Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 統計與數據科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93657
Title: 分層函數數據的集群研究
Cluster Analysis of Functional Data with Hierarchical Structures
Authors: 覃業昀
Yeh-Yun Chin
Advisor: 丘政民
Jeng-Min Chiou
Keyword: 集群分析,函數主成分分析,分層函數數據,投影,隨機過程,
Cluster analysis,Functional principal component analysis,Multilevel func­tional data,Projection,Stochastic processes,
Publication Year : 2024
Degree: 碩士
Abstract: 函數數據反映隨時間演變的規律並提供豐富的資訊。為了滿足分析大量隨機函數樣本數據的需求,無監督集群方法變得愈來愈普及。由於廣泛的曲線數據處理和收集,許多數據集自然表現出層次結構。然而,關於多層次聚類的研究仍有待發展。因此,本研究旨在探討適用於多層次函數數據的集群方法。我們提出了多層次函數集群(MLFC)方法,在考慮平均值函數和共變異數函數差異的情況下,對第一層級和第二層級進行聚類。透過模擬研究,結果顯示出 MLFC 在多層次函數數據架構下的優越性能。此外,我們將 MLFC 應用於交通流量數據,識別出第一層和第二層集群中獨特的交通流量模式。我們的研究結果強調了 MLFC 在捕捉多層次函數數據模式方面的有效性。總體而言,MLFC 釋放了多層次函數數據的潛力,為深入分析和研究提供了有價值的見解和創新的研究方法。
Functional data offers valuable insights into evolution over time and provides rich information. The prevalence of unsupervised clustering methods has risen to meet the demand for analyzing large datasets of random function samples.
Many datasets naturally exhibit hierarchical structures due to extensive curve data processing and collection. However, research on multilevel clustering is still in demand. This study addresses this gap by exploring clustering methods tailored for multilevel functional models. We propose a Multi-Level Functional Clustering (MLFC) approach, which clusters Level-1 and Level-2 units considering differentials in mean and covariance functions. The simulation study highlights MLFC's superior performance within multilevel functional frameworks. Applying MLFC to a traffic flow dataset identifies distinct traffic patterns at Level-1 and Level-2 clusters. Our findings underscore MLFC's effectiveness in capturing complex functional data patterns across multiple levels. Overall, MLFC unlocks the potential of multilevel functional data, providing valuable insights and innovative research methodologies.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93657
DOI: 10.6342/NTU202402261
Fulltext Rights: 未授權
Appears in Collections:統計與數據科學研究所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
14.93 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved