Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93726
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游琇伃zh_TW
dc.contributor.advisorHsiu-Yu Yuen
dc.contributor.author劉仲崴zh_TW
dc.contributor.authorChung-Wei Liuen
dc.date.accessioned2024-08-07T16:43:53Z-
dc.date.available2024-08-08-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citation1. A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell and L. Bocquet, Nature, 2013, 494, 455-458.
2. Q. Ren, Q. Cui, K. Chen, J. Xie and P. Wang, Desalination, 2022, 535, 115802.
3. Z. Zhang, L. Wen and L. Jiang, Chemical Society Reviews, 2018, 47, 322-356.
4. J. Tollefson, Nature, 2014, 508, 302.
5. Z. Jia, B. Wang, S. Song and Y. Fan, Renewable and Sustainable Energy Reviews, 2014, 31, 91-100.
6. Z. L. Wang, T. Jiang and L. Xu, Nano Energy, 2017, 39, 9-23.
7. U. Khan and S.-W. Kim, ACS nano, 2016, 10, 6429-6432.
8. J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi, Q. Jing, H. Guo, Z. Wen, K. C. Pradel and S. Niu, ACS nano, 2015, 9, 3324-3331.
9. L.-H. Yeh, M. Zhang and S. Qian, Analytical chemistry, 2013, 85, 7527-7534.
10. D.-K. Kim, C. Duan, Y.-F. Chen and A. Majumdar, Microfluidics and Nanofluidics, 2010, 9, 1215-1224.
11. W. Guo, L. Cao, J. Xia, F. Q. Nie, W. Ma, J. Xue, Y. Song, D. Zhu, Y. Wang and L. Jiang, Advanced functional materials, 2010, 20, 1339-1344.
12. L. Cao, W. Guo, W. Ma, L. Wang, F. Xia, S. Wang, Y. Wang, L. Jiang and D. Zhu, Energy & Environmental Science, 2011, 4, 2259-2266.
13. W. Ouyang, W. Wang, H. Zhang, W. Wu and Z. Li, Nanotechnology, 2013, 24, 345401.
14. R. Long, Z. Kuang, Z. Liu and W. Liu, Physical Chemistry Chemical Physics, 2018, 20, 7295-7302.
15. Y. Mei and C. Y. Tang, Desalination, 2018, 425, 156-174.
16. A. Nazif, H. Karkhanechi, E. Saljoughi, S. M. Mousavi and H. Matsuyama, Journal of Water Process Engineering, 2022, 47, 102706.
17. J.-P. Hsu, H.-H. Wu, C.-Y. Lin and S. Tseng, Analytical chemistry, 2017, 89, 3952-3958.
18. S. Tseng, S.-C. Lin, C.-Y. Lin and J.-P. Hsu, The Journal of Physical Chemistry C, 2016, 120, 25620-25627.
19. L. Mei, L.-H. Yeh and S. Qian, Nano Energy, 2017, 32, 374-381.
20. Y. Ma, L.-H. Yeh, C.-Y. Lin, L. Mei and S. Qian, Analytical chemistry, 2015, 87, 4508-4514.
21. C. Zhou, L. Mei, Y.-S. Su, L.-H. Yeh, X. Zhang and S. Qian, Sensors and Actuators B: Chemical, 2016, 229, 305-314.
22. L. Zhang and X. Chen, Angewandte Chemie International Edition, 2013, 52.
23. Z. Zhu, D. Wang, Y. Tian and L. Jiang, Journal of the American Chemical Society, 2019, 141, 8658-8669.
24. L. Ding, D. Xiao, Z. Zhao, Y. Wei, J. Xue and H. Wang, Advanced Science, 2022, 9, 2202869.
25. Y. Qian, D. Liu, G. Yang, L. Wang, Y. Liu, C. Chen, X. Wang and W. Lei, Journal of the American Chemical Society, 2022, 144, 13764-13772.
26. C.-W. Chang, C.-W. Chu, Y.-S. Su and L.-H. Yeh, Journal of Materials Chemistry A, 2022, 10, 2867-2875.
27. Y.-C. Liu, L.-H. Yeh, M.-J. Zheng and K. C.-W. Wu, Science Advances, 2021, 7, eabe9924.
28. X. Sui, Z. Zhang, C. Li, L. Gao, Y. Zhao, L. Yang, L. Wen and L. Jiang, ACS applied materials & interfaces, 2018, 11, 23815-23821.
29. C. Zhu, P. Liu, B. Niu, Y. Liu, W. Xin, W. Chen, X.-Y. Kong, Z. Zhang, L. Jiang and L. Wen, Journal of the American Chemical Society, 2021, 143, 1932-1940.
30. J. Yang, B. Tu, G. Zhang, P. Liu, K. Hu, J. Wang, Z. Yan, Z. Huang, M. Fang and J. Hou, Nature nanotechnology, 2022, 17, 622-628.
31. S. Tseng, Y.-M. Li, C.-Y. Lin and J.-P. Hsu, Electrochimica Acta, 2016, 219, 790-797.
32. J.-P. Hsu, T.-C. Su, P.-H. Peng, S.-C. Hsu, M.-J. Zheng and L.-H. Yeh, ACS nano, 2019, 13, 13374-13381.
33. J.-P. Hsu, T.-C. Su, C.-Y. Lin and S. Tseng, Electrochimica Acta, 2019, 294, 84-92.
34. J.-P. Hsu, S.-C. Lin, C.-Y. Lin and S. Tseng, Journal of Power Sources, 2017, 366, 169-177.
35. Y.-S. Su, W.-H. Hung, A. R. Fauziah, Z. S. Siwy and L.-H. Yeh, Chemical Engineering Journal, 2023, 456, 141064.
36. T. J. Liu and J.-P. Hsu, Soft Matter, 2022, 18, 8427-8435.
37. Y.-T. Chen and J.-P. Hsu, Journal of Colloid and Interface Science, 2022, 605, 571-581.
38. G. Z. Ramon, B. J. Feinberg and E. M. Hoek, Energy & environmental science, 2011, 4, 4423-4434.
39. N. Y. Yip, D. Brogioli, H. V. Hamelers and K. Nijmeijer, Environmental science & technology, 2016, 50, 12072-12094.
40. G. Laucirica, M. E. Toimil-Molares, C. Trautmann, W. Marmisollé and O. Azzaroni, Chemical Science, 2021, 12, 12874-12910.
41. I. Vlassiouk, S. Smirnov and Z. Siwy, Nano letters, 2008, 8, 1978-1985.
42. L.-H. Yeh, C. Hughes, Z. Zeng and S. Qian, Analytical chemistry, 2014, 86, 2681-2686.
43. J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao and L. Jiang, Journal of the American Chemical Society, 2014, 136, 12265-12272.
44. W.-C. Huang and J.-P. Hsu, Electrochimica Acta, 2020, 353, 136613.
45. H. Tao, G. Li, Z. Xu, C. Lian and H. Liu, Chemical Engineering Journal, 2022, 444, 136675.
46. C.-W. Liu and J.-P. Hsu, Physical Chemistry Chemical Physics, 2023, 25, 28363-28372.
47. X. Chen, Z. Luo, R. Long, Z. Liu and W. Liu, Renewable Energy, 2022, 187, 440-449.
48. R. F. Stout and A. S. Khair, Physical Review Fluids, 2017, 2, 014201.
49. P. Biesheuvel and M. Van Soestbergen, Journal of Colloid and Interface Science, 2007, 316, 490-499.
50. A. S. Khair and T. M. Squires, Journal of fluid mechanics, 2009, 640, 343-356.
51. J. Bikerman, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1942, 33, 384-397.
52. M. Manciu and E. Ruckenstein, Langmuir, 2002, 18, 5178-5185.
53. N. F. Carnahan and K. E. Starling, The Journal of chemical physics, 1969, 51, 635-636.
54. T. Boublík, The Journal of chemical physics, 1970, 53, 471-472.
55. G. Mansoori, N. F. Carnahan, K. Starling and T. Leland Jr, The Journal of Chemical Physics, 1971, 54, 1523-1525.
56. M. M. Hatlo, R. Van Roij and L. Lue, Europhysics Letters, 2012, 97, 28010.
57. Y. Nakayama and D. Andelman, The Journal of chemical physics, 2015, 142.
58. W.-K. Yen and J.-P. Hsu, Journal of Colloid and Interface Science, 2021, 588, 94-100.
59. D. Pandey and S. Bhattacharyya, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125905.
60. H. Li and B. Lu, The Journal of chemical physics, 2014, 141.
61. M. Born, Zeitschrift für physik, 1920, 1, 45-48.
62. H. A. Pohl, Journal of Applied Physics, 1958, 29, 1182-1188.
63. J. Li, R. Peng and D. Li, Analytica Chimica Acta, 2019, 1059, 68-79.
64. E. Gongadze, A. Velikonja, Š. Perutkova, P. Kramar, A. Maček-Lebar, V. Kralj-Iglič and A. Iglič, Electrochimica Acta, 2014, 126, 42-60.
65. T. Hennequin, M. Manghi and J. Palmeri, Physical Review E, 2021, 104, 044601.
66. T. B. Jones, Journal of Electrostatics, 1979, 6, 69-82.
67. H. Pohl, K. Pollock and J. Crane, Journal of Biological Physics, 1978, 6, 133-160.
68. X.-B. Wang, Y. Huang, J. Burt, G. Markx and R. Pethig, Journal of Physics D: Applied Physics, 1993, 26, 1278.
69. J. J. López-García, J. Horno and C. Grosse, Journal of colloid and interface science, 2013, 405, 336-343.
70. J. J. López-García, J. Horno and C. Grosse, Journal of colloid and interface science, 2014, 428, 308-315.
71. J. López-García, J. Horno and C. Grosse, Current opinion in colloid & interface science, 2016, 24, 23-31.
72. J. López-García, J. Horno and C. Grosse, The European Physical Journal E, 2018, 41, 1-9.
73. J. López-García, J. Horno and C. Grosse, Physical Review Fluids, 2019, 4, 103702.
74. J. López-Garcı́a, J. Horno and C. Grosse, The Journal of Physical Chemistry C, 2020, 124, 10764-10775.
75. D. Pandey and S. Bhattacharyya, Physics of Fluids, 2021, 33.
76. X. Chen, L. Wang, R. Zhou, R. Long, Z. Liu and W. Liu, Renewable Energy, 2023, 211, 31-41.
77. J. Fair and J. Osterle, The Journal of Chemical Physics, 1971, 54, 3307-3316.
78. R. Long, Z. Kuang, Z. Liu and W. Liu, Journal of membrane science, 2018, 561,
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93726-
dc.description.abstract近年來,學術研究對於鹽濃差發電的興趣日益增長,這種創新方法利用鹽水和淡水間的鹽度差異,讓離子通過奈米孔道時產生電力。先前的理論研究主要集中在內表面光滑的奈米孔道上。從鹽度梯度中成功提取滲透壓能源的關鍵在於奈米孔道的離子選擇性能。這要求奈米孔道材料與水溶液接觸的表面具有適當的表面電荷,並且奈米孔的尺寸應當與電雙層的尺寸匹配。
第一章中,為了提升奈米流體滲透壓發電的性能,我們研究了四種具有獨特波形內表面設計(方形、鋸齒形、三角形和正弦波)的圓柱形奈米孔道。此研究聚焦於探討系統濃度效應和固液界面幾何特性對發電表現的影響。我們證明了波形孔道內表面的存在引入了新的變數,這些變數對奈米流體系統的整體性能產生重大影響。在波形孔道內表面的最佳振幅下,提高波形頻率顯著改善了滲透電流、擴散電位、最大功率和最大效率。這些研究成果已經發表在Physical Chemistry Chemical Physics journal上。
然而,目前的研究主要依賴標準的泊松-能斯特-普朗克(Poisson-Nernst-Planck, PNP)模型,該模型過於簡化離子為點電荷,並忽略了如離子的有限大小、波恩能(Born energy)和介電能等關鍵因素。在第二章中,為了修正這些遺漏,我們採用了一種將溶液介電常數視為濃度函數的觀點,並為每種離子引入了修改後的化學勢能,從而提出了一種修改後的PNP模型。該模型全面考慮了離子的體積效應、波恩力和介電力。我們的研究旨在描述標準PNP模型和修改後PNP模型之間的差異,包括系統性能如電流、擴散電位、最大功率和最大效率等方面。通過這一探討,我們提供了電動力學現象的新見解,揭示了由奈米孔內離子分佈引發的現象。
zh_TW
dc.description.abstractIn recent scholarly inquiries, there has been a growing interest in salinity gradient power, an innovative method exploiting the disparity in salinity between brine and fresh water to generate electricity via nanopores. Previous theoretical studies in this field based mainly on nanopores having a smooth inner surface. The successful operation of osmotic power derived from salinity gradients hinges on the ion-selective properties of the nanopore. This necessitates that the surface of the nanofluidic material in contact with the salt solution carries an appropriate charge, and that the dimensions of the nanofluidic channels align with those of the electrical double layer (EDL).
In Chapter 1, to enhance the performance of nanofluidic osmotic power, we investigated four types of cylindrical nanopore, each has a unique waveform wall design (square, sawtooth, triangle, and sine waves). This study focused on elucidating the influence of bulk salt concentration and geometric characteristics at the solid-liquid interface. We demonstrated that the presence of a waveform wall introduces new variables that have a significant impact on the overall performance of a nanofluidic osmotic power system. At the optimal amplitude of the waveform wall, raising waveform frequency can improve remarkably the osmotic current, diffusion potential, maximum power, and maximum efficiency. These research findings have been published in the Physical Chemistry Chemical Physics journal.
However, prevalent studies predominantly rely on the standard Poisson-Nernst-Planck (PNP) model, which oversimplifies ions as point charges and neglects crucial factors such as the finite size of ions, Born energy and dielectric energy differences. In Chapter 2, to rectify these oversights, we adopt a perspective that considers solution permittivity as a concentration-dependent function and introduce a modified chemical potential for each ionic species, leading to the formulation of a modified PNP model. This model comprehensively accounts for ion steric effects, Born, and dielectric forces. Our investigation aims to delineate disparities between standard and modified PNP models, encompassing system performance such as current, diffusion potential, maximum power, and maximum efficiency. Through this rigorous examination, we offer novel insights into the electrokinetic phenomenon, shedding light on profound phenomena arising from ion distribution within nanopores.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:43:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T16:43:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 III
Abstract V
Contents VII
List of Figures IX
List of Tables XIII
Chapter 1 Enhancing the performance of a cylindrical nanopore in osmotic power generation through designing the waveform of its inner surface 1
1.1 Introduction 3
1.2 Theoretical model 6
1.3 Results and Discussion 10
1.4 Acknowledgements 25
Chapter 2 Salinity gradient power: A modified Poisson-Nernst-Planck model investigating steric, Born, and dielectric forces in a pH-regulated nanopore 27
2.1 Introduction 29
2.2 Theoretical model 34
2.3 Results and Discussion 39
Conclusions 61
References 63
Appendix A 69
Appendix B 79
-
dc.language.isoen-
dc.subject濃差發電zh_TW
dc.subject電雙層zh_TW
dc.subject離子選擇性zh_TW
dc.subject泊松-能斯特-普朗克模型zh_TW
dc.subject離子空間效應zh_TW
dc.subject介電效應zh_TW
dc.subjection selectivityen
dc.subjectsalinity gradient poweren
dc.subjectdielectrics effectsen
dc.subjection steric effectsen
dc.subjectPoisson- Nernst-Planck (PNP) modelen
dc.subjectelectric double layer (EDL)en
dc.title鹽濃差度梯度產生的滲透能:孔道表面波形設計的影響及修正後的電動模型對離子尺寸和介電效應的研究zh_TW
dc.titleOsmotic Power from Salinity Gradient: Impact of Surface Waveform Design and a Modified Electrokinetic Model Investigating Ion Size and Dielectric Effectsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee諶玉真;曾琇瑱zh_TW
dc.contributor.oralexamcommitteeYu-Jane Sheng;Shio-jenn Tsengen
dc.subject.keyword濃差發電,電雙層,離子選擇性,泊松-能斯特-普朗克模型,離子空間效應,介電效應,zh_TW
dc.subject.keywordsalinity gradient power,electric double layer (EDL),ion selectivity,Poisson- Nernst-Planck (PNP) model,ion steric effects,dielectrics effects,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202402496-
dc.rights.note未授權-
dc.date.accepted2024-07-31-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved