Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93716
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵zh_TW
dc.contributor.advisorChun-Han Koen
dc.contributor.author林柏亨zh_TW
dc.contributor.authorPo-Heng Linen
dc.date.accessioned2024-08-07T16:39:53Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citationAl-Mefarrej, H. A., Abdel-Aal, M. A., Nasser, R. A., & Shetta, N. D. (2011). Impact of initial tree spacing and stem height level on chemical composition of Leucaena Leucocephala tress grown in Riyadh region. World Appl. Sci. J, 12(7).
Al-Mefarrej, H. A., Abdel-Aal, M. A., Nasser, R. A., & Shetta, N. D. (2011). Impact of initial tree spacing and stem height level on chemical composition of Leucaena Leucocephala tress grown in Riyadh region. World Appl. Sci. J, 12(7).
Amini, E., Safdari, M. S., DeYoung, J. T., & Weise, D. R. (2019). Characterization of pyrolysis products from slow pyrolysis of live and dead vegetation native to the southern United States. Fuel, 235(1), 1475-1491.
Arenas-Cárdenas, P., López-López, A., Moeller-Chávez, G. E., & León-Becerril, E. (2017). Current pretreatments of lignocellulosic residues in the production of bioethanol. Waste and Biomass Valorization, 8, 161-181.
Bouckaert, S., Pales, A. F., McGlade, C., Remme, U., Wanner, B., Varro, L., ... & Spencer, T. (2021). Net zero by 2050: A roadmap for the global energy sector.
Bouckaert, S., Pales, A. F., McGlade, C., Remme, U., Wanner, B., Varro, L., ... & Spencer, T. (2021). Net zero by 2050: A roadmap for the global energy sector.
Branca, C., Di Blasi, C., Casu, A., Morone, V., and Costa, C. (2003). “Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion,” Thermochimica Acta 399(1-2), 127-137.
Buss, W., Wurzer, C., Manning, D. A., Rohling, E. J., Borevitz, J., & Mašek, O. (2022). Mineral-enriched biochar delivers enhanced nutrient recovery and carbon dioxide removal. Communications Earth & Environment, 3(1), 67.
Carone, M. T., Pantaleo, A., & Pellerano, A. (2011). Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass and bioenergy, 35(1), 402-410.
Chai,Wan lan (2014) Survey on the current status of waste polyurethane foam recycling.Vanung University Environmental Protection Newsletter No. 22. (in Chinese)
Chen, T. tien, Huang, J. cherng, Li, R. xing, Huang, C. ya, Lin, Y. chun, Juan, S. wen, & Soong, H. ding. (2010). The Rudimentary Investigation on Manufacturing and Properties of Pelletized Fuels from White Popinac (Leucaena leucocephala). Forest Products Industries, 29(2), P109 – 120.
Chen, W., Feng, J., Liu, S., Zhang, J., Cai, Y., Lv, Z., ... & Tan, X. (2022). A green and economical MgO/biochar composite for the removal of U (VI) from aqueous solutions. Chemical Engineering Research and Design, 180, 391-401.
Chen, Y., Shen, G., Su, S., Du, W., Huangfu, Y., Liu, G., Wang, X., Xing, B., Smith, K, R., and Tao, S. (2016). “Efficiencies and pollutant emissions from forced-draft biomass-pellet semi-gasifier stoves: Comparison of International and Chinese water boiling test protocols,” Energy for Sustainable Development 32 22-30, .
CNS 10821 (1984). “Method for determination of inherent moisture of coal and coke,” Chinese National Standards, Taipei, Taiwan.
CNS 10822 (1984). “Method for determination of ash of coal and coke,” Chinese National Standards, Taipei, Taiwan.
CNS 10823 (1984). “Method for determination of volatile matter of coal and coke,” Chinese National Standards, Taipei, Taiwan.
CNS 10824 (1984). “Method for calculation of fixed carbon of coal and coke,” Chinese National Standards, Taipei, Taiwan.
CNS 14907 (2005). “Method of test for acid-insoluble lignin in wood,” Chinese National Standards, Taipei, Taiwan.
CNS 3085 (2004). “Method of test for holocellulose in wood,” Chinese National Standards, Taipei, Taiwan.
CNS 452 (2013). “Wood – Determination of moisture content for physical and mechanical tests,” Chinese National Standards, Taipei, Taiwan.
CNS12108 (1987). “Method of test for acid-soluble lignin in wood and pulp,” Chinese National Standards, Taipei, Taiwan.
CNS3084 (2004). “Method of test for ash in wood,” Chinese National Standards, Taipei, Taiwan.
CNS4713 (2005). “Method of test for ethanol-toluene extractives in wood,” Chinese National Standards, Taipei, Taiwan.
Costa, M., Massarotti, N., Mauro, A., Arpino, F., & Rocco, V. (2016). CFD modelling of a RDF incineration plant. Applied Thermal Engineering, 101, 710-719.
Dafnomilis, I., Hoefnagels, R., Pratama, Y. W., Schott, D. L., Lodewijks, G., & Junginger, M. (2017). Review of solid and liquid biofuel demand and supply in Northwest Europe towards 2030–A comparison of national and regional projections. Renewable and Sustainable Energy Reviews, 78, 31-45.
Fajnor, V. Š., & Jesenák, K. (1996). Differential thermal analysis of montmorillonite. Journal of thermal analysis, 46, 489-493.
Fan, J., Li, Y., Yu, H., Li, Y., Yuan, Q., Xiao, H., ... & Pan, B. (2020). Using sewage sludge with high ash content for biochar production and Cu (II) sorption. Science of the total environment, 713, 136663.
Figueirêdo, M. B., Hita, I., Deuss, P. J., Venderbosch, R. H., & Heeres, H. J. (2022). Pyrolytic lignin: a promising biorefinery feedstock for the production of fuels and valuable chemicals. Green Chemistry, 24(12), 4680-4702.
Garrido, M. A., & Font, R. (2015). Pyrolysis and combustion study of flexible polyurethane foam. Journal of Analytical and Applied pyrolysis, 113, 202-215.
Graham, S., Eastwick, C., Snape, C., & Quick, W. (2017). Mechanical degradation of biomass wood pellets during long term stockpile storage. Fuel Processing Technology, 160, 143-151.
Guo, J., & Chen, B. (2014). Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components. Environmental Science & Technology, 48(16), 9103-9112.
Han, L., Ro, K. S., Wang, Y., Sun, K., Sun, H., Libra, J. A., & Xing, B. (2018). Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Science of the Total Environment, 616, 335-344.
Harvey, O. R., Kuo, L. J., Zimmerman, A. R., Louchouarn, P., Amonette, J. E., & Herbert, B. E. (2012). An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environmental science & technology, 46(3), 1415-1421.
Herich, H., Gianini, M. F. D., Piot, C., Močnik, G., Jaffrezo, J. L., Besombes, J. L., ... & Hueglin, C. (2014). Overview of the impact of wood burning emissions on carbonaceous aerosols and PM in large parts of the Alpine region. Atmospheric Environment, 89, 64-75.
Holzleitner, M., Moser, S., & Puschnigg, S. (2020). Evaluation of the impact of the new Renewable Energy Directive 2018/2001 on third-party access to district heating networks to enforce the feed-in of industrial waste heat. Utilities Policy, 66, 101088.
Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450-1457.
IBI (2018). “Frequently asked questions about biochar: What is biochar?,” International Biochar Initiative (IBI), (https://biochar–international.org/faqs)
Jiao, L., Xiao, H., Wang, Q., & Sun, J. (2013). Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polymer Degradation and Stability, 98(12), 2687-2696.
Kerdsuwan, S., Meenaroch, P., & Chalermcharoenrat, T. (2016). The novel design and manufacturing technology of densified RDF from reclaimed landfill without a mixing binding agent using a hydraulic hot pressing machine. In MATEC Web of Conferences (Vol. 70, p. 11003). EDP Sciences.
Leng, L., & Huang, H. (2018). An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource technology, 270, 627-642.
Li, C., Zhang, C., Zhang, L., Gholizadeh, M., & Hu, X. (2021). Biochar catalyzing polymerization of the volatiles from pyrolysis of poplar wood. International Journal of Energy Research, 45(9), 13936-13951.
Li, F., Cao, X., Zhao, L., Wang, J., & Ding, Z. (2014). Effects of mineral additives on biochar formation: carbon retention, stability, and properties. Environmental Science & Technology, 48(19), 11211-11217.
Lin, C. C. (2011). Characteristics of seed germination and seedling regeneration of Leucaena leucocephala (Master Thesis. Department of Forest, National Pingtung University of Science and Technology.(In Chinese).
Lin, L. D., Tsai, M. J., Chang, F. C., Ko, C. H., andYang, B. Y. (2022). “Influence of torrefaction on the heating values and energy densities of hardwood and softwood,”BioResources17(1), 316-328.
Liu, N., Charrua, A. B., Weng, C. H., Yuan, X., & Ding, F. (2015). Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresource technology, 198, 55-62.
Liu, Y., Gao, C., Wang, Y., He, L., Lu, H., & Yang, S. (2020). Vermiculite modification increases carbon retention and stability of rice straw biochar at different carbonization temperatures. Journal of Cleaner Production, 254, 120111.
Loaiza, J. M., López, F., García, M. T., García, J. C., & Díaz, M. J. (2017). Biomass valorization by using a sequence of acid hydrolysis and pyrolysis processes. Application to Leucaena leucocephala. Fuel, 203, 393-402.
Lu, J., Yang, Y., Liu, P., Li, Y., Huang, F., Zeng, L., & Hou, B. (2020). Iron-montmorillonite treated corn straw biochar: Interfacial chemical behavior and stability. Science of the Total Environment, 708, 134773.
Lu, K. M., Lee, W. J., Chen, W. H., andLin, T. C. (2013). “Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends,”Applied Energy105, 57-65.
Lu, X., & Gu, X. (2022). A review on lignin pyrolysis: pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency. Biotechnology for Biofuels and Bioproducts, 15(1), 106.
Luo, H., Bao, L. W., Kong, L. Z., and Sun, Y. H. (2018). “Revealing low temperature microwave‐assisted pyrolysis kinetic behaviors and dielectric properties of biomass components,” AIChE Journal 64(6), 2124-2134.
Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., ... & Waterfield, T. (2019). Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of, 1, 93-174.
Monir, M. U., Abd Aziz, A., Kristanti, R. A., & Yousuf, A. (2018). Gasification of lignocellulosic biomass to produce syngas in a 50 kW downdraft reactor. Biomass and Bioenergy, 119, 335-345.
Nandal, P., Arora, A., & Virmani, S. (2021). An appraisal on valorization of lignin: a byproduct from biorefineries and paper industries. Biomass and Bioenergy, 155, 106295.
Násner, A. M. L., Lora, E. E. S., Palacio, J. C. E., Rocha, M. H., Restrepo, J. C., Venturini, O. J., & Ratner, A. (2017). Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability. Waste Management, 69, 187-201.
Okoroigwe, E. C., Enibe, S. O., and Onyegegbu, S. O. (2016). “Determination of oxidation characteristics and decomposition kinetics of some Nigerian biomass,” Journal of Energy in Southern Africa 27(3), 39-49.
Olad, A., & Azhar, F. F. (2014). Eco-friendly biopolymer/clay/conducting polymer nanocomposite: characterization and its application in reactive dye removal. Fibers and Polymers, 15, 1321-1329.
Osayi, J. I., Iyuke, S., & Ogbeide, S. E. (2014). Biocrude production through pyrolysis of used tyres. Journal of Catalysts, 2014.
Pan, X., & Saddler, J. N. (2013). Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnology for biofuels, 6, 1-10.
Patel, S., Leavey, A., He, S., Fang, J., O’Malley, K., & Biswas, P. (2016). Characterization of gaseous and particulate pollutants from gasification-based improved cookstoves. Energy for sustainable development, 32, 130-139.
Pradhan, P., Arora, A., & Mahajani, S. M. (2018). Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy for sustainable development, 43, 1-14.
Pradhan, P., Mahajani, S. M., & Arora, A. (2018). Production and utilization of fuel pellets from biomass: A review. Fuel Processing Technology, 181, 215-232.
Puig-Arnavat, M., Shang, L., Sárossy, Z., Ahrenfeldt, J., & Henriksen, U. B. (2016). From a single pellet press to a bench scale pellet mill—Pelletizing six different biomass feedstocks. Fuel processing technology, 142, 27-33.
Qi, Q., Sun, C., Cristhian, C., Zhang, T., Zhang, J., Tian, H., ... & Tong, Y. W. (2021). Enhancement of methanogenic performance by gasification biochar on anaerobic digestion. Bioresource Technology, 330, 124993.
Rabemanolontsoa, H., and Saka, S. (2013). “Comparative study on chemical composition of various biomass species,” RSC Advances 3(12), 3946-3956.
REN21, R. (2018). Global Status Report, REN21 Secretariat.
Sadhukhan, A. K., Gupta, P., & Saha, R. K. (2008). Modelling and experimental studies on pyrolysis of biomass particles. Journal of Analytical and Applied Pyrolysis, 81(2), 183-192.
Sadhukhan, A. K., Gupta, P., Goyal, T., & Saha, R. K. (2008). Modelling of pyrolysis of coal–biomass blends using thermogravimetric analysis. Bioresource technology, 99(17), 8022-8026.
Scheffer, F., Schachtschabel, P., & Blume, H. P. (2016). Scheffer/Schachtschabel Soil Science. Springer.
Serrano, C., Monedero, E., Lapuerta, M., & Portero, H. (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel processing technology, 92(3), 699-706.
Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., ... & Fennell, P. S. (2016). An overview of advances in biomass gasification. Energy & Environmental Science, 9(10), 2939-2977.
Singh, R., Krishna, B, B., Mishra, G., Kumar, J., and Bhaskar, T. (2016). “Strategies for selection of thermo-chemical processes for the valorisation of biomass,” Renewable Energy 98 226-237, .
Sinha, A., Martin, E. M., Lim, K. T., Carrier, D. J., Han, H., Zharov, V. P., & Kim, J. W. (2015). Cellulose nanocrystals as advanced “green” materials for biological and biomedical engineering. Journal of Biosystems Engineering, 40(4), 373-393.
Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., .., & Arneth, A. (2020). Which practices co‐deliver food security climate, change mitigation and adaptation.
Tumuluru, J. S. (2014). Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosystems engineering, 119, 44-57.
Wang HH, Hung SF, Kuo YL, Chen FH*. (2009). Early growth of seedlings for tropical coastal forest restoration after Leucaena leucocephala control in Kenting, southern Taiwan. Journal of National Park 19(1):9-22. (in Chinese)
Wang, Y. Y., Lu, H. H., Liu, Y. X., & Yang, S. M. (2016). Ammonium citrate-modified biochar: An adsorbent for La (III) ions from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 550-563.
Wang, Y., Yin, R., & Liu, R. (2014). Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. Journal of Analytical and Applied Pyrolysis, 110, 375-381.
Wei, J., Tu, C., Yuan, G., Liu, Y., Bi, D., Xiao, L., ... & Zhang, X. (2019). Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar. Environmental Pollution, 251, 56-65.
Wielgosiński, G., Łechtańska, P., & Namiecińska, O. (2017). Emission of some pollutants from biomass combustion in comparison to hard coal combustion. Journal of the Energy Institute, 90(5), 787-796.
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature communications, 1(1), 56.
Xue, Y., Zhou, S., Brown, R. C., Kelkar, A., & Bai, X. (2015). Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel, 156, 40-46.
Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570.
Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788.
Zamorano, M., Popov, V., Rodríguez, M. L., & García-Maraver, A. (2011). A comparative study of quality properties of pelletized agricultural and forestry lopping residues. Renewable energy, 36(11), 3133-3140.
Zhang, X., Lei, H., Chen, S., & Wu, J. (2016). Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chemistry, 18(15), 4145-4169.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93716-
dc.description.abstract永續性生物質的有效應用在減緩氣候異常和推動清潔能源進展方面扮演著至關重要的功能。這種可持續利用模式在應對環境挑戰和促進能源轉型中具有不可或缺的地位。植物衍生的木質纖維素成分是生質燃料、生物基化合物和高效能材料可持續製造的核心原料。特別是非糧食來源的木質纖維素,因其廣泛可得性、多樣化應用潛能、高能量密度以及複雜的化學結構,成為極具前景的替代資源。在充分利用這種生物資源方面,生物質熱化學轉化技術扮演著不可或缺的角色。台灣每年產生之剩餘資材,包括汽車回收的每年產生之8000-10000 噸硬質聚氨酯泡棉和如銀合歡等入侵樹種等木質纖維素生物質,可做為熱轉換的利用方式提供深具潛力的原料。本研究針對兩種不同加值利用熱轉換方法,以提高這些永續生物質資源的價值及增進循環利用模式。將柳杉剩餘資材與廢棄的硬質聚氨酯泡棉混合,製作固態廢棄物衍生燃料。其氧化行為顯示其優良的特性,包括灰分含量低於 2.5%,熱值達到 21.9 MJ/kg。使用弗里德曼方程式計算,木材與 5% 、15% 和 30% 的廢聚氨酯泡棉顆粒混合後所計算之活化能為 212、220 和 188 kJ/mol,另一方面熱轉換效率在 30.2% 到 48.1% 之間,顯示這些廢棄物衍生燃料具有做為替代性再生能源之潛力。另一部分則是探討共熱解溫度和混合比例下銀合歡生物質和蒙特石的共熱解作用。研究結果指出,增加蒙特石的添加量可提高生物炭的產量和碳保留率。使用熱重分析(TGA)、核磁共振光譜(NMR)和傅立葉變換紅外光譜(FTIR)等技術證明,共熱解後可提高改性生物炭之穩定性。此方法是促進二氧化碳封存、生物炭穩定化以及為入侵銀合歡物種制定可去化利用深具潛力之技術。本研究證明,熱化學轉化技術在永續生物質資源價值化方面的潛力,有助於再生能源生產、廢棄物管理和碳封存工作。剩餘資材價值化與碳封存的結合對於推動可持續發展極為關鍵,在促進循環經濟的同時,為應對環境挑戰提出了實用的解決途徑。zh_TW
dc.description.abstractSustainable biomass utilization plays a pivotal role in mitigating environmental extremes and climate challenges while promoting the development of renewable energy. A crucial feedstock, lignocellulosic biomass serves for the eco-friendly generation of biofuels, bio-derived chemicals, and advanced materials. Originating from non-consumable sources, this plant-derived lignocellulosic material stands out as a viable carbon source owing to its plentiful availability, adaptability, considerable energy content, and complex chemical structure. Biomass thermochemical conversion technologies are crucial for effectively utilizing this resource. In Taiwan, substantial residual materials are generated annually, including 8,000-10,000 tons of rigid polyurethane foam from automotive recycling and lignocellulosic biomass from invasive tree species like Leucaena leucocephala. These resources provide promising feedstocks for thermal conversion utilization pathways. This study explores two distinct valorization approaches via thermochemical conversion to enhance the value and promote the circular utilization of these sustainable biomass resources. Initially, waste Cryptomeria materials were combined with discarded rigid polyurethane foam to produce refuse-derived fuels. The oxidation properties demonstrated advantageous features, such as an ash content of less than 2.5% and a calorific value of up to 21.9 MJ/kg. Determined as 212, 220, and 188 kJ/mol, respectively, were the activation energies for wood mixed with 5%, 15%, and 30% waste polyurethane foam pellets using the Friedman equation. Spanning from 30.2% to 48.1%, the thermal conversion efficiencies underscore the promise of these waste-derived fuels as a viable renewable energy option. Secondly, the co-pyrolysis of L. leucocephala biomass and montmorillonite at different temperatures and blending ratios was investigated. The findings revealed that augmenting montmorillonite incorporation enhanced biochar production and carbon retention. Characterization techniques, including thermogravimetric analysis, nuclear magnetic resonance spectroscopy, and Fourier-transform infrared spectroscopy, validated the improved durability of the modified biochars. This method presents a promising solution for carbon dioxide capture, biochar enhancement, and creating sustainable strategies for managing the invasive L. leucocephala species. These findings demonstrate the potential of thermochemical conversion technologies in valorizing sustainable biomass resources, contributing to renewable energy production, waste management, and carbon sequestration efforts. The integration of residual valorization and carbon sequestration is critical for sustainable development, offering viable solutions to address environmental challenges while promoting the circular economy.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:39:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T16:39:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iii
List of figures vii
List of tables ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objective 9
Chapter 2 Literature Review 11
2.1 Current Lignocellulosic Biomass Conversion and Utilization 11
2.1.1 Overview 11
2.1.2 Current Status of Biomass Energy in Taiwan 13
2.1.3 Pyrolysis 17
2.1.4 Other Application 18
2.2 Components of biomass 19
2.2.1 Components of recycled biomass materials 19
2.2.2 Structure of lignocellulose 21
2.3 Kinetic analysis of the combustion 25
2.3.1 Mechanism 25
2.3.2 Friedman method 27
2.3.3 Flynn-Wall-Ozawa method 29
2.4 Wood Pellet Formation and Utilization 33
2.4.1 Parameter of Pellet Formation 33
2.4.2 Refuse Derived Fuels 35
2.4.3 Combustion stove Fuels 39
2.4.4 Exhaust gas 40
2.5 Biochar production and physicochemical properties 41
2.5.1 Principle 41
2.5.2 Biochar Production with Additive 43
2.5.3 Physicochemical Properties of Biochar 44
2.5.4 Application of Biochar 46
Chapter 3 Materials and Method 48
3.1 Material and equipment 48
3.1.1 Lignocellulosic materials 48
3.1.2 Reagent chemicals 49
3.1.3 Equipment 49
3.1.4 Analyzers 50
3.2 Experiment process and analysis methods 51
3.2.1 Wood chemical composition analysis 54
3.2.2 Proximate analysis 58
3.2.3Dry basis heating value analysis 59
3.2.4 Ultimate analysis 61
3.2.5 Thermogravimetric analysis (TGA) 61
3.2.6 Water Boiling Test 64
3.2.7 Air analysis 65
3.3 Biochar production and properties 67
3.3.1 Biochar production 67
3.3.2 Characteristic of biochar 67
Chapter 4 Results and Discussion 70
4.1 Characteristics of lignocellulosic biomass 70
4.1.1 Chemical components 70
4.1.2 Proximate analysis 71
4.1.3 Higher heating value analysis 73
4.1.4 Ultimate analysis 73
4.2 Mixed-waste biomass material oxidation behavior 74
4.2.1 Thermogravimetric analysis 74
4.2.2 Characteristic Combustion Parameters 78
4.2.3 Kinetic analysis 79
4.2.4 Analysis of pellet combustion exhaust gas 81
4.3 Properties co-pyrolysis biochar 85
4.3.1 Physico-chemical properties of biochar 85
4.3.2 Scanning electron microscopy (SEM) 86
4.3.3 Biochar stability assessment 93
Chapter 5 Conclusion 103
Reference 108
Appendix 121
-
dc.language.isoen-
dc.subject熱轉換zh_TW
dc.subject木質纖維素生物質zh_TW
dc.subject共熱解zh_TW
dc.subject銀合歡zh_TW
dc.subject廢棄物衍生燃料zh_TW
dc.subjectRefuse derived fuelsen
dc.subjectLeucaena leucocephalaen
dc.subjectCo-pyrolysisen
dc.subjectThermal conversionen
dc.subjectLignocellulosic biomassen
dc.title永續生物質熱轉換zh_TW
dc.titleThermal Conversion of Sustainable Biomassen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee蔡明哲;藍浩繁;林振榮;莊智勝zh_TW
dc.contributor.oralexamcommitteeMing-Jer Tsai;Haw-Farn Lan;Cheng-Jung Lin;Chih-Shen Chuangen
dc.subject.keyword木質纖維素生物質,熱轉換,廢棄物衍生燃料,銀合歡,共熱解,zh_TW
dc.subject.keywordLignocellulosic biomass,Thermal conversion,Refuse derived fuels,Leucaena leucocephala,Co-pyrolysis,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU202402286-
dc.rights.note未授權-
dc.date.accepted2024-08-02-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved