請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93680完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林銘郎 | zh_TW |
| dc.contributor.advisor | Ming-Lang Lin | en |
| dc.contributor.author | 張桂瑛 | zh_TW |
| dc.contributor.author | Kuei-Ying Chang | en |
| dc.date.accessioned | 2024-08-07T16:22:16Z | - |
| dc.date.available | 2024-08-08 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-23 | - |
| dc.identifier.citation | [1]經濟部地質調查及礦業管理中心。工程地質探勘資料庫。https://geotech.gsmma.gov.tw/imoeagis/Home/Map
[2]中央研究院人社中心。台灣百年歷史地圖系統。https://gissrv4.sinica.edu.tw/gis/twhgis/ [3]內政部國土測繪中心。國土測繪圖資服務雲。https://maps.nlsc.gov.tw/T09/mapshow.action?In_type=web [4]行政法人國家災害防救科技中心 (2015)。大規模崩塌災害防治行動綱領。 [5]李錫堤、董家鈞、林銘郎 (2009)。小林村災變之地質背景探討。地工技術,122,87-94。 [6]林于超 (2022)。裂隙地下水滲流及排水穩定工法對岩體邊坡變形影響以光華崩塌地為例。國立臺灣大學土木工程學研究所,碩士論文。https://doi.org/10.6342/NTU202203311 [7]林承翰 (2023)。臺灣清境地區板岩邊坡重力變形特徵與過程研究。國立臺灣大學土木工程學研究所,博士論文。https://doi.org/10.6342/NTU202303851 [8]青山工程顧問股份有限公司 (2021)。110年度雪霧鬧及光華地區潛在大規模崩塌調查監測計畫。農業部農村發展及水土保持署委託研究案。 [9]青山工程顧問股份有限公司 (2023)。112年度雪霧鬧、光華、義興、上巴陵及中高義地區潛在大規模崩塌調查監測計畫。農業部農村發展及水土保持署委託研究案。 [10]經濟部地質調查及礦業管理中心 (2014)。流域地質圖。 [11]彭逸蘋 (2022)。以物質點法探討光華崩塌地滑動面深度與運動行為。國立臺灣大學土木工程學研究所,碩士論文。 [12]農村發展及水土保持署資料平台大規模崩塌開放資料專區(2023)。https://data.ardswc.gov.tw/FieldSurvey/Landslide [13]蔡維哲 (2005)。應用航空影像分析於邊坡位移場之方法學研究。國立臺灣大學土木工程學研究所,碩士論文。https://doi.org/10.6342/NTU.2005.00991 [14]聯合大地工程顧問股份有限公司 (2020)。台7 線49K+300~50K+300 段災害改善工程可行性研究工作(地質探查) 工程地質鑽探報告。未出版。 [15]羅佳明、林銘郎、董家鈞、張光宗、簡士堯、黃安斌 (2009)。應用地形分析、遙測影像判釋與PIV技術於紅菜坪地滑特徵及其分區之研究。中國土木水利工程學刊,21(2),113–128。https://doi.org/10.6652/JoCICHE.200906_21(2).0001 [16]Bickel, V. T., Manconi, A., & Amann, F. (2018). Quantitative assessment of digital image correlation methods to detect and monitor surface displacements of large slope instabilities. Remote Sensing, 10(6), Article 6. https://doi.org/10.3390/rs10060865 [17]Bickel, V. T., & Manconi, A. (2020) Digital Image Correlation using a Fast Fourier Transform approach. https://github.com/bickelmps/DIC_FFT_ETHZ [18]Caporossi, P., Mazzanti, P., & Bozzano, F. (2018). Digital Image Correlation (DIC) analysis of the 3 December 2013 Montescaglioso landslide (Basilicata, Southern Italy): Results from a multi-dataset investigation. ISPRS International Journal of Geo-Information, 7(9), Article 9. https://doi.org/10.3390/ijgi7090372 [19]Chang, J.-M., Chao, W.-A., & Huang, W.-K. (2023a). Evolution of post-failure activity in the Daman landslide. 2023岩盤工程暨工程地質研討會,新竹,台灣。 [20]Chang, K.-Y., Huang, W.-K., Lin, C.-H., & Lin, M.-L. (2023b) A comparative study of UAV-based 3D point cloud analyses on landslide volume estimation for progressive rockslide, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-3102. https://doi.org/10.5194/egusphere-egu23-3102, 2023. [21]CloudCompare. (2015). CloudCompare user manual version 2.6.1. [22]Dematteis, N., Wrzesniak, A., Allasia, P., Bertolo, D., & Giordan, D. (2022). Integration of robotic total station and digital image correlation to assess the three-dimensional surface kinematics of a landslide. Engineering Geology, 303, 106655. https://doi.org/10.1016/j.enggeo.2022.106655 [23]DiFrancesco, P.-M., Bonneau, D., & Hutchinson, D. J. (2020). The implications of M3C2 projection diameter on 3D semi-automated rockfall extraction from sequential terrestrial laser scanning point clouds. Remote Sensing, 12(11), Article 11. https://doi.org/10.3390/rs12111885 [24]Donati, D., Stead, D., Stewart, T. W., & Marsh, J. (2020). Numerical modelling of slope damage in large, slowly moving rockslides: Insights from the Downie Slide, British Columbia, Canada. Engineering Geology, 273, 105693. https://doi.org/10.1016/j.enggeo.2020.105693 [25]GeoPORT (2022)。台7線49.8K崩塌評估分析報告。https://jatestrella.github.io/GeoPORT/T7_49p8k/index.html [26]Girardeau-Montaut, D., Roux, M., Marc, R., & Thibault, G. (2005). Change detection on points cloud data acquired with a ground laser scanner. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(3), W19. [27]Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11(2), 167–194. https://doi.org/10.1007/s10346-013-0436-y [28]Lague, D., Brodu, N., & Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10–26. https://doi.org/10.1016/j.isprsjprs.2013.04.009 [29]Liu, C.-H., Ho, J.-Y., Chu, C.-R., Chang, C.-H., & Chen, H. (2022). A pixel analysis technique and unmanned aircraft system for horizontal displacement in the landslide potential area. Geoscience Letters, 9(1), 17. https://doi.org/10.1186/s40562-022-00229-8 [30]Niethammer, U., Rothmund, S., Joswig, M., Malet, J.-P., & Bogaard, T. (2009). UAV-based remote sensing of the slow-moving landslide Super-Sauze. Landslide processes, Ed.: CERG Editions, Strasbourg, 69, 74. [31]Pan, B., Qian, K., Xie, H., & Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Measurement Science and Technology, 20(6), 062001. https://doi.org/10.1088/0957-0233/20/6/062001 [32]Teo, T.-A., Fu, Y.-J., Li, K.-W., Weng, M.-C., & Yang, C.-M. (2023). Comparison between image- and surface-derived displacement fields for landslide monitoring using an unmanned aerial vehicle. International Journal of Applied Earth Observation and Geoinformation, 116, 103164. https://doi.org/10.1016/j.jag.2022.103164 [33]Travelletti, J., Malet, J.-P., & Delacourt, C. (2014). Image-based correlation of Laser Scanning point cloud time series for landslide monitoring. International Journal of Applied Earth Observation and Geoinformation, 32, 1–18. https://doi.org/10.1016/j.jag.2014.03.022 [34]Warrick, J. A., Ritchie, A. C., Schmidt, K. M., Reid, M. E., & Logan, J. (2019). Characterizing the catastrophic 2017 Mud Creek landslide, California, using repeat structure-from-motion (SfM) photogrammetry. Landslides, 16(6), 1201–1219. https://doi.org/10.1007/s10346-019-01160-4 [35]Westin, A. M. (2017). Downie Slide: An integrated remote sensing approach to characterization of a very slow moving landslide. Master’s thesis, Simon Fraser University. https://summit.sfu.ca/item/17136 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93680 | - |
| dc.description.abstract | 近年來大規模崩塌成為備受關注之議題,於邊坡災害發生後首先需進行搶救災,並針對災害特性規劃合適之整治工程與長期監測方案。由於大規模崩塌影響範圍廣泛,因此可能同時涉及數種崩塌機制,邊坡分區分塊顯得尤為重要。然而,目前實務上多以單一時間之地形與地貌進行崩塌分區,此方法可能使分區與邊坡之運動行為和崩塌機制特徵不符,進而影響工程成效或使監測資料無法反映邊坡真實情況。因此本研究旨在基於多期正射影像與點雲資料精進現有崩塌分區之方法,透過分析崩塌不同時序之地形變化與三維位移場,進一步釐清崩塌機制並進行崩塌分區。
本研究以光華崩塌地與台7線49.8k崩塌兩個不同類型之災害為例,兩案例之特點為其不穩定狀態皆持續半年以上,並且有多期正射影像與點雲資料記錄發生過程。研究採用M3C2演算法 (Multiscale Model-to-Model Cloud Comparison)分析點雲資料以了解災害前後之地形變遷,同時透過數位影像相關法 (Digital Image Correlation, DIC)分析平面位移分佈,並結合DSM資料加值2D DIC之結果獲得邊坡之三維運動變形行為,最後整合地表地質調查成果進行崩塌機制分區。由於光華崩塌地設有許多監測設備,因此本研究首先以該案例進行方法學驗證,建立不同位移特徵與破壞機制之關係,並應用至重建無監測資料記錄之時期以及其他崩塌案例。 研究結果顯示光華邊坡與台7線49.8k邊坡之現生崩塌範圍應分別被劃分為四個與六個崩塌區塊,並釐清所涉及之破壞機制,包含岩體滑動、岩體傾倒、岩塊墜落與岩屑崩滑等。此外,研究亦通過影像處理方法與參數敏感度分析提升結果之品質,最終提出崩塌機制分區之流程與分析參數設定之建議。本研究之成果細緻化了目前崩塌分區方法,建立更為符合災害特性之分區標準,並為邊坡觀測之佈設以及後續更深入之邊坡穩定性分析提供參考之依據。 | zh_TW |
| dc.description.abstract | The stabilization of slopes is a crucial issue in Taiwan. The impacted area of large-scale landslide is extensive and may exhibit diverse characteristics so the primary task in engineering design is to zone the landslide. However, current zoning methods are based on the landscape and topography at a specific time, leading to inconsistency between the zonation and the actual condition of slopes. This research aims to zone the large-scale landslides by considering the failure mechanisms through the analysis of multi-temporal orthoimages and point cloud datasets.
In this study, Multiscale model-to-model cloud comparison (M3C2) and Digital image correlation (DIC) were utilized to analyze the point cloud data and orthoimages, respectively. M3C2 can detect changing areas of the slope, addressing the limitation of DEMs of Differences (DOD) in steep terrain. DIC analysis was used to map the full-field planar kinematics and deformation behavior, and then incorporate the Digital surface model (DSM) to clarify the 3D displacements and infer the failure mechanisms. Finally, these results were combined with the field survey to perform the zonation. We selected the Guanghua landslide and the landslide at 49.8k mileage at Provincial Highway 7 as the case studies. Both cases were characterized by unstable conditions for more than half a year and were recorded the failures with multi-temporal datasets. Since many monitoring devices were installed in the Guanghua landslide, the methodology will first be validated in this case and subsequently applied to the time domain without monitoring data coverage and to another case. Additionally, image processing and parameter sensitivity analysis were also conducted to enhance the quality of the results. The results indicated the Guanghua area could be divided into four zones, involving the rockslides、toppling and shallow rock avalanches. The 49.8k landslide was divided into six zones, with failure mechanisms including the rockfall, rockslide, and rock avalanche. This research refined the lack of current landslide zonation and proposed the analysis process that provided a reference for planning the observation of slope and in-depth analysis of disasters. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:22:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T16:22:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 v 圖次 viii 表次 xvii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究架構與流程 2 1.4 研究相關名詞定義 3 第二章 文獻回顧 6 2.1 大規模崩塌 6 2.1.1 光華崩塌地既有報告與研究 6 2.1.2 台7線49.8k崩塌地既有報告與研究 11 2.2 邊坡分區 15 2.3 地形變化分析 17 2.4 位移場分析 21 2.4.1 二維位移場 21 2.4.2三維位移場分析 24 第三章 研究方法 28 3.1 現地調查 28 3.2 影像與監測資料 28 3.2.1 現地監測資料 28 3.2.2 正射影像 33 3.2.3 點雲 34 3.3 點雲分析 36 3.3.1 迭代最近點 (ICP) 37 3.3.2 Multiscaled Model-to-Model Cloud Comparison (M3C2) 39 3.4 位移場分析 41 3.4.1 數位影像相關法 (DIC) 42 3.4.2 2D DIC延伸使用 — 三維位移場 43 3.5 分區方式 44 第四章 光華崩塌地 45 4.1 野外調查與既有資料之解釋 45 4.1.1 監測資料解釋 45 4.1.2 正射影像與既有圖資判釋 50 4.1.3 野外調查 55 4.2 方法學驗證與應用 59 4.2.1 地形變化分區 59 4.2.2 運動行為分區 64 4.2.3 崩塌機制分區 85 4.3 小結 96 第五章 台7線49.8k崩塌 97 5.1 野外調查與既有資料之解釋 97 5.1.1 鄰近雨量資料與事件定義 97 5.1.2 正射影像與既有圖資判釋 98 5.1.3 野外調查 107 5.2 方法學應用 113 5.2.1 地形變化分析 113 5.2.2 運動行為分析 125 5.3 小結 138 第六章 綜合討論 139 6.1 大規模崩塌分區精進與限制 139 6.1.1 研究結果討論與限制 139 6.1.2 結合鑽探資料詮釋 142 6.2 分析流程建議 147 6.2.1 數位影像相關法(DIC)參數建議與精進 147 6.2.2 迭代最近點 (ICP)參數建議 151 第七章 結論與建議 155 7.1 結論 155 7.2 建議 156 參考文獻 158 附錄一 碩士學位考試口試委員提問與答覆表 163 附錄二 光華崩塌地正射影像 172 附錄三 台7線49.8k崩塌正射影像 199 附錄四 光華崩塌地之DIC分析品質檢驗 203 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | Multiscale Model-to-Model Cloud Comparison (M3C2) | zh_TW |
| dc.subject | 點雲資料分析 | zh_TW |
| dc.subject | 數位影像相關法 (DIC) | zh_TW |
| dc.subject | 崩塌機制分區 | zh_TW |
| dc.subject | 大規模崩塌 | zh_TW |
| dc.subject | 邊坡三維運動行為 | zh_TW |
| dc.subject | Multiscale Model-to-Model Cloud Comparison (M3C2) | en |
| dc.subject | large-scale landslide | en |
| dc.subject | failure mechanism zonation | en |
| dc.subject | 3D kinematics behavior | en |
| dc.subject | point cloud datasets | en |
| dc.subject | Digital Image Correlation (DIC) | en |
| dc.title | 應用多期正射影像與點雲資料精進大規模崩塌之分區 | zh_TW |
| dc.title | A study on large-scale landslide zonation based on multi-temporal orthoimages and point cloud datasets | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 童士恒;韓仁毓;趙韋安;劉哲欣 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Heng Tung;Jen-Yu Han;Wei-An Chao;Che-Hsin Liu | en |
| dc.subject.keyword | 大規模崩塌,崩塌機制分區,邊坡三維運動行為,點雲資料分析,數位影像相關法 (DIC),Multiscale Model-to-Model Cloud Comparison (M3C2), | zh_TW |
| dc.subject.keyword | large-scale landslide,failure mechanism zonation,3D kinematics behavior,point cloud datasets,Digital Image Correlation (DIC),Multiscale Model-to-Model Cloud Comparison (M3C2), | en |
| dc.relation.page | 205 | - |
| dc.identifier.doi | 10.6342/NTU202402153 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-26 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-12-31 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 42.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
