Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93668
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖國偉zh_TW
dc.contributor.advisorKuo-Wei Liaoen
dc.contributor.author謝宗祐zh_TW
dc.contributor.authorTsung-Yu Hsiehen
dc.date.accessioned2024-08-07T16:17:59Z-
dc.date.available2024-09-24-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-07-23-
dc.identifier.citation中文文獻
王楨智(2022),「氣泡與水泡工法對於減緩壩體下游沖刷之探討」,國立臺灣大學生物環境系統工程學系碩士論文。
夏佳宏(2023),「透過式調整型防砂壩經營管理及土砂密實度之縮尺試驗研究」,國立臺灣大學生物環境系統工程學系碩士論文。
徐浚偉(2014),「岩質河床上固床工所受之荷載與穩定性分析」,國立交通大學土木工程系所碩士論文。
孫崇育(2016),「以渠槽試驗比較透水與不透水固床工下游之沖刷坑差異」,逢甲大學水利工程與資源保育學系碩士論文。
湛翔智、魏瑞昌、許智翔、吳建逸(2009),「近岸碎波噪音之量測分析」,中華民國音響學會九十八年會員大會暨第二十二屆學術研討會。
黃奇鍊(2012),「二氧化碳氣泡粒徑在水中衰減特性之實驗研究」,國立成功大學水利及海洋工程學系碩博士班碩士論文。
賀益英、楊帆(2008),「洞塞消能工在火電核電廠排水口消能消泡中的應用」,水利學報,第89卷,第8期。
農業部農村發展及水土保持署(2019),「水土保持單元叢書-非透過性防砂壩」。
謝孟勳(2022),「應用二維地電阻法推估蘭陽平原扇頂地區淺層地下水位面於乾溼季的變化量及比出水率」,國立中央大學地球科學學系碩士論文。
羅慶瑞(2012),「流體與相似原理」,水利會訊,頁92-94。
英文文獻
Ahmed, R., Mahmud, K. H. (2022). ‘‘Potentiality of high-resolution topographic survey using unmanned aerial vehicle in Bangladesh.’’ Remote Sensing Applications: Society and Environment, Volume 26, 100729.
Andrialovanirina, N., Ponton, D., Behivoke, F., Mahafina, J., Léopold, M. (2020). “A powerful method for measuring fish size of small-scale fishery catches using ImageJ.” Fisheries Research, Volume 223, 105425.
Cain, P., Wood, I. R. (1981). “Measurements of Self-aerated Flow on a Spillway.” Jl. Hyd. Div., ASCE, 107, HY11, pp. 1425-1444.
Chanson, H. (2022). ‘‘On air entrapment onset and surface velocity in high-speed turbulent prototype flows.’’ Flow Measurement and Instrumentation, Volume 83, 102122.
Chanson, H., Brattberg, T. (2000). “Experimental study of the air–water shear flow in a hydraulic jump.” International Journal of Multiphase Flow, Volume 26, Issue 4, Pages 583-607.
Chanson, H. (1994). “Hydraulics of skimming flows over stepped channels and spillways.” J. Hydraul. Res., 32 (3), pp. 445-460.
Daneshfaraz, R., Sadeghi, H., Ghaderi, A., Abraham, J. P. (2024). “Characteristics of hydraulic jump and energy dissipation in the downstream of stepped spillways with rough steps.” Flow Measurement and Instrumentation, Volume 96, 102506.
Deane, G. B. (1997). ‘‘Sound generation and air entrainment by breaking waves in the surf zone.’’ The Journal of the Acoustical Society of America, Volume 102, Issue 5.
Hoque, M. M., Mitra, S., Evans, G. (2024). ‘‘Bubble size distribution and turbulence characterization in a bubbly flow in the presence of surfactant.’’ Experimental Thermal and Fluid Science, Volume 155, 111199.
Kolaini, A. R. (1998). “Sound radiation by various types of laboratory breaking waves in fresh and salt water.” The Journal of the Acoustical Society of America, Volume 103, Issue 1, 300-308.
Kurimoto, R., Yasuda, T., Minagawa, H. (2016). ‘‘Effects of surfactant on quasi-static bubble growth from an orifice.’’ Chemical Engineering and Processing: Process Intensification, Volume104, Pages 154-159.
Kwan, A. (1991). “Air entrainment at free overfalls.” University of Alberta.
Lamb, O. P., Killen, J. M. (1950). “An electrical method for measuring air concentration in flowing air-water mixtures.” University of Minnesota, Technical Paper No. 2, Series B.
Leighton, T. G., Walton, A. J. (1986). ‘‘An Experimental Study of the Sound Emitted from Gas Bubbles in a Liquid.’’ Cavendish Laboratory, University of Cambridge.
Shi, R., Wüthrich, D., Chanson, H. (2023). “Effect of probe size on phase-detection probe measurements of air-water flow properties in hydraulic jumps.” Flow Measurement and Instrumentation, Volume 94, 102479.
Vaideliene, A., Tervydis, P. (2013). ‘‘Measurement of air bubbles concentration in the water by means of digital image processing.’’ Elektronika Ir Elektrotechnika, Vol. 19, No. 4.
Vega, E. J., Montanero, J. M. (2024). ‘‘Influence of a surfactant on bubble bursting.’’ Experimental Thermal and Fluid Science, Volume 151, 111097.
50˚NORTH. (2018). ‘‘Review: UAV image processing software.’’
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93668-
dc.description.abstract為有效減緩排放渠道因跌水造成的水體表面浮泡生成,本研究以1:16縮尺渠槽進行試驗,量測浮泡濃度與表面浮泡體積,期望透過水工結構消能以減少水體夾氣量的生成。為了量化水體流經各種水工結構後的浮泡量並比較各模型的適用性,本研究自製夾氣量測儀器來計算水體中的氣泡濃度。首先,透過空氣供應率及氣泡上升時間來確定標準氣泡濃度,接著使用設計的雙通道量測水體電壓及電流,利用文獻中的公式計算氣泡濃度,並以標準氣泡濃度檢驗其準確性。浮泡體積則採用兩種方式進行量測:(1) 透過Agisoft Metashape及ArcGIS進行建模和影像處理;(2) 使用ImageJ進行影像分析。結合氣泡濃度與浮泡體積,以得出實際的浮泡量,本研究以此作為標準,選定最佳的水工結構設計。
在縮尺試驗中,本研究於渠槽上游的蓄水道設置曝氣管線,並使用三馬力及一馬力的空壓馬達作為空氣供應,藉此增加水體擾動曝氣,以促進水體浮泡生成。三組試驗平台分別安裝於V型堰上游處、第一及第二跌水堰之間、尾水板前,以測量實驗數據,藉此比較不同模型在相同點位所產生的浮泡量。試驗水體以300mL界面活性劑作為輸入量進行縮尺試驗。試驗前置工作包括設置尺規供建模使用及浮泡濃度探針的伸縮桿等工項。本研究使用Agisoft Metashape和ImageJ來計算浮泡體積,兩者結果非常接近,推論兩種浮泡體積量測方法具有一致性。最後,透過實際浮泡量的計算進行增幅比例的比較,得出最佳水工結構設計能顯著降低浮泡增幅。
zh_TW
dc.description.abstractTo effectively reduce the formation of surface bubbles in discharge channels caused by waterfalls, this study designed nine discharge channel models and conducted experimental measurements of bubble concentration and surface bubble volume using a 1:16 scale flume. The goal was to mitigate the entrained air in the water through energy dissipation in the hydraulic structures.
To quantify the bubble volume in the water passing through each hydraulic structure and compare the applicability of each model, this study used a self-made entrained air measurement instrument to calculate bubble concentration. First, standard bubble concentration was confirmed through air supply rate and bubble rise time. Then, a dual-channel system was used to measure the voltage and electric current of the water, and bubble concentration was calculated using a formula from the literature and verified against the standard bubble concentration. Bubble volume was measured using two methods: (1) modeling and image processing with Agisoft Metashape and ArcGIS. (2) image analysis with ImageJ. Combining bubble concentration and bubble volume, the actual bubble volume was determined, which served as the standard for selecting the best hydraulic structure design.
In the small-scale experiment, aeration lines were installed in the upstream reservoir of the flume, using three-horsepower and one-horsepower air pumps to supply air and increase water disturbance to enhance bubble generation. Three sets of test platforms were installed upstream of the V-shaped weir, between the first and second drop structure's weirs, and before the end of the channel to measure experimental data. This setup allowed comparison of bubble volume at the same points for different models. The experimental water used was a formulation with 300 mL of surfactant as the input volume. Preliminary tasks included setting up rulers for modeling and adjustable arms for bubble concentration probes.
In this study, the volume of surface bubbles at the second measurement point of Model 3 was calculated using Agisoft Metashape and ImageJ. Since the two values were very close, it was inferred that the bubble volume measurements obtained from the two methods were similar. Furthermore, by comparing the actual bubble volume increase ratios between the first and third measurement points across nine different models, Model 2 was found to have the lowest increase in bubble volume. Thus, Model 2 is identified as the best hydraulic structure design.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:17:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T16:17:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 III
Abstract IV
目 次 VI
圖次 VIII
表次 XIII
1 第一章、緒論 1
1.1 研究動機 1
1.2 研究流程 2
1.3 論文架構 5
2 第二章、文獻回顧 7
2.1 消能設施相關文獻 7
2.2 電測法量測相關文獻 10
2.3 影像.圖像分析輔助試驗 12
2.4 聲學法量測相關文獻 17
2.5 縮尺試驗相關文獻 17
2.6 界面活性劑相關文獻 20
2.7 相關文獻蒐集 22
2.8 小結 22
3 第三章、研究方法 25
3.1 夾氣量儀器製作及驗證 25
3.2 試驗水體 45
3.3 渠槽縮尺試驗 49
3.4 分析軟體 62
4 第四章、結果與討論 66
4.2 縮尺試驗結果與討論 67
4.3 選定最佳模型 75
4.4 綜合討論 78
5 第五章、結論與建議 82
5.1 結論 82
5.2 建議 83
參考文獻 84
-
dc.language.isozh_TW-
dc.title水工結構設計對減少排放水體表面浮泡量之探討zh_TW
dc.titleInvestigation of hydraulic structure design on reducing surface bubble accumulation in discharged wateren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee葉克家;范正成zh_TW
dc.contributor.oralexamcommitteeKeh-Chia Yeh;Jen-Chen Fanen
dc.subject.keyword氣泡濃度,實際浮泡量,縮尺試驗,增幅比例,zh_TW
dc.subject.keywordbubble concentration,actual bubble volume,small-scale experiment,increase ratio,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202402050-
dc.rights.note未授權-
dc.date.accepted2024-07-24-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved