Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93702
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平zh_TW
dc.contributor.advisorChang-Ping Yuen
dc.contributor.author鄧臻宜zh_TW
dc.contributor.authorTang Chun Yee Joeyen
dc.date.accessioned2024-08-07T16:34:44Z-
dc.date.available2024-08-08-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-07-22-
dc.identifier.citationAfrasiabi, N., & Shahbazali, E. (2011). RO Brine Treatment and Disposal Methods. Desalination and Water Treatment, 35(1-3), 39-53.
Ahmed, H., & Lofstead, J. (2022). Managing Randomness to Enable Reproducible Machine Learning. Proceedings of the 5th International Workshop on Practical Reproducible Evaluation of Computer Systems,
Aitkenhead, M., Cameron, C., Gaskin, G., Choisy, B., Coull, M., & Black, H. (2018). Digital RGB Photography and Visible-Range Spectroscopy for Soil Composition Analysis. Geoderma, 313, 265-275.
Alahmari, S. S., Goldgof, D. B., Mouton, P. R., & Hall, L. O. (2020). Challenges for the Repeatability of Deep Learning Models. IEEE Access, 8, 211860-211868.
Ali, P. J. M., Faraj, R. H., Koya, E., Ali, P. J. M., & Faraj, R. H. (2014). Data Normalization and Standardization: A Technical Report. Mach Learn Tech Rep, 1(1), 1-6.
Ansari, M., Othman, F., Abunama, T., & El-Shafie, A. (2018). Analysing the Accuracy of Machine Learning Techniques to Develop an Integrated Influent Time Series Model: Case Study of a Sewage Treatment Plant, Malaysia. Environmental Science and Pollution Research, 25, 12139-12149.
Bagherzadeh, F., Mehrani, M. J., Basirifard, M., & Roostaei, J. (2021). Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance. Journal of Water Process Engineering, 41, 102033.
Bao, H., Yin, W., Wang, H., Lu, Y., Jiang, S., Ajibade, F. O., Ouyang, Q., Wang, Y., Nie, S., & Bai, Y. (2023). Automated Machine Learning-Based Models for Predicting and Evaluating Antibiotic Removal in Constructed Wetlands. Bioresource Technology, 385, 129436.
Bentéjac, C., Csörgő, A., & Martínez Muñoz, G. (2021). A Comparative Analysis of Gradient Boosting Algorithms. Artificial Intelligence Review, 54, 1937-1967.
Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(2).
Boyd, G., Na, D., Li, Z., Snowling, S., Zhang, Q., & Zhou, P. (2019). Influent forecasting for wastewater treatment plants in North America. Sustainability, 11(6), 1764.
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.
Cabello-Solorzano, K., Ortigosa de Araujo, I., Peña, M., Correia, L., & J. Tallón-Ballesteros, A. (2023). The Impact of Data Normalization on the Accuracy of Machine Learning Algorithms: A Comparative Analysis. International Conference on Soft Computing Models in Industrial and Environmental Applications,
Carbonell, J. G., Michalski, R. S., & Mitchell, T. M. (1983). An Overview of Machine Learning. Machine Learning, 3-23.
Carneiro, T., Da Nóbrega, R. V. M., Nepomuceno, T., Bian, G.-B., De Albuquerque, V. H. C., & Reboucas Filho, P. P. (2018). Performance analysis of google colaboratory as a tool for accelerating deep learning applications. IEEE Access, 6, 61677-61685.
Chan, Y. (2003). Biostatistics 104: correlational analysis. Singapore Med J, 44(12), 614-619.
Chao, H. H. (2021). Investigation on Prediction Systems based on LSTM — prediction for dissolved oxygen (DO) in water [Master's Thesis, Aletheia University]. Taiwan.
Chen, T., & Guestrin, C. (2016). XGboost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Cheng, H. H., Yu, W. S., Tseng, S. C., Wu, Y. J., Hsieh, C. L., Lin, S. S., Chu, C. P., Huang, Y. D., Chen, W. R., & Lin, T. F. (2023). Reclaimed Water in Taiwan: Current Status and Future Prospects. Sustainable Environment Research, 33(1), 16.
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peerj Computer Science, 7, e623.
Chollet, F. (2021). Deep Learning with Python. Simon and Schuster.
Chou, J. S., Cheng, T. C., Liu, C. Y., Guan, C. Y., & Yu, C. P. (2022). Metaheuristics‐optimized deep learning to predict generation of sustainable energy from rooftop plant microbial fuel cells. International Journal of Energy Research, 46(15), 21001-21027.
Croghan, C., & Egeghy, P. P. (2003). Methods of dealing with values below the limit of detection using SAS. Southern SAS User Group, 22(24), 22-24.
De Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean absolute percentage error for regression models. Neurocomputing, 192, 38-48.
DeLancey, E. R., Simms, J. F., Mahdianpari, M., Brisco, B., Mahoney, C., & Kariyeva, J. (2019). Comparing deep learning and shallow learning for large-scale wetland classification in Alberta, Canada. Remote Sensing, 12(1), 2.
Department of Economic and Social Affairs, U. N. (2024). SDG Progress Report (2024). https://sdgs.un.org/goals
Dong, Y., Yuan, H., Zhang, R., & Zhu, N. (2019). Removal of ammonia nitrogen from wastewater: a review. Transactions of the ASABE, 62(6), 1767-1778.
Dutta, S., Arunachalam, A., & Misailovic, S. (2022). To seed or not to seed? an empirical analysis of usage of seeds for testing in machine learning projects. 2022 IEEE Conference on Software Testing, Verification and Validation (ICST),
Elezaj, O., Yildirim, S., & Kalemi, E. (2018). Data-driven machine learning approach for predicting missing values in large data sets: A comparison study. Machine Learning, Optimization, and Big Data: Third International Conference, MOD 2017, Volterra, Italy, September 14–17, 2017, Revised Selected Papers 3,
Elshawi, R., Maher, M., & Sakr, S. (2019). Automated Machine Learning: State-of-the-art and open challenges. arXiv Preprint arXiv:1906.02287.
Erickson, B. J., Korfiatis, P., Akkus, Z., Kline, T., & Philbrick, K. (2017). Toolkits and Libraries for Deep Learning. Journal of Digital Imaging, 30, 400-405.
Farhi, N., Kohen, E., Mamane, H., & Shavitt, Y. (2021). Prediction of wastewater treatment quality using LSTM neural network. Environmental Technology & Innovation, 23, 101632.
Farzana, S. Z., Paudyal, D. R., Chadalavada, S., & Alam, M. J. (2023). Prediction of Water Quality in Reservoirs: A Comparative Assessment of Machine Learning and Deep Learning Approaches in the Case of Toowoomba, Queensland, Australia. Geosciences, 13(10), 293.
Fix, E. (1985). Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties (Vol. 1). USAF School of Aviation Medicine.
Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 1189-1232.
Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21, 137-146.
Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely Randomized Trees. Machine Learning, 63, 3-42.
Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., & Vanschoren, J. (2019). An open source AutoML benchmark. arXiv Preprint arXiv:1907.00909.
Granata, F., Papirio, S., Esposito, G., Gargano, R., & De Marinis, G. (2017). Machine learning algorithms for the forecasting of wastewater quality indicators. Water, 9(2), 105.
Groß, J. (2003). Linear Regression (Vol. 175). Springer Science & Business Media.
H2O.ai. (2024). H2O AutoML: Automatic Machine Learning. Retrieved 2024/4/1 from https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
Hendrycks, D. (2023). Introduction to AI Safety, Ethics and Society. Dan Hendrycks. https://books.google.com.tw/books?id=9kP9EAAAQBAJ
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780.
Hong, Y. D. (2021). Prediction of Ammonia in Effluent of Wastewater Treatment Plant by Mechanical Learning [Master's Thesis, National Taiwan University].
Hu, Z., Zhang, Y., Zhao, Y., Xie, M., Zhong, J., Tu, Z., & Liu, J. (2019). A Water Quality Prediction Method Based on the Deep LSTM Network Considering Correlation in Smart Mariculture. Sensors, 19(6), 1420.
Hwong, J. Q. (2023). Whether Automated Machine Learning Improves the Forecastability of Oil Price - West Texas Intermediate Crude Oil Prices as an Example [Master's Thesis, Feng Chia University].
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Advances in Neural Information Processing Systems, 30.
Khan, U. Y. (2022). Time Series Analysis using Machine Learning: A case study of heavy metal removal from industrial wastewater [Master's Thesis, Yuan Ze University].
Kim, K. Y., Kim, B. J., & Yi, G. S. (2004). Reuse of imputed data in microarray analysis increases imputation efficiency. BMC Bioinformatics, 5, 1-9.
Kouadri, S., Elbeltagi, A., Islam, A. R. M. T., & Kateb, S. (2021). Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast). Applied Water Science, 11(12), 190.
Lee, H. y. (2021). Introduction of Machine / Deep Learning, Machine Learning 2021 Spring Course. https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.php
Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen Ways to Look at the Correlation Coefficient. The American Statistician, 42(1), 59-66.
Lewis, C. D. (1982). Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting.
Li, X., Yu, J., Jia, Z., & Song, J. (2014). Harmful algal blooms prediction with machine learning models in Tolo Harbour. 2014 International Conference on Smart Computing,
Luo, J., Luo, Y., Cheng, X., Liu, X., Wang, F., Fang, F., Cao, J., Liu, W., & Xu, R. (2023). Prediction of biological nutrients removal in full-scale wastewater treatment plants using H2O automated machine learning and back propagation artificial neural network model: Optimization and comparison. Bioresource Technology, 390, 129842.
Madni, H. A., Umer, M., Ishaq, A., Abuzinadah, N., Saidani, O., Alsubai, S., Hamdi, M., & Ashraf, I. (2023). Water-quality prediction based on H2O AutoML and explainable AI techniques. Water, 15(3), 475.
Mamandipoor, B., Majd, M., Sheikhalishahi, S., Modena, C., & Osmani, V. (2020). Monitoring and detecting faults in wastewater treatment plants using deep learning. Environmental Monitoring and Assessment, 192(2), 148.
Masters, G. M., & Jacob, D. (1991). Introduction to Environmental Science and Engineering. Prentice Hall.
McCarthy, J. (1959). Programs with Common Sense. In: London.
McCulloch, W. S. (1943). (1943) Warren S. McCulloch and Walter Pitts A logical calculus of the ideas immanent in nervous activity Bulletin of Mathematical Biophysics 5: 115-133. Bulletin of mathematical biophysics, 5, 115-133.
Effluent Standards, Water Pollution Control Act, (2019). https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=O0040004
Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2016). Machine Learning: Algorithms and Applications. CRC Press.
Nam, S. H., Kwon, S., & Kim, Y. D. (2023). Development of Basin-Scale Total Nitrogen Prediction Model by Integration of Clustering and Regression. Available at SSRN 4587590.
Olson, R. S., & Moore, J. H. (2016). TPOT: A tree-based pipeline optimization tool for automating machine learning. Workshop on Automatic Machine Learning,
Owen, A. B. (2007). A Robust Hybrid of Lasso and Ridge Regression. Contemporary Mathematics, 443(7), 59-72.
Prasad, D. V. V., Kumar, P. S., Venkataramana, L. Y., Prasannamedha, G., Harshana, S., Srividya, S. J., Harrinei, K., & Indraganti, S. (2021). Automating Water Quality Analysis using ML and Auto ML Techniques. Environmental Research, 202, 111720.
Prasad, D. V. V., Venkataramana, L. Y., Kumar, P. S., Prasannamedha, G., Harshana, S., Srividya, S. J., Harrinei, K., & Indraganti, S. (2022). Analysis and Prediction of Water Quality using Deep Learning and Auto Deep Learning Techniques. Science of the Total Environment, 821, 153311.
Raschka, S., & Mirjalili, V. (2019). Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing. https://books.google.com.tw/books?id=sKXIDwAAQBAJ
Sahoo, A., & Ghose, D. K. (2022). Imputation of missing precipitation data using KNN, SOM, RF, and FNN. Soft Computing, 26(12), 5919-5936.
Schmitt, M. (2023). Automated machine learning: AI-driven decision making in business analytics. Intelligent Systems with Applications, 18, 200188.
Sciences, N. A. o., Policy, Affairs, G., Data, B. o. R., Information, Engineering, D. o., Sciences, P., Applied, C. o., Statistics, T., & Sciences, B. o. M. (2019). Reproducibility and Replicability in Science. National Academies Press.
Scikit Learn Developers. (2024). Scikit-learn API Reference. https://scikit-learn.org/
Smola, A. J., & Schölkopf, B. (2004). A Tutorial on Support Vector Regression. Statistics and Computing, 14, 199-222.
Sokolova, E., Ivarsson, O., Lillieström, A., Speicher, N. K., Rydberg, H., & Bondelind, M. (2022). Data-driven models for predicting microbial water quality in the drinking water source using E. coli monitoring and hydrometeorological data. Science of the Total Environment, 802, 149798.
Stocker, M. D., Pachepsky, Y. A., & Hill, R. L. (2022). Prediction of E. coli concentrations in agricultural pond waters: application and comparison of machine learning algorithms. Frontiers in Artificial Intelligence, 4, 768650.
Taiwan International Tradeshows, T. M. o. E. A. (2022). Nourish New Lives and Save the Earth with Reclaimed Water
Thirumahal, R., & Patil, D. A. (2014). Knn and arl based imputation to estimate missing values. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 2(3), 119-124.
Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, C. B., & Farivar, R. (2019). Towards automated machine learning: Evaluation and comparison of AutoML approaches and tools. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI),
Valdés, H., Saavedra, A., Flores, M., Vera-Puerto, I., Aviña, H., & Belmonte, M. (2021). Reverse osmosis concentrate: physicochemical characteristics, environmental impact, and technologies. Membranes, 11(10), 753.
Wang, J., Guo, Y., Peng, S., Wang, Y., Zhang, W., Zhou, X., Jiang, L., & Lai, B. (2024). Prediction of effluent ammonia nitrogen in wastewater treatment plant based on self-organizing hybrid neural network. Journal of Water Process Engineering, 59, 104930.
Wang, X., Li, Y., Qiao, Q., Tavares, A., & Liang, Y. (2023). Water Quality Prediction Based On Machine Learning And Comprehensive Weighting Methods. Entropy, 25(8), 1186.
Wang, X., Qiao, M., Li, Y., Tavares, A., Qiao, Q., & Liang, Y. (2023). Deep-Learning-Based Water Quality Monitoring and Early Warning Methods: A Case Study of Ammonia Nitrogen Prediction in Rivers. Electronics, 12(22), 4645.
Water Resources Agency, T. (2021). Basic Plan for Water Resources Management in Every Region of Taiwan.
Wei, X., Zhang, L., Yang, H.-Q., Zhang, L., & Yao, Y.-P. (2021). Machine Learning For Pore-Water Pressure Time-Series Prediction: Application Of Recurrent Neural Networks. Geoscience Frontiers, 12(1), 453-467.
Willmott, C. J., & Matsuura, K. (2005). Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Climate Research, 30(1), 79-82.
Xu, Y., Zhou, Y., Sekula, P., & Ding, L. (2021). Machine Learning in Construction: From Shallow to Deep Learning. Developments in the Built Environment, 6, 100045.
Zhang, S.-Z., Chen, S., & Jiang, H. (2022). A Back Propagation Neural Network Model for Accurately Predicting the Removal Efficiency of Ammonia Nitrogen in Wastewater Treatment Plants Using Different Biological Processes. Water Research, 222, 118908.
Zhou, J., Wang, Y., Xiao, F., Wang, Y., & Sun, L. (2018). Water Quality Prediction Method based on IGRA and LSTM. Water, 10(9), 1148.
Zou, H., & Hastie, T. (2005). Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2), 301-320.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93702-
dc.description.abstract在台灣,水短缺的問題日益嚴重,因此再生水作為永續水資源的使用量逐漸增加。然而,再生水廠的處理過程會產生濃排水,有機會造成水體污染。有效的水質監測和預測對於管理十分重要,其中氨氮是評估水質的一個關鍵指標。本研究利用機器學習技術建立預測再生水廠逆滲透濃排水中氨氮含量的模型,並比較淺層學習、深度學習以及自動化機器學習演算法,以尋找最有效的預測模型。為了可以提早預測濃排水水質,本研究以不同數據量及相關性組合,訓練模型預測當天和預測未來日子的氨氮含量。預測結果主要以R平方值進行模型效能評估,顯示長短期記憶網絡(LSTM)的表現整體超越其他演算法。以再生水的所有單元之水質預測濃排水,LSTM模型可達到0.96的R平方值。即使減少訓練數據中的再生水廠處理單元,只使用進流水水質和操作參數,LSTM仍可得出0.82的R平方值準確性。而於預測下一天的氨氮含量,LSTM模型的R平方值為0.64,顯示出尚可的預測準確性。本研究利用機器學習建立高準確性的濃排水氨氮預測模型,以期協助再生水廠未來的運行操作,提早預測之氨氮含量以提供再生水廠單位決策參考,同時此模型有助於降低附近河川受濃排水影響而引起的優養化之風險。zh_TW
dc.description.abstractIn Taiwan, the growing problem of water scarcity is promoting the increased use of reclaimed water as a sustainable resource. However, reclaimed water can produce waste products like concentrate, which may harm aquatic environments if discharged directly. It’s important to monitor and predict the quality of effluent effectively. This study employs machine learning techniques to develop a model that predicts ammonia nitrogen levels in the reverse osmosis concentrates from a water reclamation plant. Various shallow learning, deep learning and automated machine learning algorithms are tested to find the most effective algorithm for the prediction model, meanwhile exploring the optimal dataset combinations for both immediate and future effluent quality predictions. Results were evaluated based on R-squared values, indicating that the LSTM method outperforms other algorithms. With comprehensive treatment data, the LSTM model achieved a high accuracy with an R-squared value of 0.96. Even with reduced data, including only the influent and operational parameters, the LSTM model maintained an R-squared value of 0.82. For future predictions one day ahead, the LSTM model achieved an R-squared of 0.64, representing a fair accuracy. To summarize, this study utilizes machine learning algorithms to develop a highly accurate prediction model for ammonia nitrogen levels in concentrates of water reclamation plant. This model aims to assist water reclamation plant operators by providing early predictions to support decision making, thereby potentially reducing the risk of eutrophication in nearby rivers affected by effluent discharge.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:34:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T16:34:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCertificate of Thesis Approval from the Oral Defense Committee i
Acknowledgment ii
摘 要 iii
Abstract iv
Table of Contents v
List of Abbreviations ix
List of Figures xi
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Objectives 3
1.3 Research Framework 3
Chapter 2 Literature Review 5
2.1 Water Scarcity and Reclaimed Water 5
2.2 Environmental Impact of Water Reclamation Plant 6
2.3 Environmental Impact of Ammonia Nitrogen from Wastewater 6
2.4 Methods for Ammonia Removal 7
2.5 Artificial Intelligence and Machine Learning 8
2.5.1 Machine Learning 9
2.5.2 Types of Machine Learning 10
2.5.3 Functions of Machine Learning 10
2.5.4 Complexity of Machine Learning Models 11
2.5.5 Basic Mechanism of Machine Learning 11
2.5.6 Overview of Machine Learning 12
2.6 Shallow Learning 13
2.6.1 Linear Regression 14
2.6.2 LASSO, Ridge Regression and Elastic Net 14
2.6.3 Random Forest and Extra Tree 15
2.6.4 Gradient Boosting Algorithm 16
2.6.5 Support Vector Regression 17
2.6.6 Related Work of Shallow Learning in Water Resources Predictions 18
2.7 Deep Learning 19
2.7.1 Long Short-Term Memory 19
2.7.2 Related Work of Deep Learning in Water Resources Predictions 20
2.8 Automated Machine Learning 22
2.8.1 Tree Based Pipeline Optimization 23
2.8.2 H2O Automated Machine Learning 23
2.8.3 Related Work of AutoML in Water Resources Predictions 24
2.8.4 Related Work of Prediction on Ammonia Nitrogen 26
Chapter 3 Research Methodology 28
3.1 Experimental Setup 28
3.2 Design of the Study 28
3.3 Target Features 31
3.4 Data Collection and Organization 31
3.4.1 Water Quantity and Quality Information 31
3.4.2 Introduction to the Meteorological Data Source 34
3.4.3 Data Collection 34
3.5 Data Organization and Feature Construction 39
3.6 Data Cleaning and Preprocessing 43
3.6.1 Handling Missing Values and Outliers 43
3.6.2 Handling Values Below the Limit of Detection 44
3.7 Data Analysis and Extraction 44
3.7.1 Correlation Analysis 44
3.7.2 Feature Selection and Dimensionality Reduction 46
3.7.3 Normalization 46
3.8 Model Construction and Optimization 47
3.8.1 Randomness 47
3.8.2 Data Splitting 47
3.8.3 Model Optimization 48
3.9 K-fold Cross Validation 51
3.10 Model Performance Evaluation 52
Chapter 4 Results and Discussion 57
4.1 Data Preprocessing 57
4.2 Correlation Matrix 59
4.3 Feature Selection and Dimensionality Reduction 63
4.4 Prediction Results Analysis 67
4.4.1 Prediction Results of Shallow Learning Models 67
4.4.2 Prediction Results of Models with Different Sets 68
4.4.3 Prediction Results of Time-Lagged Features 75
4.4.4 Summary of the Predictions 80
Chapter 5 Conclusion and Recommendations 89
5.1 Conclusion 89
5.2 Limitations and Recommendations 89
References 92
Appendices 102
-
dc.language.isoen-
dc.title以機器學習模型預測再生水廠放流水中的氨氮含量zh_TW
dc.titleForecasting Ammonia Nitrogen Levels in Effluents from Water Reclamation Plant Using Machine Learningen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林逸彬;張朝欽zh_TW
dc.contributor.oralexamcommitteeYi-Pin Lin;Chao-Chin Changen
dc.subject.keyword淺層學習,深度學習,自動化機器學習,再生水廠,逆滲透濃排水,氨氮預測,zh_TW
dc.subject.keywordShallow Learning,Deep Learning,Automated Machine Learning,Water Reclamation Plant,Reverse Osmosis Concentrate,Ammonia Nitrogen Prediction,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202401959-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-22-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2025-07-22-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2025-07-22
4.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved