts584 Chon, G., Böhringer, H., & Zaroubi, S. 2015, A&A, 575, L14, doi: 10.1051/0004-6361/201425591 Chow-Martínez, M., Andernach, H., Caretta, C. A., & Trejo-Alonso, J. J. 2014, MNRAS, 445, 4073, doi: 10.1093/mnras/stu1961 Chu, A., Durret, F., & Márquez, I. 2021, A&A, 649, A42, doi: 10.1051/0004-6361/202040245 Cohen, S. A., Hickox, R. C., Wegner, G. A., Einasto, M., & Vennik, J. 2017, ApJ, 835, 56, doi: 10.3847/1538-4357/835/1/56 Coil, A. L., Blanton, M. R., Burles, S. M., et al. 2011, ApJ, 741, 8, doi: 10.1088/0004-637X/741/1/8 Colless, M., Dalton, G., Maddox, S., et al. 2001, MNRAS, 328, 1039, doi: 10.1046/j.1365-8711.2001.04902.x Colless, M., Peterson, B. A., Jackson, C., et al. 2003, arXiv e-prints, astro, doi: 10.48550/arXiv.astro-ph/0306581 Cooke, K. C., Kartaltepe, J. S., Tyler, K. D., et al. 2019, ApJ, 881, 150, doi: 10.3847/1538-4357/ab30c9 Cool, R. J., Moustakas, J., Blanton, M. R., et al. 2013, ApJ, 767, 118, doi: 10.1088/0004-637X/767/2/118 Cooper, M. C., Aird, J. A., Coil, A. L., et al. 2011, ApJS, 193, 14, doi: 10.1088/0067-0049/193/1/14 Costa-Duarte, M. V., Sodré, L., J., & Durret, F. 2011, MNRAS, 411, 1716, doi: 10.1111/j.1365-2966.2010.17803.x Costa-Duarte, M. V., Sodré, L., & Durret, F. 2013, MNRAS, 428, 906, doi: 10.1093/mnras/sts088 Cowie, L. L., & Binney, J. 1977, ApJ, 215, 723, doi: 10.1086/155406 Coziol, R., Andernach, H., Caretta, C. A., Alamo-Martínez, K. A., & Tago, E. 2009, AJ, 137, 4795, doi: 10.1088/0004-6256/137/6/4795 Coziol, R., & Plauchu-Frayn, I. 2007, AJ, 133, 2630, doi: 10.1086/513514 Crocce, M., Pueblas, S., & Scoccimarro, R. 2006, MNRAS, 373, 369, doi: 10.1111/j.1365-2966.2006.11040.x Dalal, R., Strauss, M. A., Sunayama, T., et al. 2021a, MNRAS, 507, 4016, doi: 10.1093/mnras/stab2363 Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, ApJ, 292, 371, doi: 10.1086/163168 De Lucia, G., & Blaizot, J. 2007, MNRAS, 375, 2, doi: 10.1111/j.1365-2966.2006.11287.x De Propris, R., West, M. J., Andrade-Santos, F., et al. 2021, MNRAS, 500, 310, doi: 10.1093/mnras/staa3286 Dekel, A., Sari, R., & Ceverino, D. 2009, ApJ, 703, 785, doi: 10.1088/0004-637X/703/1/785 DeMaio, T., Gonzalez, A. H., Zabludoff, A., et al. 2020, MNRAS, 491, 3751, doi: 10.1093/mnras/stz3236 DESI Collaboration, Adame, A. G., Aguilar, J., et al. 2023, arXiv e-prints, arXiv:2306.06308, doi: 10.48550/arXiv.2306.06308 Dobos, L., & Csabai, I. 2011, MNRAS, 414, 1862, doi: 10.1111/j.1365-2966.2011.18494.x Dolag, K., Borgani, S., Murante, G., & Springel, V. 2009, MNRAS, 399, 497, doi: 10.1111/j.1365-2966.2009.15034.x Donnari, M., Pillepich, A., Nelson, D., et al. 2019, MNRAS, 485, 4817, doi: 10.1093/mnras/stz712 Drinkwater, M. J., Jurek, R. J., Blake, C., et al. 2010, MNRAS, 401, 1429, doi: 10.1111/j.1365-2966.2009.15754.x Dubinski, J. 1998, ApJ, 502, 141, doi: 10.1086/305901 Dünner, R., Araya, P. A., Meza, A., & Reisenegger, A. 2006, MNRAS, 366, 803, doi: 10.1111/j.1365-2966.2005.09955.x Durret, F., Tarricq, Y., Márquez, I., Ashkar, H., & Adami, C. 2019, A&A, 622, A78, doi: 10.1051/0004-6361/201834374 Einasto, J., Hütsi, G., Einasto, M., et al. 2003, A&A, 405, 425, doi: 10.1051/0004-6361:20030419 Einasto, J., Hütsi, G., Suhhonenko, I., Liivamägi, L. J., & Einasto, M. 2021, A&A, 647, A17, doi: 10.1051/0004-6361/202038358 Einasto, J., Suhhonenko, I., Liivamägi, L. J., & Einasto, M. 2019, A&A, 623, A97, doi: 10.1051/0004-6361/201834450 Einasto, J., Einasto, M., Tago, E., et al. 2007a, A&A, 462, 811, doi: 10.1051/0004-6361:20065296 Einasto, M., Einasto, J., Tenjes, P., et al. 2024, A&A, 681, A91, doi: 10.1051/0004-6361/202347504 Einasto, M., Lietzen, H., Tempel, E., et al. 2014, A&A, 562, A87, doi: 10.1051/0004-6361/201323111 Einasto, M., Tago, E., Jaaniste, J., Einasto, J., & Andernach, H. 1997, A&AS, 123, 119, doi: 10.1051/aas:1997340 Einasto, M., Saar, E., Liivamägi, L. J., et al. 2007b, A&A, 476, 697, doi: 10.1051/0004-6361:20078037 Einasto, M., Einasto, J., Tago, E., et al. 2007c, A&A, 464, 815, doi: 10.1051/0004-6361:20066456 Einasto, M., Lietzen, H., Gramann, M., et al. 2016, A&A, 595, A70, doi: 10.1051/0004-6361/201628567 Einasto, M., Gramann, M., Park, C., et al. 2018, A&A, 620, A149, doi: 10.1051/0004-6361/201833711 Einasto, M., Deshev, B., Tenjes, P., et al. 2020, A&A, 641, A172, doi: 10.1051/0004-6361/202037982 Einasto, M., Tenjes, P., Gramann, M., et al. 2022, A&A, 666, A52, doi: 10.1051/0004-6361/202142938 Eisenhardt, P. R. M., Brodwin, M., Gonzalez, A. H., et al. 2008, ApJ, 684, 905, doi: 10.1086/590105 Eisenstein, D. J., Annis, J., Gunn, J. E., et al. 2001, AJ, 122, 2267, doi: 10.1086/323717 Eisert, L., Pillepich, A., Nelson, D., et al. 2023, MNRAS, 519, 2199, doi: 10.1093/mnras/stac3295 Fabian, A. C., & Nulsen, P. E. J. 1977, MNRAS, 180, 479, doi: 10.1093/mnras/180.3.479 Furusawa, H., Koike, M., Takata, T., et al. 2018, PASJ, 70, S3, doi: 10.1093/pasj/psx079 Gal, R. R., Lemaux, B. C., Lubin, L. M., Kocevski, D., & Squires, G. K. 2008, ApJ, 684, 933, doi: 10.1086/590416 Garilli, B., McLure, R., Pentericci, L., et al. 2021, A&A, 647, A150, doi: 10.1051/0004-6361/202040059 Gilbank, D. G., Yee, H. K. C., Ellingson, E., et al. 2008, ApJL, 677, L89, doi: 10.1086/588138 Gladders, M. D., & Yee, H. K. C. 2000, AJ, 120, 2148, doi: 10.1086/301557 Gonzalez, A. H., Zabludoff, A. I., & Zaritsky, D. 2005, ApJ, 618, 195, doi: 10.1086/425896 Guglielmo, V., Poggianti, B. M., Vulcani, B., et al. 2018, A&A, 620, A15, doi: 10.1051/0004-6361/201732507 Hahn, O., & Abel, T. 2011, MNRAS, 415, 2101, doi: 10.1111/j.1365-2966.2011.18820.x Hasinger, G., Capak, P., Salvato, M., et al. 2018, ApJ, 858, 77, doi: 10.3847/1538-4357/aabacf Hausman, M. A., & Ostriker, J. P. 1978, ApJ, 224, 320, doi: 10.1086/156380 Hayashi, M., Koyama, Y., Kodama, T., et al. 2019, PASJ, 71, 112, doi: 10.1093/pasj/psz097 Hearin, A. P., Campbell, D., Tollerud, E., et al. 2017, AJ, 154, 190, doi: 10.3847/1538-3881/aa859f Henden, N. A., Puchwein, E., & Sijacki, D. 2020, MNRAS, 498, 2114, doi: 10.1093/mnras/staa2235 Hilton, M., Sifón, C., Naess, S., et al. 2021, ApJS, 253, 3, doi: 10.3847/1538-4365/abd023 Hsieh, B. C., & Yee, H. K. C. 2014, ApJ, 792, 102, doi: 10.1088/0004-637X/792/2/102 Hsu, Y.-H., Lin, Y.-T., Huang, S., et al. 2022, ApJ, 933, 61, doi: 10.3847/1538-4357/ac6d66 Huang, S., Leauthaud, A., Greene, J. E., et al. 2018a, MNRAS, 475, 3348, doi: 10.1093/mnras/stx3200 Huang, S., Leauthaud, A., Murata, R., et al. 2018b, PASJ, 70, S6, doi: 10.1093/pasj/psx126 Huchra, J. P., & Geller, M. J. 1982, ApJ, 257, 423, doi: 10.1086/160000 Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111, doi: 10.3847/1538-4357/ab042c Jones, D. H., Saunders, W., Colless, M., et al. 2004, MNRAS, 355, 747, doi: 10.1111/j.1365-2966.2004.08353.x Jones, D. H., Read, M. A., Saunders, W., et al. 2009, MNRAS, 399, 683, doi: 10.1111/j.1365-2966.2009.15338.x Jurić, M., Kantor, J., Lim, K. T., et al. 2017, in Astronomical Society of the Pacific Conference Series, Vol. 512, Astronomical Data Analysis Software and Systems XXV, ed.N. P. F. Lorente, K. Shortridge, & R. Wayth, 279, doi: 10.48550/arXiv.1512.07914 Kawanomoto, S., Uraguchi, F., Komiyama, Y., et al. 2018, PASJ, 70, 66, doi: 10.1093/pasj/psy056 Kim, J.-W., Im, M., Lee, S.-K., et al. 2016, ApJL, 821, L10, doi: 10.3847/2041-8205/821/1/L10 Klein, M., Hernández-Lang, D., Mohr, J. J., Bocquet, S., & Singh, A. 2023, MNRAS, 526, 3757, doi: 10.1093/mnras/stad2729 Kluge, M., & Bender, R. 2023, ApJS, 267, 41, doi: 10.3847/1538-4365/ace052 Komiyama, Y., Obuchi, Y., Nakaya, H., et al. 2018, PASJ, 70, S2, doi: 10.1093/pasj/psx069 Lauer, T. R. 1988, ApJ, 325, 49, doi: 10.1086/165982 Lauer, T. R., Postman, M., Strauss, M. A., Graves, G. J., & Chisari, N. E. 2014, ApJ, 797, 82, doi: 10.1088/0004-637X/797/2/82 Le Fèvre, O., Cassata, P., Cucciati, O., et al. 2013, A&A, 559, A14, doi: 10.1051/0004-6361/201322179 Lemaux, B. C., Gal, R. R., Lubin, L. M., et al. 2012, ApJ, 745, 106, doi: 10.1088/0004-637X/745/2/106 Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473, doi: 10.1086/309179 Lietzen, H., Tempel, E., Liivamägi, L. J., et al. 2016, A&A, 588, L4, doi: 10.1051/0004-6361/201628261 Liivamägi, L. J., Tempel, E., & Saar, E. 2012, A&A, 539, A80, doi: 10.1051/0004-6361/201016288 Lilly, S. J., Le Brun, V., Maier, C., et al. 2009, ApJS, 184, 218, doi: 10.1088/0067-0049/84/2/218 Lin, Y.-T., Brodwin, M., Gonzalez, A. H., et al. 2013, ApJ, 771, 61, doi: 10.1088/0004-637X/771/1/61 Lin, Y.-T., & Mohr, J. J. 2004, ApJ, 617, 879, doi: 10.1086/425412 Lin, Y.-T., Ostriker, J. P., & Miller, C. J. 2010, ApJ, 715, 1486, doi: 10.1088/0004-637X/715/2/1486 Lin, Y.-T., Hsieh, B.-C., Lin, S.-C., et al. 2017, ApJ, 851, 139, doi: 10.3847/1538-4357/aa9bf5 Liu, A., Bulbul, E., Ghirardini, V., et al. 2022, A&A, 661, A2, doi: 10.1051/0004-6361/202141120 Loh, Y.-S., & Strauss, M. A. 2006, MNRAS, 366, 373, doi: 10.1111/j.1365-2966.2005.09714.x Lubin, L. M., Brunner, R., Metzger, M. R., Postman, M., & Oke, J. B. 2000, ApJL, 531, L5, doi: 10.1086/312518 Luparello, H., Lares, M., Lambas, D. G., & Padilla, N. 2011, MNRAS, 415, 964, doi: 10.1111/j.1365-2966.2011.18794.x Luparello, H. E., Lares, M., Paz, D., et al. 2015, MNRAS, 448, 1483, doi: 10.1093/mnras/stv082 Luparello, H. E., Lares, M., Yaryura, C. Y., et al. 2013, MNRAS, 432, 1367, doi: 10.1093/mnras/stt556 Magnier, E. A., Schlafly, E., Finkbeiner, D., et al. 2013, ApJS, 205, 20, doi: 10.1088/0067-0049/205/2/20 Marinacci, F., Vogelsberger, M., Pakmor, R., et al. 2018, MNRAS, 480, 5113, doi: 10.1093/mnras/sty2206 Martel, H., Robichaud, F., & Barai, P. 2014, ApJ, 786, 79, doi: 10.1088/0004-637X/786/2/79 Martinache, C., Rettura, A., Dole, H., et al. 2018, A&A, 620, A198, doi: 10.1051/0004-6361/201833198 Martizzi, D., Teyssier, R., & Moore, B. 2012, MNRAS, 420, 2859, doi: 10.1111/j.1365-2966.2011.19950.x Masters, D. C., Stern, D. K., Cohen, J. G., et al. 2017, ApJ, 841, 111, doi: 10.3847/1538-4357/aa6f08—. 2019, ApJ, 877, 81, doi: 10.3847/1538-4357/ab184d McLure, R. J., Pearce, H. J., Dunlop, J. S., et al. 2013, MNRAS, 428, 1088, doi: 10.1093/mnras/sts092 Merritt, D. 1985, ApJ, 289, 18, doi: 10.1086/162860 Miller, C. J., Nichol, R. C., Reichart, D., et al. 2005, AJ, 130, 968, doi: 10.1086/431357 Misato, R., Toba, Y., Ota, N., et al. 2022, PASJ, 74, 398, doi: 10.1093/pasj/psac002 Miyazaki, S., Komiyama, Y., Nakaya, H., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV, ed. I. S. McLean, S. K. Ramsay, & H. Takami, 84460Z, doi: 10.1117/12.926844 Miyazaki, S., Komiyama, Y., Kawanomoto, S., et al. 2018, PASJ, 70, S1, doi: 10.1093/pasj/psx063 Momcheva, I. G., Brammer, G. B., van Dokkum, P. G., et al. 2016, ApJS, 225, 27, doi: 10.3847/0067-0049/225/2/27 Monteiro-Oliveira, R., Morell, D. F., Sampaio, V. M., Ribeiro, A. L. B., & de Carvalho, R. R. 2022, MNRAS, 509, 3470, doi: 10.1093/mnras/stab3225 Montenegro-Taborda, D., Rodriguez-Gomez, V., Pillepich, A., et al. 2023, MNRAS, 521, 800, doi: 10.1093/mnras/stad586 Moster, B. P., Somerville, R. S., Maulbetsch, C., et al. 2010, ApJ, 710, 903, doi: 10.1088/0004-637X/710/2/903 Murata, R., Oguri, M., Nishimichi, T., et al. 2019, PASJ, 71, 107, doi: 10.1093/pasj/psz092 Naab, T., Johansson, P. H., & Ostriker, J. P. 2009, ApJL, 699, L178, doi: 10.1088/0004-637X/699/2/L178 Naiman, J. P., Pillepich, A., Springel, V., et al. 2018, MNRAS, 477, 1206, doi: 10.1093/mnras/sty618 Nakata, F., Kodama, T., Shimasaku, K., et al. 2005, MNRAS, 357, 1357, doi: 10.1111/j.1365-2966.2005.08756.x Nelson, D., Pillepich, A., Springel, V., et al. 2018, MNRAS, 475, 624, doi: 10.1093/mnras/stx3040 Nelson, D., Springel, V., Pillepich, A., et al. 2019, Computational Astrophysics and Cosmology, 6, 2, doi: 10.1186/s40668-019-0028-x Newman, J. A., Cooper, M. C., Davis, M., et al. 2013, ApJS, 208, 5, doi: 10.1088/0067-0049/208/1/5 Niederste-Ostholt, M., Strauss, M. A., Dong, F., Koester, B. P., & McKay, T. A. 2010, MNRAS, 405, 2023, doi: 10.1111/j.1365-2966.2010.16597.x Nishimichi, T., Shirata, A., Taruya, A., et al. 2009, PASJ, 61, 321, doi: 10.1093/pasj/61.2.321 Nishizawa, A. J., Hsieh, B.-C., Tanaka, M., & Takata, T. 2020, arXiv e-prints, arXiv:2003.01511, doi: 10.48550/arXiv.2003.01511 Oguri, M. 2014, MNRAS, 444, 147, doi: 10.1093/mnras/stu1446 Oguri, M., Lin, Y.-T., Lin, S.-C., et al. 2018, PASJ, 70, S20, doi: 10.1093/pasj/psx042 Oke, J. B., & Gunn, J. E. 1983, ApJ, 266, 713, doi: 10.1086/160817 Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H., & Burkert, A. 2010, ApJ, 725, 2312, doi: 10.1088/0004-637X/725/2/2312 Ostriker, J. P., & Tremaine, S. D. 1975, ApJL, 202, L113, doi: 10.1086/181992 Paranjape, A., & Sheth, R. K. 2012, MNRAS, 423, 1845, doi: 10.1111/j.1365-2966.2012.21008.x Pâris, I., Petitjean, P., Aubourg, É., et al. 2018, A&A, 613, A51, doi: 10.1051/0004-6361/201732445 Park, C., Choi, Y.-Y., Kim, J., et al. 2012, ApJL, 759, L7, doi: 10.1088/2041-8205/759/1/L7 Peng, Y.-j., Lilly, S. J., Kovač, K., et al. 2010, ApJ, 721, 193, doi: 10.1088/0004-637X/721/1/193 Pillepich, A., Springel, V., Nelson, D., et al. 2018, MNRAS, 473, 4077, doi: 10.1093/mnras/stx2656 Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A13, doi: 10.1051/0004-6361/201525830 Popesso, P., Concas, A., Cresci, G., et al. 2023, MNRAS, 519, 1526, doi: 10.1093/mnras/stac3214 Ragone-Figueroa, C., Granato, G. L., Ferraro, M. E., et al. 2018, MNRAS, 479, 1125, doi: 10.1093/mnras/sty1639 Rettura, A., Martinez-Manso, J., Stern, D., et al. 2014, ApJ, 797, 109, doi: 10.1088/0004-637X/797/2/109 Rodriguez-Gomez, V., Genel, S., Vogelsberger, M., et al. 2015, MNRAS, 449, 49, doi: 10.1093/mnras/stv264 Rodriguez-Gomez, V., Pillepich, A., Sales, L. V., et al. 2016, MNRAS, 458, 2371, doi: 10.1093/mnras/stw456 Rodriguez-Gomez, V., Sales, L. V., Genel, S., et al. 2017, MNRAS, 467, 3083, doi: 10.1093/mnras/stx305 Rosati, P., Stanford, S. A., Eisenhardt, P. R., et al. 1999, AJ, 118, 76, doi: 10.1086/300934 Rykoff, E. S., Rozo, E., Busha, M. T., et al. 2014, ApJ, 785, 104, doi: 10.1088/0004-637X/785/2/104 Samir, R. M., Takey, A., & Shaker, A. A. 2020, Ap&SS, 365, 142, doi: 10.1007/s10509-020-03857-8 Sankhyayan, S., Bagchi, J., Tempel, E., et al. 2023, arXiv e-prints, arXiv:2309.06251, doi: 10.48550/arXiv.2309.06251 Schlafly, E. F., Finkbeiner, D. P., Jurić, M., et al. 2012, ApJ, 756, 158, doi: 10.1088/0004-637X/756/2/158 Scodeggio, M., Guzzo, L., Garilli, B., et al. 2018, A&A, 609, A84, doi: 10.1051/0004-6361/201630114 Sheth, R. K., & Diaferio, A. 2011, MNRAS, 417, 2938, doi: 10.1111/j.1365-2966.2011.19453.x Shimakawa, R., Okabe, N., Shirasaki, M., & Tanaka, M. 2023, MNRAS, 519, L45, doi: 10.1093/mnrasl/slac150 Shimakawa, R., Higuchi, Y., Shirasaki, M., et al. 2021, MNRAS, 503, 3896, doi: 10.1093/mnras/stab713 Shirasaki, M., Hamana, T., & Yoshida, N. 2015, MNRAS, 453, 3043, doi: 10.1093/mnras/stv1854 Silverman, J. D., Kashino, D., Sanders, D., et al. 2015, ApJS, 220, 12, doi: 10.1088/0067-0049/220/1/12 Skelton, R. E., Whitaker, K. E., Momcheva, I. G., et al. 2014, ApJS, 214, 24, doi: 10.1088/0067-0049/214/2/24 Sohn, J., Geller, M. J., Diaferio, A., & Rines, K. J. 2020, ApJ, 891, 129, doi: 10.3847/1538-4357/ab6e6a Sohn, J., Geller, M. J., Vogelsberger, M., & Borrow, J. 2022, ApJ, 938, 3, doi: 10.3847/1538-4357/ac8f23 Springel, V. 2005, MNRAS, 364, 1105, doi: 10.1111/j.1365-2966.2005.09655.x—. 2010, MNRAS, 401, 791, doi: 10.1111/j.1365-2966.2009.15715.x Springel, V., White, S. D. M., Tormen, G., & Kauffmann, G. 2001, MNRAS, 328, 726, doi: 10.1046/j.1365-8711.2001.04912.x Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, 435, 629, doi: 10.1038/nature03597 Springel, V., Pakmor, R., Pillepich, A., et al. 2018, MNRAS, 475, 676, doi: 10.1093/mnras/stx3304 Straatman, C. M. S., van der Wel, A., Bezanson, R., et al. 2018, ApJS, 239, 27, doi: 10.3847/1538-4365/aae37a Swinbank, A. M., Edge, A. C., Smail, I., et al. 2007, MNRAS, 379, 1343, doi: 10.1111/j.1365-2966.2007.12037.x Takahashi, R., Hamana, T., Shirasaki, M., et al. 2017, ApJ, 850, 24, doi: 10.3847/1538-4357/aa943d Tanaka, M. 2015, ApJ, 801, 20, doi: 10.1088/0004-637X/801/1/20 Tanaka, M., Coupon, J., Hsieh, B.-C., et al. 2018, PASJ, 70, S9, doi: 10.1093/pasj/psx077 Tempel, E., Tamm, A., Gramann, M., et al. 2014, A&A, 566, A1, doi: 10.1051/0004-6361/201423585 Tinker, J., Kravtsov, A. V., Klypin, A., et al. 2008, ApJ, 688, 709, doi: 10.1086/591439 Tonry, J. L. 1985, AJ, 90, 2431, doi: 10.1086/113948 Tonry, J. L., Stubbs, C. W., Lykke, K. R., et al. 2012, ApJ, 750, 99, doi: 10.1088/0004-637X/750/2/99 Toshikawa, J., Uchiyama, H., Kashikawa, N., et al. 2018, PASJ, 70, S12, doi: 10.1093/pasj/psx102 Tremaine, S. D., & Richstone, D. O. 1977, ApJ, 212, 311, doi: 10.1086/155049 van Dokkum, P. G., Whitaker, K. E., Brammer, G., et al. 2010, ApJ, 709, 1018, doi: 10.1088/0004-637X/709/2/1018 Vogelsberger, M., Genel, S., Sijacki, D., et al. 2013, MNRAS, 436, 3031, doi: 10.1093/mnras/stt1789 Von Der Linden, A., Best, P. N., Kauffmann, G., & White, S. D. M. 2007, MNRAS, 379, 867, doi: 10.1111/j.1365-2966.2007.11940.x Webb, T. M. A., Muzzin, A., Noble, A., et al. 2015, ApJ, 814, 96, doi: 10.1088/0004-637X/814/2/96 Weinberger, R., Springel, V., Hernquist, L., et al. 2017, MNRAS, 465, 3291, doi: 10.1093/mnras/stw2944 Wen, Z. L., & Han, J. L. 2015, ApJ, 807, 178, doi: 10.1088/0004-637X/807/2/178 West, M. J. 1994, MNRAS, 268, 79, doi: 10.1093/mnras/268.1.79 Whiley, I. M., Aragón-Salamanca, A., De Lucia, G., et al. 2008, MNRAS, 387, 1253, doi: 10.1111/j.1365-2966.2008.13324.x White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52, doi: 10.1086/170483 White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341, doi: 10.1093/mnras/183.3.341 Wylezalek, D., Vernet, J., De Breuck, C., et al. 2014, ApJ, 786, 17, doi: 10.1088/0004-637X/786/1/17 York, D. G., Adelman, J., Anderson, John E., J., et al. 2000, AJ, 120, 1579, doi: 10.1086/301513 Zhang, Y., Miller, C., McKay, T., et al. 2016, ApJ, 816, 98, doi: 10.3847/0004-637X/816/2/98 Zibetti, S., White, S. D. M., Schneider, D. P., & Brinkmann, J. 2005, MNRAS, 358, 949, doi: 10.1111/j.1365-2966.2005.08817.x | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93727 | - |
| dc.description.abstract | 在此碩士論文中,我們研究在宇宙網尺度下及星系尺度下質量最大的結構,也就是超星系團和星系團最亮星系(簡稱BCG)。
在論文的第一部分,我們採用物理動機的超星系團定義:要求超星系團即使在暗能量驅動下膨脹的宇宙中也會最終塌縮。藉由運用friends-of-friends(FoF)演算法在從Subaru Hyper Suprime-Cam巡天資料建構的CAMIRA星系團樣本上,我們首次系統性地搜尋在紅移 z=0.5-1.0 的超星系團,並在1027平方度的範圍內找到了673個候選超星系團,FoF演算法的參數是藉由演化N-body模擬到遙遠的未來進行校正,以確保高純度。我們發現大部分高紅移超星系團有2到4個星系團成員,表明了在年輕宇宙重力束縛的極限。除此之外,我們研究星系團以及BCG在不同的大尺度環境下的性質,我們發現屬於超星系團的星系團豐度通常較高,然而BCG的性質對大尺度環境沒有顯著的依賴性。我們也比較了觀測到的超星系團豐度和從暗物質暈光錐中找到的超星系團的豐度,藉此發現光度紅移的不確定性限制了尋找超星系團的效能。 在論文的第二部分,我們對BCGs進行兩項互補的統計檢定來檢驗BCG是否是星系團星系的恆星質量分佈中的極端值,或是源自於另外一個獨特的分佈。這份研究中的BCG樣本是選自宇宙磁流體力學模擬,The Next Generation Illustris Project (TNG)。第一個統計檢定依靠的是星系團中質量最大的星系(BCG) 和質量次大的星系 (G2)之間的恆星質量差,第二個統計檢定則依賴BCG恆星質量和星系團恆星質量間的相關性以及一個模擬建立星系團樣本的演算法上。藉由兩種不同採樣的方法來研究BCG統計特性,我們發現這個兩個統計檢定以及兩種採樣方法都表明BCG在紅移z=1.0-4.0之間是特別的。此外,當我們根據暗物質暈的性質將BCG分成兩個子樣本,然後重複這些統計測試,我們發現在紅移大於2時低暈集中和高質量吸積率的BCG比較``不特別'',然而當根據BCG的性質(像是顏色、恆星形成率、merger次數)將BCG分成兩個子樣本重複進行統計檢定時,我們沒有發現顯著差異。除此之外,對於從暗物質暈質量大於10^{13.5} h^{-1} Msun選出的BCG和G2,我們分析了他們的前身暗物質暈質量、前身恆星形成率、形成時間和恆星形成歷史。 | zh_TW |
| dc.description.abstract | In this thesis, we investigate the most massive structures on the cosmic web scale and the galactic scale, namely, the galaxy superclusters and the brightest cluster galaxies.
In the first part of the thesis, we adopt a physically motivated supercluster definition, requiring that superclusters should eventually collapse even in the presence of dark energy. Applying a friends-of-friends (FoF) algorithm to the CAMIRA cluster sample constructed using the Subaru Hyper Suprime-Cam survey data, we have conducted the first systematic search for superclusters at z=0.5-1.0 and identified 673 supercluster candidates over an area of 1027 deg^2. The FoF algorithm is calibrated by evolving N-body simulations to the far future to ensure high purity. We found that these high-z superclusters are mainly composed of 2-4 clusters, suggesting the limit of gravitationally bound structures in the younger Universe. In addition, we studied the properties of the clusters and brightest cluster galaxies (BCGs) residing in different large-scale environments. We found that clusters associated with superclusters are typically richer, but no apparent dependence of the BCG properties on large-scale structures is found. We also compared the abundance of observed superclusters with mock superclusters extracted from halo light cones, finding that photometric redshift uncertainty is a limiting factor in the performance of superclusters detection. In the second part of the thesis, we perform two complementary statistical tests on BCGs to examine whether they are statistically extreme of the cluster galaxy stellar mass function or other distinct populations. BCGs are selected from the cosmological magnetohydrodynamical (MHD) simulation suites, The Next Generation Illustris Project (TNG). The first statistical test relies on the stellar mass gap between the first-ranked galaxy (BCG) and the second-ranked galaxy (G2), and the second statistical test utilizes the BCG stellar mass - cluster stellar mass correlation along with an algorithm to construct mock cluster sample. Implementing two different BCG sampling methods to trace the time evolution of their statistical nature, we find that both tests and both sampling methods suggest that BCGs are special throughout z=1.0-4.0. Furthermore, we find that BCGs with lower halo concentration and higher mass accretion rate appear to be relatively ``less special'' at redshift ≳2 when repeating statistical tests with the BCG sample binned according to their parent halo properties. However, no significant differences are found when repeating the statistical tests with the BCG sample binned according to BCG properties such as color, star-formation rate, and total count of merger experienced. In addition, for BCGs and G2s selected from halos with mass M_{200m} ≳ 10^{13.5} h^{-1} Msun, we also analyze their progenitor halo mass, progenitor star formation rate, formation time, and star formation history. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:44:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T16:44:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v Contents ix List of Figures xiii List of Tables xv Chapter 1 Introduction 1 1.1 Superclusters of Galaxies 2 1.2 Brightest Cluster Galaxies 5 1.3 The Structure of the Thesis 9 Chapter 2 Galaxy Supercluster 11 2.1 Galaxy Cluster Data, Spectroscopic redshift, and Photometric redshift 12 2.1.1 CAMIRA cluster catalog 12 2.1.2 Dark Energy Spectroscopic Instrument Early Data Release 15 2.1.3 Direct Empirical Photometric Method 16 2.1.4 Summary of Photo-z examinations 18 2.2 Construction of CAMIRA Supercluster catalog 20 2.2.1 N-body simulation 21 2.2.2 Construction of mock catalogs 22 2.2.3 Optimization of the linking length 25 2.2.4 Validation of supercluster finding method 30 2.3 CAMIRA Supercluster Catalog 31 2.3.1 Effect of photometric redshift uncertainty 34 2.3.2 Multiplicity Function 38 2.3.3 Supercluster Total Mass Distribution 40 2.3.4 Comparison with known superclusters 41 2.3.4.1 King Ghidorah Supercluster 41 2.3.4.2 CL1604 43 2.4 Clusters and Brightest Cluster Galaxies in Superclusters 44 2.4.1 Cluster richness and BCG stellar mass 45 2.4.2 BCG color and star formation rate distribution 48 2.5 Discussion and Summary 49 2.5.1 On the Limit of Gravitational Bound Structures 50 2.5.2 On the Multiplicity of Superclusters 51 2.5.3 On the BCGs in Superclusters 53 Chapter 3 Brightest Cluster Galaxies 59 3.1 Simulation Data 59 3.1.1 IllustrisTNG simulation 59 3.2 The Statistical Tests 64 3.2.1 The Galaxy Pool Algorithm 64 3.2.2 Tremaine-Richstone Tests 66 3.2.3 BCG stellar mass - Cluster stellar mass correlation 67 3.3 Results 69 3.3.1 Results of TR tests in Simulation 69 3.3.2 Results of M∗,BCG − M∗,tot test in Simulation 72 3.4 Discussion and Summary 76 3.4.1 Progenitors of BCG/G2 77 3.4.2 On the BCG/G2 assembly time and the G2 infall time 78 3.4.3 SFR of BCGs at high-z 80 3.4.4 M∗, SFR, and sSFR History 82 3.4.5 When do BCGs become special? 85 3.4.6 Dependence on halo properties 90 3.4.7 Dependence on BCG properties 92 Chapter 4 Conclusion and Prospects 99 4.1 Summary 99 4.2 Prospects 101 References 105 Appendix A — Convergence Test 125 A.1 Convergence Test 125 Appendix B — Unweighted Purity and Completeness 129 B.1 Unweighted Purity and Completeness 129 Appendix C — Photometric Redshift Confirmation 133 C.1 DESI 133 C.2 BCG 135 C.3 DEmP 136 Appendix D — Fragmentation 139 D.1 Fragmentation 139 Appendix E — Synthetic Stellar Mass Function 143 E.1 Synthetic Stellar Mass Function 143 | - |
| dc.language.iso | en | - |
| dc.subject | 星系團 | zh_TW |
| dc.subject | 宇宙大尺度結構 | zh_TW |
| dc.subject | 星系演化 | zh_TW |
| dc.subject | 星系團最亮星系 | zh_TW |
| dc.subject | 超星系團 | zh_TW |
| dc.subject | Large-scale structure of the universe | en |
| dc.subject | Galaxy clusters | en |
| dc.subject | Superclusters | en |
| dc.subject | Brightest cluster galaxies | en |
| dc.subject | Galaxy evolution | en |
| dc.title | 宇宙最大質量結構之探究 | zh_TW |
| dc.title | An Investigation of the Most Massive Structures in the Universe | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 林彥廷 | zh_TW |
| dc.contributor.coadvisor | Yen-Ting Lin | en |
| dc.contributor.oralexamcommittee | 薛熙于;陳建州;江奕寬 | zh_TW |
| dc.contributor.oralexamcommittee | Hsi-Yu Schive;Chian-Chou Chen;Yi-Kuan Chiang | en |
| dc.subject.keyword | 宇宙大尺度結構,星系團,超星系團,星系團最亮星系,星系演化, | zh_TW |
| dc.subject.keyword | Large-scale structure of the universe,Galaxy clusters,Superclusters,Brightest cluster galaxies,Galaxy evolution, | en |
| dc.relation.page | 145 | - |
| dc.identifier.doi | 10.6342/NTU202401999 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-30 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 天文物理研究所 | - |
| dc.date.embargo-lift | 2025-06-16 | - |
| 顯示於系所單位: | 天文物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 14.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
