請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9367
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 俞松良 | |
dc.contributor.author | Chien-Hung Yeh | en |
dc.contributor.author | 葉建宏 | zh_TW |
dc.date.accessioned | 2021-05-20T20:19:25Z | - |
dc.date.available | 2011-09-15 | |
dc.date.available | 2021-05-20T20:19:25Z | - |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-06-12 | |
dc.identifier.citation | 1. Herbst, R.S., J.V. Heymach, and S.M. Lippman, Lung cancer. N Engl J Med, 2008. 359(13): p. 1367-80.
2. Tsai, M.F., et al., A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. J Natl Cancer Inst, 2006. 98(12): p. 825-38. 3. Shih, J.Y., et al., Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res, 2005. 11(22): p. 8070-8. 4. Chen, H.Y., et al., A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med, 2007. 356(1): p. 11-20. 5. Beer, D.G., et al., Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med, 2002. 8(8): p. 816-24. 6. Potti, A., et al., A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med, 2006. 355(6): p. 570-80. 7. Chen, J.J., et al., Global analysis of gene expression in invasion by a lung cancer model. Cancer Res, 2001. 61(13): p. 5223-30. 8. Shih, J.Y., et al., Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J Natl Cancer Inst, 2001. 93(18): p. 1392-400. 9. D'Souza, B., A. Miyamoto, and G. Weinmaster, The many facets of Notch ligands. Oncogene, 2008. 27(38): p. 5148-67. 10. Dufraine, J., Y. Funahashi, and J. Kitajewski, Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 2008. 27(38): p. 5132-7. 11. Chen, Y., et al., Oxygen concentration determines the biological effects of NOTCH-1 signaling in adenocarcinoma of the lung. Cancer Res, 2007. 67(17): p. 7954-9. 12. Talora, C., et al., Notch signaling and diseases: an evolutionary journey from a simple beginning to complex outcomes. Biochim Biophys Acta, 2008. 1782(9): p. 489-97. 13. Kovall, R.A., More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene, 2008. 27(38): p. 5099-109. 14. Kim, B.J. and A.B. Fulton, The genetics and ocular findings of Alagille syndrome. Semin Ophthalmol, 2007. 22(4): p. 205-10. 15. Leong, K.G., et al., Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med, 2007. 204(12): p. 2935-48. 16. Zhang, Y., et al., Down-regulation of Jagged-1 induces cell growth inhibition and S phase arrest in prostate cancer cells. Int J Cancer, 2006. 119(9): p. 2071-7. 17. Gao, J., et al., Expression of Jagged1 and its association with hepatitis B virus X protein in hepatocellular carcinoma. Biochem Biophys Res Commun, 2007. 356(2): p. 341-7. 18. Bieche, I., et al., Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications. Clin Chem, 1999. 45(8 Pt 1): p. 1148-56. 19. Tsai, M.F., et al., A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. J Natl Cancer Inst., 2006. 98(12): p. 825-38. 20. Morrissette, J.D., R.P. Colliton, and N.B. Spinner, Defective intracellular transport and processing of JAG1 missense mutations in Alagille syndrome. Hum Mol Genet, 2001. 10(4): p. 405-13. 21. Chu, Y.W., et al., Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol, 1997. 17(3): p. 353-60. 22. Piglowski, W., et al., The structural and functional analysis of the human HSPA2 gene promoter region. Acta Biochim Pol, 2007. 54(1): p. 99-106. 23. Collins, B.J., W. Kleeberger, and D.W. Ball, Notch in lung development and lung cancer. Semin Cancer Biol, 2004. 14(5): p. 357-64. 24. Klein, T., K. Brennan, and A.M. Arias, An intrinsic dominant negative activity of serrate that is modulated during wing development in Drosophila. Dev Biol, 1997. 189(1): p. 123-34. 25. Glittenberg, M., et al., Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis. Embo J, 2006. 25(20): p. 4697-706. 26. Pintar, A., et al., The intracellular region of Notch ligands: does the tail make the difference? Biol Direct, 2007. 2: p. 19. 27. Six, E.M., et al., The notch ligand Delta1 recruits Dlg1 at cell-cell contacts and regulates cell migration. J Biol Chem, 2004. 279(53): p. 55818-26. 28. Ascano, J.M., L.J. Beverly, and A.J. Capobianco, The C-terminal PDZ-ligand of JAGGED1 is essential for cellular transformation. J Biol Chem, 2003. 278(10): p. 8771-9. 29. LaVoie, M.J. and D.J. Selkoe, The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem, 2003. 278(36): p. 34427-37. 30. Zolkiewska, A., ADAM proteases: ligand processing and modulation of the Notch pathway. Cell Mol Life Sci, 2008. 65(13): p. 2056-68. 31. Ikeuchi, T. and S.S. Sisodia, The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent 'gamma-secretase' cleavage. J Biol Chem, 2003. 278(10): p. 7751-4. 32. Hiratochi, M., et al., The Delta intracellular domain mediates TGF-beta/Activin signaling through binding to Smads and has an important bi-directional function in the Notch-Delta signaling pathway. Nucleic Acids Res, 2007. 35(3): p. 912-22. 33. Kolev, V., et al., The intracellular domain of Notch ligand Delta1 induces cell growth arrest. FEBS Lett, 2005. 579(25): p. 5798-5802. 34. Zakeri, Z.F., D.J. Wolgemuth, and C.R. Hunt, Identification and sequence analysis of a new member of the mouse HSP70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line. Mol Cell Biol, 1988. 8(7): p. 2925-32. 35. Bonnycastle, L.L., et al., Cloning, sequencing, and mapping of the human chromosome 14 heat shock protein gene (HSPA2). Genomics, 1994. 23(1): p. 85-93. 36. Son, W.Y., et al., Specific expression of heat shock protein HspA2 in human male germ cells. Mol Hum Reprod, 1999. 5(12): p. 1122-6. 37. Scieglinska, D., et al., The HspA2 protein localizes in nucleoli and centrosomes of heat shocked cancer cells. J Cell Biochem, 2008. 104(6): p. 2193-206. 38. Bernabucci, U., et al., Heat shock modulates adipokines expression in 3T3-L1 adipocytes. J Mol Endocrinol, 2009. 42(2): p. 139-47. 39. Daugaard, M., M. Jaattela, and M. Rohde, Hsp70-2 is required for tumor cell growth and survival. Cell Cycle, 2005. 4(7): p. 877-80. 40. Rohde, M., et al., Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev, 2005. 19(5): p. 570-82. 41. Ko, J.A., et al., Up-regulation of HSP70 by the fibronectin-derived peptide PHSRN in human corneal epithelial cells. Biochem Biophys Res Commun, 2008. 370(3): p. 424-8. 42. Grifoni, S.C., S.E. McKey, and H.A. Drummond, Hsc70 regulates cell surface ASIC2 expression and vascular smooth muscle cell migration. Am J Physiol Heart Circ Physiol, 2008. 294(5): p. H2022-30. 43. Stirewalt, D.L., et al., Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosomes Cancer, 2008. 47(1): p. 8-20. 44. Sjolund, J., et al., Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo. J Clin Invest, 2008. 118(1): p. 217-28. 45. Shi, T.P., et al., Association of low expression of notch-1 and jagged-1 in human papillary bladder cancer and shorter survival. J Urol, 2008. 180(1): p. 361-6. 46. Strazisar, M., T. Rott, and D. Glavac, K-RAS and P53 mutations in association with COX-2 and hTERT expression and clinico-pathological status of NSCLC patients. Dis Markers, 2008. 25(2): p. 97-106. 47. Luu, M., et al., Prognostic value of aspartyl (asparaginyl)-beta-hydroxylase/humbug expression in non-small cell lung carcinoma. Hum Pathol, 2009. 40(5):639-44. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9367 | - |
dc.description.abstract | 背景: JAG1是Notch訊息傳遞的重要因子,前人研究已經證實Notch訊息傳遞路徑可以用來調控癌症細胞的分化與生長,近期的研究更指出JAG1與癌症的轉移有所關聯,因此我們的目標是要研究在臨床上JAG1在非小細胞肺癌表現量的高低是否與病人的預後有所關聯,以及JAG1是透過什麼機制去造成癌症的進展。
方法: 我們在JAG1表現量較低的肺癌細胞中(CL1-0, A549,以及NCI-H226)過度表現JAG1與抑制JAG1表現量較高CL1-5肺癌細胞中JAG1的表現,藉由觀察體外細胞的不依賴支持物生長能力、生長速度、分解膠質能力、移動與侵襲能力,以及觀察老鼠體內的癌轉移情況。並且利用DNA微陣列晶片與即時定量聚合酶連鎖反應來探討JAG1可能的下游基因,以協助我們釐清JAG1是透過哪些訊息傳遞路徑來影響癌細胞特性的改變。另一方面,我們也藉由即時聚合酶連鎖反應來偵測臨床上90個病人癌症組織中JAG1 mRNA的表現量,利用統計的方法加以分析JAG1 mRNA表現量在正常的組織與癌症的組織是否有所差異,並且分析JAG1 mRNA表現量與臨床上病人的肺癌進展的關連性。 結果: JAG1的過度表現可以增加細胞不依賴支持物生長、細胞移動與侵襲能力,同樣的情況也可以在老鼠的轉移模式中得到證實。藉由分析微陣列晶片的結果,我們發現在過度表現JAG1的時候,會引起heat shock 70kDa protein 2 (HSPA2)表現量的增高,相反地,JAG1的表現受到siRNA抑制時,HSPA2的表現則會降低。進一步分析Notch pathway中的相關基因表現後,我們發現Notch pathway的確存在於我們所使用的細胞株當中,然而改變JAG1的表現量並不影響一般傳統上的Notch pathway下游基因的表現,所以我們推測JAG1是透過Notch-independent的路徑促進肺癌細胞的惡性度。在臨床病人的分析方面,我們發現JAG1的表現量在非小型性肺癌中的鱗狀上皮癌病人這個族群,在腫瘤的部位明顯高於旁邊的正常組織 (14/20 , P= 0.017)。進一步分析也發現JAG1表現量比較高的病人,其存活率顯著的下降 (P=0.04)。然而假使我們不將病人分群而以全部之非小細胞肺癌病人或是非小細胞肺癌病人中的肺腺癌族群加以分析,我們發現JAG1 mRNA表現量高低在癌症部位與旁邊正常的組織並無差異,此外也與病人的存活率並沒有相關性。 結論:在我們的實驗中,我們觀察到JAG1帶有致癌基因的特性,這個特性在臨床上也可以得到證實。在非小細胞肺癌病人中,鱗狀上皮肺癌的病人JAG1表現高,其預後明顯較表現量低的病人差。 | zh_TW |
dc.description.abstract | Background: JAG-1 is a ligand of Notch signaling pathway and can regulate cell differentiation and proliferation in several cancers. Recent study indicated that JAG1 is a gene associated with tumor invasion. Therefore, we investigated the clinical significance of JAG1 expression in non–small-cell lung cancer (NSCLC) patients and its role in lung cancer progression.
Methods: We induced JAG1 overexpression or knockdown in human lung cancer cell lines (CL1-0, CL1-5, A549 and NCI-H226) and analyzed cell anchorage-independent growth, proliferation, cell migration, invasion, and in vivo metastasis, as well as matrix metalloproteinase-2 (MMP-2) and MMP-9 activities. The potential downstream genes of JAG1 were identified by oligonucleotide microarray and were validated by quantitative reverse transcription–polymerase chain reaction (RT-PCR). We measured JAG1 expression in tumors and adjacent normal tissues of 90 NSCLC patients by RT-PCR. Correlation of JAG1 expression and overall survival was determined using the log-rank test and multivariable Cox proportional hazards regression analysis. All statistical tests were two-sided. Results: JAG1 enhances anchorage-independent growth, cell migration, invasion, and in vivo metastasis through upregulating the expression of heat shock 70kDa protein 2 (HSPA2) that is independent of Notch pathway. JAG1 expression was higher in tumors than in adjacent normal tissue in 14 of 20 patients of subtype squamous carcinoma of NSCLC patients studied (P=0.017). Subtype squamous carcinoma of NSCLC patients with high JAG1 expressing tumors had shorter overall survival (HR = 2.87; 95% CI = 0.99 to 8.33; P = 0.04) than those with low-expressing JAG1. However, in clinical analysis, JAG1 expression was not associated with overall survival in either NSCLC or subtype adenocarcinoma of NSCLC patients. Conclusion: JAG1 showed an oncogenic characteristic in Subtype squamous carcinoma of NSCLC, and high JAG1 expression is associated with reduced survival of subtype squamous cell carcinoma patients. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:19:25Z (GMT). No. of bitstreams: 1 ntu-98-R96424001-1.pdf: 1137290 bytes, checksum: f6ef2811c9cc8fbf9b9721fadfb955a6 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………….…....… II
誌謝…………………………………………………………………………...……..Ⅲ 中文摘要………………………………………………………………...………......Ⅳ 英文摘要……………………………………………………………………...……..Ⅵ 1. Introduction………..…………………………………………………………….1 1.1 Lung cancer…………………………………………………………………2 1.2 Metastasis and clinical limit……………………………………..………… 2 1.3 Genes and cancer progression………………………………………………3 1.4 JAG1 is a ligand of Notch receptor…………………………………………4 1.5 JAG1 and cancers……………………………………………...……………6 1.6 Results………………………………………………………………….……6 2. Materials and methods………..…………………….……….………………… 8 2.1 Cell culture……………………………………………..……………………9 2.2 Microarray analysis………………………………………………….………9 2.3 RNA extraction …………………………………………..…………..……10 2.4 Construction of expression vector and stable transfection……...…………10 2.5 Immunofluorescence staining…………………………………...…………11 2.6 Small-Interfering RNA Transient Transfection……………….…...………12 2.7 Western Blot………………………………………………….……………12 2.8 Quantitative real-time RT-PCR……………………………………………13 2.9 Migration and invasion assays ……………………………….……………13 2.10 Wound healing assay……………………………………….…….………14 2.11 In vivo metastasis………………………………………………………14 2.12 Cell proliferation…………………………………….…………………15 2.13 Anchorage-independent growth assay…………………………………16 2.14 Zymography for gelatinase ………………………………….…………16 2.15 Patients and Tissue Specimens…………………………………………17 2.16 Statistical analysis………………………………………………………18 3. Results……………………………………………….…………………………19 3.1 JAG1 expression is higher in CL1-5 than in CL1-0………………………20 3.2 Subcellular localization of JAG1 protein……………………….…………20 3.3 JAG1 enhances lung cancer cell anchorage-independent growth but not proliferation, MMP-2 and MMP-9 activities……………………….…………21 3.4 JAG1 enhances invasion and migration of lung cancer cells……………....23 3.5 JAG1 enhance lung cancer cell metastasis in vivo…………………...……24 3.6 Identification of JAG1 response genes by microarray analysis……………25 3.7 HSPA2 is a potential downstream effecter of JAG1 in lung cancer…….…26 3.8 Notch and regulation of HSPA2 by JAG1…………………………………27 3.9 Expression of HSPA2 alters mobility of lung cancer cells………...………28 3.10 JAG1 mRNA expression in tumor and adjacent normal tissue of patients with NSCLC…………………………………………………………….……...29 3.11 JAG1 high expression versus low expression group of NSCLC patients...29 3.12 JAG1 expression and survival of patients with NSCLC…………….……30 4. Discussion………………………………………………………..……..……….32 4.1 JAG1 had oncogenic character………………………………....………….33 4.2 Notch pathway and lung……………………………………….…..………33 4.3 Notch ligands as inhibitor of Notch pathway…………………….…..……34 4.4 JAG1 regulated downstream genes through Notch-independent pathway...34 4.5 Notch ligands and bidirectional signaling…………………….……………35 4.6 JAG1 can translocate from cell membrane into cell………………….……36 4.7 HSPA2 and cancer…………………………………………………………37 4.8 The regulation of HSPA2 expression………………………..…….……….37 4.9 Cell functions of HSPA2…………………………………….……..………38 4.10 JAG1 and cancer………………………………………………...………..39 4.11 Squamous cell carcinoma and adenocarcinoma……………….…………40 4.12 Clinical samples……………………………………………..……………41 4.13 Application of JAG1……………………………………..…….…………41 5. Reference………………………………………………………………………….43 6. Figures…………………………………………………………..…………………51 Figure 1. Differential expression, in vitro overexpression and characterization of Jagged 1 (JAG1) in human lung cancer cell lines………………………...……52 Figure 2. Overexpression of JAG1 promotes in vitro carcinoma cells tumorigenesis in vitro and anchorage-independent growth but not proliferation, MMP2 and MMP-9 activity. …………………………………….……….……55 Figure 3. Expression of JAG1 and lung cancer cell invasion and migration. …57 Figure 4. Jagged 1 (JAG1) enhancing invasion and migration of lung cancer cell lines is not restricted to CL1-0. …………………………………………..……59 Figure 5. JAG1 enhance lung cancer cell metastasis in vivo. …………………62 Figure 6. HSPA2 expression is correlated with JAG1 expression. ……………64 Figure 7. Expression of JAG1 in non-small-cell lung cancer (NSCLC) tumors and survival of patients. ………………………………………………….……66 7. Tables…………………………………………………………………...…………68 Table1. JAG1 response genes in overexpression of JAG1……..…..…………69 Table2. JAG1 response genes in silencing of JAG1…………...…...…………70 Table 3. Notch related genes in overexpression of JAG1…………………….70 Table 4. Notch related genes in silencing of JAG1……………………………71 8. Appendix………………………………………………………………..…………72 Flow chart………………………………………………………………………73 Construction of JAG1 into expression vector………………………….………74 | |
dc.language.iso | en | |
dc.title | JAG1經由Notch-independent的路徑促進肺癌惡性度 | zh_TW |
dc.title | JAG1 enhances lung cancer malignancy via Notch-independent pathway | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳健尉,周綠蘋,陳晉興,楊雅倩 | |
dc.subject.keyword | JAG1,非小細胞肺癌,轉移能力,侵襲能力,HSPA2,鱗狀上皮肺癌, | zh_TW |
dc.subject.keyword | JAG1,NSCLC,metastasis,invasion,HSPA2,squamous carcinoma, | en |
dc.relation.page | 74 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-06-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 1.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。