Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93684
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃從仁zh_TW
dc.contributor.advisorTsung-Ren Huangen
dc.contributor.author黃宇文zh_TW
dc.contributor.authorVong Yu Wenen
dc.date.accessioned2024-08-07T16:23:52Z-
dc.date.available2024-08-08-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citationAli, H., Karim, F., Qureshi, J. J., Abuassba, A. O., & Bulbul, M. F. (2019). Seizure Prediction Using Bidirectional LSTM. Ning, H. (eds) Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health. CyberDI CyberLife 2019 2019. Communications in Computer and Information Science, 1137. https://doi.org/10.1007/978-981-15-1922-2_25

Allen, A. P., Hutch, W., Borre, Y. E., Kennedy, P.J., Temko, A., Boylan, G., Murphy, E., Cryan, J. F., Dinan, T. G., & Clarke, G. (2016). Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Translational psychiatry, 6(11), e939. https://doi.org/10.1038/tp.2016.191

Al-Shargie, F., Kiguchi, M., Badruddin, N., Dass, S. C., Hani, A. F., & Tang, T. B. (2016). Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomedical optics express, 7(10), 3882-3898. https://doi.org/10.1364/BOE.7.003882

Akam, T., & Kullmann, D. M. (2014). Oscillatory Multiplexing of Population Codes for Selective Communication in the Mammalian Brain. Nature Reviews Neuroscience, 15(2), 111–122. https://doi.org/10.1038/nrn3668

Aldayel, M., & Al-Nafjan, A. (2024). A comprehensive exploration of machine learning techniques for EEG-based anxiety detection. PeerJ Computer Science, 10, e1829.

Al-Ezzi, A., Al-Shargabi, A. A., Al-Shargie, F., & Zahary, A. T. (2022). Complexity analysis of EEG in patients with social anxiety disorder using fuzzy entropy and machine learning techniques. IEEE Access, 10, 39926-39938. https://doi.org/10.1109/ACCESS.2022.3165199

Al-Ezzi, A., Yahya, N., Kamel, N., Faye, I., Alsaih, K., & Gunaseli, E. (2021). Severity assessment of social anxiety disorder using deep learning models on brain effective connectivity. IEEE Access, 9, 86899-86913. https://doi.org/10.1109/ACCESS.2021.3089358

Ali, H. A., Alaa, H. A., Assad, H. T. Al-G., Ali, A. M. & Morteza, V. (2024). Detection of epileptic seizure using EEG signals analysis based on deep learning techniques. Chaos, Solitons & Fractals, 181. https://doi.org/10.1016/j.chaos.2024.114700

Alonso, J. F., Romero, S., Ballester, M. R., Antonijoan, R. M., & Mañanas, M. A. (2015). Stress assessment based on EEG univariate features and functional connectivity measures. Physiological measurement, 36(7), 1351. https://doi.org/10.1088/0967-3334/36/7/1351

American Psychological Association. (2022). Stress won't go away? Maybe you are suffering from chronic stress.

Armony, J. L., Corbo, V., Clément, M. H., & Brunet, A. (2005). Amygdala response in patients with acute PTSD to masked and unmasked emotional facial expressions. American Journal of Psychiatry, 162(10), 1961-1963. https://doi.org/10.1176/appi.ajp.162.10.1961

Arsalan, A., Majid, M., & Anwar, S. M. (2020). Electroencephalography based machine learning framework for anxiety classification. In Intelligent Technologies and Applications: Second International Conference, INTAP 2019, Bahawalpur, Pakistan, November 6–8, 2019, Revised Selected Papers 2 (pp. 187-197). Springer Singapore. https://doi.org/10.1007/978-981-15-5232-8_17

Aslan, Z., & Akin, M. (2020). Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals. Traitement du Signal, 37(2), 235-244. https://doi.org/10.18280/ts.370209

Attallah, O. (2020). An effective mental stress state detection and evaluation system using minimum number of frontal brain electrodes. Diagnostics, 10(5), 292. https://doi.org/10.3390/diagnostics10050292

Babayan, A., Erbey, M., Kumral, D., Reinelt, J. D., Reiter, A. M., Röbbig, J., Lina Schaare, H., Uhlig, M., Anwander, A., Bazin, P.-L., Horstmann, A., Lampe, L., Nikulin, V. V., Okon-Singer, H., Preusser, S., Pampel, A., S. Rohr, C., Sacher, J., Thöne-Otto, A., .... Villringer, A. (2019). A Mind-Brain-Body Dataset of MRI, EEG, Cognition, Emotion, and Peripheral Physiology in Young and Old Adults. Scientific Data, 6, 180308. https://doi.org/10.1038/sdata.2018.308

Baumgartl, H., Fezer, E., & Buettner, R. (2020). Two-Level Classification of Chronic Stress Using Machine Learning on Resting-State EEG Recordings. Americas Conference on Information Systems.

Blackhart, G. C., Minnix, J. A., & Kline, J. P. (2006). Can EEG asymmetry patterns predict future development of anxiety and depression?: A preliminary study. Biological psychology, 72(1), 46-50. https://doi.org/10.1016/j.biopsycho.2005.06.010

Boll, T. J., Johnson, S. B., Perry, N. W., & Rozensky, R. H. (2004). Handbook of Clinical Health Psychology, American Psychological Association.

Bremner, J. D. (2004). Fear, anxiety, and panic: Distinctions and impacts. Expert Review of Neurotherapeutics, 4(2), 275-284.

Bremner, J. D., Charney, D. S. (1994). The anxiety disorders. Conn’s current therapies. New York, NY: Raven Press.

Britton, J. C., Phan, K. L., Taylor, S. F., Fig, L. M., & Liberzon, I. (2005). Corticolimbic blood flow in posttraumatic stress disorder during script-driven imagery. Biological psychiatry, 57(8), 832-840. https://doi.org/10.1016/j.biopsych.2004.12.025

Buettner, R., Grimmeisen, A., & Gotschlich, A. (2020). High-performance Diagnosis of Sleep Disorders: A Novel, Accurate and Fast Machine Learning Approach Using Electroencephalographic Data. Hawaii International Conference on System Sciences.

Buettner, R., Fuhrmann, J., & Kolb, L. (2019). Towards high-performance differentiation between Narcolepsy and Idiopathic Hypersomnia in 10-minute EEG recordings using a Novel Machine Learning Approach. Healthcom. https://doi.org/10.1109/HealthCom46333.2019.9009608

Cha, J., Greenberg, T., Carlson, J. M., DeDora, D. J., Hajcak, G., & Mujica-Parodi, L. R. (2014). Circuit-wide structural and functional measures predict ventromedial prefrontal cortex fear generalization: implications for generalized anxiety disorder. Journal of Neuroscience, 34(11), 4043-4053. https://doi.org/10.1523/JNEUROSCI.3372-13.2014

Cohen, S., Janicki-Deverts, D., & Miller, G. E. (2007). Psychological Stress and Disease. JAMA, 298(14), 1685-1687. https://doi.org/10.1001/jama.298.14.1685

De Kloet, E. R., Joëls, M., & Holsboer, F. (2005). Stress and the brain: from adaptation to disease. Nature reviews neuroscience, 6, 463–475. https://doi.org/10.1038/nrn1683

Delorme, A., & Makeig, S (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. Journal of neuroscience methods, 134, 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Dias-Ferreira, E., Sousa, J. C., Melo, I., Morgado, P., Mesquita, A. R., Cerqueira, J. J., Costa, R. M., & Sousa, N. (2009). Chronic stress causes frontostriatal reorganization and affects decision-making. Science, 325(5940), 621-625. https://doi.org/10.1126/science.1171203

Dilger, S., Straube, T., Mentzel, H. J., Fitzek, C., Reichenbach, J. R., Hecht, H., Krieschel, S., Gutberlet, I. & Miltner, W. H. (2003). Brain activation to phobia-related pictures in spider phobic humans: an event-related functional magnetic resonance imaging study. Neuroscience letters, 348(1), 29-32. https://doi.org/10.1016/S0304-3940(03)00647-5

Ding, Z., Xia, R., Yu, J., Li, X., & Yang, J. (2018). Densely connected bidirectional lstm with applications to sentence classification. In Natural Language Processing and Chinese Computing: 7th CCF International Conference, NLPCC 2018, Hohhot, China, August 26–30, 2018, Proceedings, Part II 7, 278-287. Springer International Publishing. https://doi.org/10.48550/arXiv.1802.00889

Dubreuil-Vall, L., Ruffini, G., & Camprodon, J. A. (2020). Deep Learning Convolutional Neural Networks Discriminate Adult ADHD From Healthy Individuals on the Basis of Event-Related Spectral EEG. Frontiers in neuroscience, 14, 515034. https://doi.org/10.3389/fnins.2020.00251

Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American journal of Psychiatry, 164(10), 1476-1488. https://doi.org/10.1176/appi.ajp.2007.07030504

Fenoglio, K. A., Brunson, K. L., & Baram, T. Z. (2007). Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Frontiers in neuroendocrinology, 27(2), 180–192. https://doi.org/10.1016/j.yfrne.2006.02.001

Fischer, H., Andersson, J. L., Furmark, T., & Fredrikson, M. (1998). Brain correlates of an unexpected panic attack: a human positron emission tomographic study. Neuroscience letters, 251(2), 137-140. https://doi.org/10.1016/S0304-3940(98)00503-5

Fliege, H., Rose, M., Arck, P., Levenstein, S., & Klapp, B. F. (2001). Validierung des “Perceived Stress Questionnaire” (PSQ) an einer deutschen Stichprobe. Diagnostica, 47, 142–152. https://doi.org/10.1026//0012-1924.47.3.142

Friedman, A., Homma, D., Bloem, B., Gibb, L. G., Amemori, K.-I., Hu, D., Delcasso, S., Truong, T. F., Yang, J., Hood, A. S., Mikofalvy, K. A., Beck, D. W., Nguyen, N., Nelson, E. D., TORO Arana, S. E., Vorder Bruegge, R. H., Goosens, K. A., & Graybiel, A. M., 2017. Chronic Stress Alters Striosome-Circuit Dynamics, Leading to Aberrant Decision-Making, Cell, 171(5), 1191-1205. https://doi.org/10.1016/j.cell.2017.10.017

Goodwin, M. M. (2008). The STFT, sinusoidal models, and speech modification. Springer handbook of speech processing, 229-258. https://doi.org/10.1007/978-3-540-49127-9_12

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., & Hämäläinen, M. S. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7(267), 1–13. https://doi.org/10.3389/fnins.2013.00267

Greenberg, T., Carlson, J. M., Cha, J., Hajcak, G., & Mujica‐Parodi, L. R. (2013). Ventromedial prefrontal cortex reactivity is altered in generalized anxiety disorder during fear generalization. Depression and anxiety, 30(3), 242-250. https://doi.org/10.1002/da.22016

Groppe, D. M., Bickel, S., Keller, C. J., Jain, S. K., Hwang, S. T., Harden, C., & Mehta, A. D. (2013). Dominant Frequencies of Resting Human Brain Activity as Measured by the Electrocorticogram. NeuroImage, 79, 223–233. https://doi.org/10.1016/j.neuroimage.2013.04.044

Gross, J., Mesgun, F., Frick, J., Baumgartl, H., & Buettner, R. (2021). Machine Learning-Based Detection of High Trait Anxiety Using Frontal Asymmetry Characteristics in Resting-State EEG Recordings. Machine Learning, 7, 12-2021.

Gross, J. J. (2002). Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology, 39(3), 281-291. https://doi.org/10.1017/S0048577201393198

Hardt, J. V., & Kamiya, J. (1978). Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. Science, 201(4350), 79-81. https://doi.org/10.1126/science.663641

Hosseini, S. A., & Khalilzadeh, M. A. (2010). Emotional Stress Recognition System Using EEG and Psychophysiological Signals: Using New Labelling Process of EEG Signals in Emotional Stress State. 2010 International Conference on Biomedical Engineering and Computer Science. https://doi.org/10.1109/ICBECS.2010.5462520

Joëls, M., & Baram, T. Z. (2009). The neuro-symphony of stress. Nature reviews neuroscience, 10(6), 459-66. https://doi.org/10.1038/nrn2632

Jovanovic, T., Norrholm, S. D., Fennell, J. E., Keyes, M., Fiallos, A. M., Myers, K. M., Davis, M., & Duncan, E. J. (2009). Posttraumatic stress disorder may be associated with impaired fear inhibition: relation to symptom severity. Psychiatry research, 167(1-2), 151-160. https://doi.org/10.1016/j.psychres.2007.12.014

Keitel, A., & Gross, J. (2016). Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints. PLoS Biology, 14(6), e1002498. https://doi.org/10.1371/journal.pbio.1002498

Khan, M. S., Salsabil, N., Alam, M. G. R., Dewan, M. A. A., & Uddin, M. Z. (2022). CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis. Scientific Reports, 12, 14122. https://doi.org/10.1038/s41598-022-18257-x

Khosrowabadi, R., Quek, C., Ang, K. K., Tung, S. W., & Heijnen, M. (2011). A Brain-Computer Interface for classifying EEG correlates of chronic mental stress. The 2011 International Joint Conference on Neural Networks, 757-762. https://doi.org/10.1109/IJCNN.2011.6033297

Kim, D.-W., & Im, C.-H. (2018). EEG spectral analysis. Computational EEG Analysis, 35–53. https://doi.org/10.1007/978-981-13-0908-3_3

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews, 29(2-3), 169–195. https://doi.org/10.1016/S0165-0173(98)00056-3

Kumar, S., Sharma, A., & Tsunoda, T. (2019). Brain wave classification using long short-term memory network based OPTICAL predictor. Scientific reports, 9(1), 9153.
https://doi.org/10.1038/s41598-019-45605-1

Kwon, Y.-H., Shin, S.-B., & Kim, S.-D. (2018). Electroencephalography Based Fusion Two-Dimensional (2D)-Convolution Neural Networks (CNN) Model for Emotion Recognition System. Sensors, 18, 1383. https://doi.org/10.3390/s18051383

Larson, C. L., Schaefer, H. S., Siegle, G. J., Jackson, C. A., Anderle, M. J., & Davidson, R. J. (2006). Fear is fast in phobic individuals: amygdala activation in response to fear-relevant stimuli. Biological psychiatry, 60(4), 410-417. https://doi.org/10.1016/j.biopsych.2006.03.079

LeDoux, J. E. (1996). The emotional brain: The mysterious underpinnings of emotional life. Simon and Schuster.

Levenstein, S., Prantera, C., Varvo, V., Scribano, M. L., Berto, E., Luzi, C., & Andreoli, A. (1993). Development of the Perceived Stress Questionnaire: A new tool for psychosomatic research. Journal of psychosomatic research, 37, 19–32. https://doi.org/10.1016/0022-3999(93)90120-5

Lewis, R. S., Weekes, N. Y., & Wang, T. H. (2007). The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health. Biological psychology, 75(3), 239-247. https://doi.org/10.1016/j.biopsycho.2007.03.004

Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2015). Learning to diagnose with LSTM recurrent neural networks. https://arxiv.org/abs/1511.03677

Loganovsky, K., Perchuk, I., & Marazziti, D. (2016). Workers on transformation of the shelter object of the Chernobyl nuclear power plant into an ecologically-safe system show EEG abnormalities and cognitive dysfunctions: A follow-up study. The World Journal of Biological Psychiatry, 17(8), 600-607. https://doi.org/10.3109/15622975.2015.1042044

Loh, H. W., Ooi, C. P., Aydemir, E., Tuncer, T., Doğan, Ş., & Acharya, U. R. (2021). Decision support system for major depression detection using spectrogram and convolution neural network with eeg signals. Expert Systems, 39(3). https://doi.org/10.1111/exsy.12773

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique. Second Edition. Cambridge, MA: The MIT Press.

Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature reviews neuroscience, 10(6), 434-445. https://doi.org/10.1038/nrn2639

Maddock, R. J., Buonocore, M. H., Kile, S. J., & Garrett, A. S. (2003). Brain regions showing increased activation by threat-related words in panic disorder. Neuroreport, 14(3), 325-328.

Mah, L., Szabuniewicz, C., & Fiocco, A. J. (2016). Can anxiety damage the brain? Current opinion in psychiatry, 29(1), 56-63. https://doi.org/10.1097/YCO.0000000000000223

Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in cognitive sciences, 8, 204–210. https://doi.org/10.1016/j.tics.2004.03.008

Mandhouj, B., Cherni, M.A., & Sayadi, M. (2021). An automated classification of EEG signals based on spectrogram and CNN for epilepsy diagnosis. Analog integrated circuits and signal processing, 108, 101–110. https://doi.org/10.1007/s10470-021-01805-2

Mane, S. A. M., & Shinde, A (2023). StressNet: Hybrid model of LSTM and CNN for stress detection from electroencephalogram signal (EEG). Results in Control and Optimization, 11. https://doi.org/10.1016/j.rico.2023.100231

Marshall, A. C., Cooper, N. R., Segrave, R., & Geeraert, N. (2015). The effects of long-term stress exposure on aging cognition: a behavioral and EEG investigation. Neurobiology of Aging, 36(6), 2136-2144. https://doi.org/10.1016/j.neurobiolaging.2015.02.026

Mathersul, D., Williams, L. M., Hopkinson, P. J., & Kemp, A. H. (2008). Investigating models of affect: Relationships among EEG alpha asymmetry, depression, and anxiety. Emotion, 8(4), 560–572. https://doi.org/10.1037/a0012811

McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiological reviews, 87(3), 873-904. https://doi.org/10.1152/physrev.00041.2006

McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci., 27, 1-28. https://doi.org/10.1146/annurev.neuro.27.070203.144157

Mellem, M. S., Wohltjen, S., Gotts, S. J., Ghuman, A. S., & Martin, A. (2017). Intrinsic Frequency Biases and Profiles across Human Cortex. Journal of Neurophysiology, 118(5), 2853–2864. https://doi.org/10.1152/jn.00061.2017

Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. NeuroImage, 180. https://doi.org/10.1016/j.neuroimage.2017.11.062

Milad, M. R., Pitman, R. K., Ellis, C. B., Gold, A. L., Shin, L. M., Lasko, N. B., Zeidan, M. A., Handwerger, K., Orr, S. P., & Rauch, S. L. (2009). Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biological psychiatry, 66(12), 1075-1082. https://doi.org/10.1016/j.biopsych.2009.06.026

Monk, C. S., Telzer, E. H., Mogg, K., Bradley, B. P., Mai, X., Louro, H. M. C., Chen, G., McClure-Tone, E. B., Ernst, M., & Pine, D. S. (2008). Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Archives of general psychiatry, 65(5), 568-576. https://doi.org/10.1001/archpsyc.65.5.568

Ng, M. C., Jing, J., & Westover, M. B. (2022). A Primer on EEG Spectrograms. Journal of Clinical Neurophysiology, 39(3),177-183. https://doi.org/10.1097/WNP.0000000000000736

Nitschke, J. B., Sarinopoulos, I., Oathes, D. J., Johnstone, T., Whalen, P. J., Davidson, R. J., & Kalin, N. H. (2009). Anticipatory activation in the amygdala and anterior cingulate in generalized anxiety disorder and prediction of treatment response. American Journal of Psychiatry, 166(3), 302-310.

Olejniczak, P. (2006). Neurophysiologic basis of EEG. Journal of clinical neurophysiology, 23(3), 186-189. https://doi.org/10.1097/01.wnp.0000220079.61973.6c

Öngür, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral cortex, 10(3), 206-219. https://doi.org/10.1093/cercor/10.3.206

Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1995). Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Transactions on Biomedical Engineering, 42(7), 658–665. https://doi.org/10.1109/10.391164

Pearson, C. M., Lavender, J. M., Cao, L., Wonderlich, S. A., Crosby, R. D., Engel, S. G., Mitchell, J.E., Peterson, C.B., & Crow, S.J. (2017). Associations of borderline personality disorder traits with stressful events and emotional reactivity in women with bulimia nervosa. Journal of abnormal psychology, 126(5), 531–539. https://doi.org/10.1037/abn0000225

Pavlenko, V. B., Chernyi, S. V., & Goubkina, D. G. (2009). EEG correlates of anxiety and emotional stability in adult healthy subjects. Neurophysiology, 41(5), 337-345.
https://doi.org/10.1007/s11062-010-9111-2

Phan, K. L., Britton, J. C., Taylor, S. F., Fig, L. M., & Liberzon, I. (2006). Corticolimbic blood flow during nontraumatic emotional processing in posttraumatic stress disorder. Archives of General Psychiatry, 63(2), 184-192. https://doi.org/10.1001/archpsyc.63.2.184

Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular psychiatry, 13(9), 833-857. https://doi.org/10.1038/mp.2008.65

Phutela, N., Relan, D., Gabrani, G., Kumaraguru, P., & Samuel, M. (2022). Stress Classification Using Brain Signals Based on LSTM Network, Computational Intelligence and Neuroscience. https://doi.org/10.1155/2022/7607592

Plotkin, W. B., & Rice, K. M. (1981). Biofeedback as a placebo: anxiety reduction facilitated by training in either suppression or enhancement of alpha brainwaves. Journal of consulting and Clinical Psychology, 49(4), 590-596. https://doi.org/10.1037/0022-006X.49.4.590

Radhakrishnan, M., Ramamurthy, K., Choudhury, K.K., Won, D., & Manoharan, T.A. (2021). Performance analysis of deep learning models for detection of autism spectrum disorder from EEG signals. Traitement du Signal, 38(3), 853-863. https://doi.org/10.18280/ts.380332

Rashed-Al-Mahfuz, M., Moni, M. A., Uddin, S., Alyami, S. A., Summers, M. A., & Eapen, V. (2021). A Deep Convolutional Neural Network Method to Detect Seizures and Characteristic Frequencies Using Epileptic Electroencephalogram (EEG) Data. IEEE Journal of Translational Engineering in Health and Medicine, 9, 1-12. https://doi.org/10.1109/JTEHM.2021.3050925

Rauch, S. L., Shin, L. M., & Phelps, E. A. (2006). Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research—past, present, and future. Biological psychiatry, 60(4), 376-382. https://doi.org/10.1016/j.biopsych.2006.06.004

Ruffini, G., Ibañez, D., Castellano, M., Dubreuil-Vall, L., Soria-Frisch, A., Postuma, R., Gagnon, Jean-François, & Montplaisir, J. (2019). Deep Learning With EEG Spectrograms in Rapid Eye Movement Behavior Disorder. Frontiers in Neurology, 10. https://doi.org/10.3389/fneur.2019.00806

Ribary, U., Doesburg, S. M., & Ward, L. M., (2017). Unified Principles of Thalamo-Cortical Processing: The Neural Switch. Biomedical Engineering Letters, 7(3), 229–35.
https://doi.org/10.1007/s13534-017-0033-4

Riedl, R., Fischer, T., Léger, P.-M., & Davis, F. (2020). A Decade of NeuroIS Research: Progress, Challenges, and Future Directions. Data Base for Advances in Information Systems. https://doi.org/10.1145/3410977.3410980

Saeed, S. M. U., Anwar, S. M., Khalid, H., Majid, M., & Ulas, B. (2020). EEG Based Classification of Long-Term Stress Using Psychological Labeling. Sensors, 20(7), 1886. https://doi.org/10.3390/s20071886

Saeed, S. M. U., Anwar, S. M., Majid, M., Awais, M., & Alnowami, M. (2018). Selection of Neural Oscillatory Features for Human Stress Classification with Single Channel EEG Headset. BioMed Research International, 2018, 8. https://doi.org/10.1155/2018/1049257

Saeed, S. M. U., Anwar, S. M., Majid, M., & Bhatti, A. M. (2015). Psychological stress measurement using low cost single channel EEG headset. 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). https://doi.org/10.1109/ISSPIT.2015.7394404

Schetter, C. D., & Dolbier, C. (2011). Resilience in the Context of Chronic Stress and Health in Adults. Social and Personality Psychology Compass, 5(9), 634-652.
https://doi.org/10.1111/j.1751-9004.2011.00379.x

Schienle, A., Schäfer, A., Hermann, A., Rohrmann, S., & Vaitl, D. (2007). Symptom provocation and reduction in patients suffering from spider phobia: an fMRI study on exposure therapy. European archives of psychiatry and clinical neuroscience, 257, 486-493. https://doi.org/10.1007/s00406-007-0754-y

Shen, Z., Li, G., Fang, J., Zhong, H., Wang, J., Sun, Y., & Shen, X. (2022). Aberrated multidimensional EEG characteristics in patients with generalized anxiety disorder: A machine-learning based analysis framework. Sensors, 22(14), 5420. https://doi.org/10.3390/s22145420

Siuly, S., & Li, Y. (2015). Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification. Computer Methods and Programs in Biomedicine, 119(1), 29-42. https://doi.org/10.1016/j.cmpb.2015.01.002

Singh, Y. P., & Lobiyal, D. K. (2023). Automatic Prediction of Epileptic Seizure Using Hybrid Deep ResNet-LSTM Model. AI Communications, 36(1), 57-72. https://doi.org/10.3233/AIC-220177

Sladky, R., Höflich, A., Küblböck, M., Kraus, C., Baldinger, P., Moser, E., Lanzenberger, R. & Windischberger, C. (2015). Disrupted effective connectivity between the amygdala and orbitofrontal cortex in social anxiety disorder during emotion discrimination revealed by dynamic causal modeling for fMRI. Cerebral Cortex, 25(4), 895-903. https://doi.org/10.1093/cercor/bht279

Smit, D. J. A., Posthuma, D., Boomsma, D. I., & De Geus, E. J. C. (2007). The relation between frontal EEG asymmetry and the risk for anxiety and depression. Biological psychology, 74(1), 26-33. https://doi.org/10.1016/j.biopsycho.2006.06.002

Stein, M. B., Goldin, P. R., Sareen, J., Zorrilla, L. T. E., & Brown, G. G. (2002). Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Archives of general psychiatry, 59(11), 1027-1034. https://doi.org/10.1001/archpsyc.59.11.1027

Sundaresan, A., Penchina, B., Cheong, S. ,Grace V., Valero-Cabré, A., & Martel, A. (2021). Evaluating deep learning EEG-based mental stress classification in adolescents with autism for breathing entrainment BCI. Brain informatics, 8(1), 13. https://doi.org/10.1186/s40708-021-00133-5

Subhani, A. R., Mumtaz, W., Saad, M. N. B. M., Kamel, N., & Malik, A. S. (2017). Machine Learning Framework for the Detection of Mental Stress at Multiple Levels. IEEE Access, 5, 13545-13556. https://ieeexplore.ieee.org/document/7968419

Tawhid, M. N. A., Siuly, S., Wang, H., Whittaker, F., Wang, K., & Zhang, Y. (2021). A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG. PLOS ONE, 16(6). https://doi.org/10.1371/journal.pone.0253094

Trambaiolli, L. R., & Biazoli, C. E. (2020). Resting-state global EEG connectivity predicts depression and anxiety severity. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 3707-3710). IEEE. https://doi.org/10.1109/EMBC44109.2020.9176161

Tromp, D. P. M., Grupe, D. W., Oathes, D. J., McFarlin, D. R., Hernandez, P. J., Kral, T. R. A., Lee, J. E., Adams, M., Alexander, A. L. & Nitschke, J. B. (2012). Reduced structural connectivity of a major frontolimbic pathway in generalized anxiety disorder. Archives of general psychiatry, 69(9), 925-934.
https://doi.org/10.1001/archgenpsychiatry.2011.2178

Tsiouris, Κ. Μ., Pezoulas, V. C., Zervakis, M., Konitsiotis, S., Koutsouris, D. D., & Fotiadis, D. I. (2018). A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Computers in biology and medicine, 99, 24-37. https://doi.org/10.1016/j.compbiomed.2018.05.019

Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature reviews neuroscience, 10(6), 397-409. https://doi.org/10.1038/nrn2647

Vanneste, S., & De Ridder, D. (2015). Stress-related functional connectivity changes between auditory cortex and cingulate in tinnitus. Brain connectivity, 5(6), 371-383. https://doi.org/10.1089/brain.2014.0255

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … & van Mulbregt, P. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272.
https://doi.org/10.1038/s41592-019-0686-2

Wang, Y., Duan, W., Dong, D., Ding, L., & Lei, X. (2022). A test-retest resting, and cognitive state EEG dataset during multiple subject-driven states. Scientific Data, 9(1), 566. https://doi.org/10.1038/s41597-022-01607-9

William, W. K. & Zung, A. (1971). Rating Instrument For Anxiety Disorders. Psychosomatics, 12, 371–379.

Wright, T. A., & Bonett, D. G. (1997). The contribution of burnout to work performance. Journal of Organizational Behavior, 18(5), 491-499. https://doi.org/10.1002/(SICI)1099-1379(199709)18:5%3C491::AID-JOB804%3E3.0.CO;2-I

Yang, Y. Y., Hwang, A. H. C., Wu, C. T., & Huang, T. R. (2022). Person-identifying brainprints are stably embedded in EEG mindprints. Scientific Reports, 12(1), 17031. https://doi.org/10.1038/s41598-022-21384-0

Yedukondalu, J., Sharma, D., & Sharma, L. D. (2024). Subject-Wise Cognitive Load Detection Using Time–Frequency EEG and Bi-LSTM. Arabian Journal for Science and Engineering, 49(3), 4445–4457. https://doi.org/10.1007/s13369-023-08494-1

Yi, B., Matzel, S., Feuerecker, M., Hörl, M., Ladinig, C., Abeln, V., Choukèr, A., & Schneider, S. (2015). The impact of chronic stress burden of 520-d isolation and confinement on the physiological response to subsequent acute stress challenge. Behavioural brain research, 281, 111-115. https://doi.org/10.1016/j.bbr.2014.12.011

Yuan, Y., Xun, G., Jia, K., & Zhang, A. (2019). A Multi-View Deep Learning Framework for EEG Seizure Detection. IEEE Journal of Biomedical and Health Informatics, 23(1), 83-94. https://doi.org/10.1109/JBHI.2018.2871678

Hou, X., Liu, Y., Sourina, O., Tan, Y. R. E., Wang, L., & Mueller-Wittig, W. (2015). EEG Based Stress Monitoring, 2015 IEEE International Conference on Systems, Man, and Cybernetics, 3110-3115. https://doi.org/10.1109/SMC.2015.540

Zabidi, A., Mansor, W., Lee, Y. K., & Fadzal, C. C. W. (2012). Short-time Fourier Transform analysis of EEG signal generated during imagined writing. In 2012 international conference on system engineering and technology (ICSET), 1-4. IEEE. https://doi.org/10.1109/ICSEngT.2012.6339284

Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization. https://arxiv.org/abs/1409. 2329
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93684-
dc.description.abstract腦電圖,是探索大腦活動的重要工具之一。將腦電圖從時域轉為頻域,可了解大腦在不同頻率的運作模式及特徵。譜圖與頻譜,為腦電圖在頻域的兩種表現形式。其中譜圖與頻譜不同之處在於其帶有時間資訊,使其可提供大腦在連續時間點下不同頻率的強度變化。若將單一時間點的不同頻率強度視為一種頻譜微狀態,我們就可透過譜圖得到隨著時間變化下的頻譜微狀態變化。在本研究中,我們評估了譜圖是否可作為慢性壓力及焦慮的潛在生物標誌物。如今效率及高壓環境的雙重夾擊下,心理健康備受重視。壓力,對我們的大腦有諸多的影響。除了協助我們應付突發狀況,也對具有壓力或情感激發的事件有著記憶增強的作用,這有助於記住重要信息。雖然如此,長期地曝露在壓力之下,會對我們的身心造成負面影響。此外,焦慮亦對我們的日常作息造成嚴重影響,造成注意力無法集中,導致嚴重的精神健康問題。在本研究中,慢性壓力的研究使用LEMON資料集,先將受試者在靜息狀態下收集的腦電圖資料轉化為譜圖及頻譜,再用於訓練卷積神經網路(CNN),以預測由Perceived Stress Questionnaire(PSQ)測量的症狀。焦慮的研究則使用另一個資料集,【再測】資料集,後續處理流程與慢性壓力的處理流程一樣, 以預測由Self-Rating Anxiety Scale (SAS)測量的症狀。結果顯示在兩個資料集,卷積神經網路在以譜圖及頻譜作為訓練材料皆取得優異表現。除了分類結果上的優異表現,本研究發現,在兩個資料集上,卷積神經網路在譜圖上的表現整體而言優於在頻譜的表現,說明了時間資訊有助於提升模型表現。此外,基於時間資訊的有效性,本研究試圖瞭解譜圖中的時間資訊,即頻譜微狀態在譜圖中扮演的關鍵角色,因此使用另一個也在時間資訊上表現強大的深度學習模型,長短期記憶神經網絡(LSTM)與卷積神經網路作比較。結果顯示卷積神經網路在譜圖上的準確率優於長短期記憶神經網絡在譜圖的表現。這說明了雖然時間資訊有助於提升模型表現,但主要並非由於時間資訊帶來的頻譜微狀態之間的長短期關係(長短期記憶神經網絡),反而是利用卷積神經網路同時掌握各時間點下頻譜微狀態的內部特徵帶來優異表現。總結來說,健康受試者與患者的頻譜微狀態差異可作為有效的生物標誌物,卷積神經網路結合譜圖為適合、有效且強大的分類工具。zh_TW
dc.description.abstractElectroencephalogram (EEG) is one of the most important tools for exploring brain activity. Switching EEG from time domain to frequency domain can help us to understand how the brain works and how it behaves at different frequencies. Spectrogram and spectrum are the two manifestations of EEG in frequency domain. The key difference between a spectrogram and a spectrum is that a spectrogram includes time information. This allows it to show how the power of different frequencies in the brain changes over successive time points. If the different frequency intensities at a single time point are considered as a spectral microstate, we can obtain the change in the spectral microstate over time through a spectrogram. In this study, we evaluated spectrogram as potential biomarker of chronic stress and anxiety. Under the dual impact of efficiency and high-pressure environment, mental health has become a major priority. Stress has many effects on our brains. In addition to helping us cope with unexpected situations, it also has a memory-enhancing effect on stressful or emotionally stimulating events, which helps us remember important information. However, long-term exposure to stress can have a negative impact on our physical, mental, and spiritual aspects. In addition, anxiety also has a serious impact on our daily routines, resulting in inability to concentrate and leading to serious mental health problems. In this study, LEMON dataset was used in the study of chronic stress, which first converted the resting state EEG data collected from subjects into spectrogram and spectrum, and then used to train Convolutional Neural Network (CNN), to predict the result of Perceived Stress Questionnaire (PSQ). The anxiety study uses another dataset, test-retest dataset, and the follow-up treatment process is the same as that of chronic stress to predict the result of Self-rating Anxiety Scale (SAS). Results showed that CNN performed well in using spectrogram and spectrum as training materials on both datasets. In addition to the excellent performance of the classification results, this study found that, overall, the model performed better on spectrogram than on spectrum in both datasets, indicating that temporal information helps improve model performance. Furthermore, based on the effectiveness of temporal information, this study attempted to understand the critical role played by temporal information in spectrogram, i.e., the role of spectral microstates in spectrogram. Therefore, we used another deep learning model that also performs strongly with temporal information, Long Short-Term Memory (LSTM) network for comparison with CNN. The results showed that CNN's performance on spectrogram was superior to LSTM's performance on spectrogram. This suggests that although temporal information helps improve model performance, it is not primarily due to the long- and short-term relationships between spectral microstates brought about by temporal information (LSTM). Instead, the superior performance is due to CNN's ability to simultaneously capture the internal information of spectral microstates at each time point. In summary, the differences in spectral microstates between healthy subjects and patients can serve as effective biomarkers, and the combination of CNN and spectrogram is a suitable, effective, and powerful classification tool.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:23:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T16:23:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………… i
中文摘要.…………………………………………………………………………….. ii
Abstract.……………………………………………………………………………… iv
Table of Contents…………………………………………………………………….. vi
Index of Tables and Figures………………………………………………………….. viii
Introduction.……………………………………………………………………………. 1
Electroencephalogram, Spectrogram and Spectrum.…………………………………. 1
Spectrogram, Spectrum and Artificial Intelligence.…………………………………... 4
Stress.………………………………………………………………………………… 8
Stress and Electroencephalogram.………………………………………………...... 10
Stress, Electroencephalogram and Artificial Intelligence.………………………….. 11
Anxiety.……………………………………………………………………………... 13
Anxiety and Electroencephalogram.………………………………………………… 16
Anxiety, Electroencephalogram and Artificial Intelligence.………………………… 18
Materials and Methods.…………………………………………………………...…... 20
Dataset Description of Chronic Stress.……………………………………………… 20
Dataset Description of Anxiety.………………………………………………….…. 21
Data Analysis…………………..…………………………………………………… 22
Generating Spectrogram and Spectrum…………………………………………….. 23
Deep Learning and Classification Task…………………………………………….. 24
Results………………………………………………………………………………… 28
Temporal Information and Performance……………………………………………. 28
Model Comparison on Spectrogram………………………………………………… 29
Enhancing Model Interpretability: Extracting and Analyzing CNN filters…………. 30
Conclusion…………………………………………………………………………….. 34
Limitation……………………………………………………………………………... 36
References…………………………………………………………………………….. 37
-
dc.language.isoen-
dc.title慢性壓力和焦慮的頻譜特徵反映在大腦微狀態中zh_TW
dc.titleSpectral Signature of Chronic Stress and Anxiety Embedded in Brain Microstatesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐慎謀;郭柏呈zh_TW
dc.contributor.oralexamcommitteeShen-Mou Hsu;Bo-Cheng Kuoen
dc.subject.keyword壓力,焦慮,深度學習,腦電波,大腦微狀態,zh_TW
dc.subject.keywordstress,anxiety,deep learning,EEG,brain microstates,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202402082-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-31-
dc.contributor.author-college理學院-
dc.contributor.author-dept心理學系-
dc.date.embargo-lift2029-07-22-
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
2.32 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved