請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93649完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何銘洋 | zh_TW |
| dc.contributor.advisor | Ming-Yang Ho | en |
| dc.contributor.author | 陳泓伯 | zh_TW |
| dc.contributor.author | Hong-Po Chen | en |
| dc.date.accessioned | 2024-08-07T16:10:24Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-27 | - |
| dc.identifier.citation | Björn, L.O., Papageorgiou, G.C., Blankenship, R.E., and Govindjee. (2009). A viewpoint: Why chlorophyll a? Photosynthesis Research 99, 85-98.
Bogos, B., Ughy, B., Domonkos, I., Laczkó-Dobos, H., Komenda, J., Abasova, L., Cser, K., Vass, I., Sallai, A., Wada, H., and Gombos, Z. (2009). Phosphatidylglycerol depletion affects photosystem II activity in Synechococcus sp. PCC 7942 cells. Photosynthesis Research 103, 19-30. Bryant, D.A., Shen, G., Turner, G.M., Soulier, N., Laremore, T.N., and Ho, M.Y. (2020). Far-red light allophycocyanin subunits play a role in chlorophyll d accumulation in far-red light. Photosynthesis Research 143, 81-95. Chen, K.W. (2022). Mutagenesis study of the Photosystem I that absorbs far-red light in a cyanobacterium Synechococcus sp. PCC 7335. In Department of Life Science (National Taiwan University, Taipei), pp. 1-50. Cherepanov, D.A., Kurashov, V., Gostev, F.E., Shelaev, I.V., Zabelin, A.A., Shen, G., Mamedov, M.D., Aybush, A., Shkuropatov, A.Y., Nadtochenko, V.A., Bryant, D.A., Golbeck, J.H., and Semenov, A.Y. (2024). Femtosecond optical studies of the primary charge separation reactions in far-red photosystem II from Synechococcus sp. PCC 7335. Biochimica et Biophysica Acta Bioenergetics 1865, 149044. Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., and Sander, J.D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology 31, 822-826. Gan, F., Zhang, S., Rockwell, N.C., Martin, S.S., Lagarias, J.C., and Bryant, D.A. (2014). Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345, 1312-1317. Gisriel, C.J., Cardona, T., Bryant, D.A., and Brudvig, G.W. (2022a). Molecular evolution of far-red light-acclimated photosystem II. Microorganisms 10. Gisriel, C.J., Shen, G., Flesher, D.A., Kurashov, V., Golbeck, J.H., Brudvig, G.W., Amin, M., and Bryant, D.A. (2023). Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light. Journal of Biological Chemistry 299, 102815. Gisriel, C.J., Shen, G., Ho, M.-Y., Kurashov, V., Flesher, D.A., Wang, J., Armstrong, W.H., Golbeck, J.H., Gunner, M.R., Vinyard, D.J., Debus, R.J., Brudvig, G.W., and Bryant, D.A. (2022b). Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. Journal of Biological Chemistry 298, 101424. Herrera-Salgado, P., Leyva-Castillo, L.E., Rios-Castro, E., and Gomez-Lojero, C. (2018). Complementary chromatic and far-red photoacclimations in Synechococcus ATCC 29403 (PCC 7335). I: The phycobilisomes, a proteomic approach. Photosynthesis Research 138, 39-56. Ho, M.-Y., and Bryant, D.A. (2021). Photosynthesis | Long wavelength pigments in photosynthesis. In Encyclopedia of Biological Chemistry III, pp. 245-255. Ho, M.Y., and Bryant, D.A. (2019). Global transcriptional profiling of the cyanobacterium Chlorogloeopsis fritschii PCC 9212 in far-red light: insights into the regulation of chlorophyll d synthesis. Frontiers in Microbiology 10, 465. Ho, M.Y., Shen, G., Canniffe, D.P., Zhao, C., and Bryant, D.A. (2016). Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science 353. Ho, M.Y., Gan, F., Shen, G., Zhao, C., and Bryant, D.A. (2017). Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335: I. Regulation of FaRLiP gene expression. Photosynthesis Research 131, 173-186. Ho, M.Y., Niedzwiedzki, D.M., MacGregor-Chatwin, C., Gerstenecker, G., Hunter, C.N., Blankenship, R.E., and Bryant, D.A. (2020). Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. Biochimica et Biophysica Acta Bioenergetics 1861, 148064. Judd, M., Morton, J., Nurnberg, D., Fantuzzi, A., Rutherford, A.W., Purchase, R., Cox, N., and Krausz, E. (2020). The primary donor of far-red photosystem II: ChlD1 or PD2? Biochimica et Biophysica Acta Bioenergetics 1861, 148248. Ke, C.-H., Wang, Y.-S., Chiang, H.-C., Wu, H.-Y., Liu, W.-J., Huang, C.-C., Huang, Y.-C., and Lin, C.-S. (2022). Xenograft cancer vaccines prepared from immunodeficient mice increase tumor antigen diversity and host T cell efficiency against colorectal cancers. Cancer Letters 526, 66-75. Kruse, O., and Schmid, G.H. (1995). The role of phosphatidylglycerol as a functional effector and membrane anchor of the D1-core peptide from photosystem II-particles of the cyanobacterium Oscillatoria chalybea. Zeitschrift für Naturforschung C 50, 380-390. Kurashov, V., Ho, M.Y., Shen, G., Piedl, K., Laremore, T.N., Bryant, D.A., and Golbeck, J.H. (2019). Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. Photosynthesis Research 141, 151-163. Li, Y., Lin, Y., Loughlin, P.C., and Chen, M. (2014). Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris - a filamentous cyanobacterium containing chlorophyll f. Frontiers in Plant Science 5, 67. Li, Y., Scales, N., Blankenship, R.E., Willows, R.D., and Chen, M. (2012). Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f. Biochimica et Biophysica Acta 1817, 1292-1298. Liistro, E., Battistuzzi, M., Cocola, L., Claudi, R., Poletto, L., and La Rocca, N. (2024). Synechococcus sp. PCC 7335 responses to far-red enriched spectra and anoxic/microoxic atmospheres: potential for astrobiotechnological applications. Plant Physiology and Biochemistry 213, 108793. Liu, H., and Naismith, J.H. (2008). An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnology 8, 91. Liu, T.S., Wu, K.F., Jiang, H.W., Chen, K.W., Nien, T.S., Bryant, D.A., and Ho, M.Y. (2023). Identification of a far-red light-inducible promoter that exhibits light intensity dependency and reversibility in a cyanobacterium. ACS Synthetic Biology 12, 1320-1330. Mao, H.B., Li, G.F., Li, D.H., Wu, Q.Y., Gong, Y.D., Zhang, X.F., and Zhao, N.M. (2003). Effects of glycerol and high temperatures on structure and function of phycobilisomes in Synechocystis sp. PCC 6803. FEBS Letters 553, 68-72. Mascoli, V., Bhatti, A.F., Bersanini, L., van Amerongen, H., and Croce, R. (2022). The antenna of far-red absorbing cyanobacteria increases both absorption and quantum efficiency of Photosystem II. Nature Communications 13. Nürnberg, D.J., Morton, J., Santabarbara, S., Telfer, A., Joliot, P., Antonaru, L.A., Ruban, A.V., Cardona, T., Krausz, E., Boussac, A., Fantuzzi, A., and Rutherford, A.W. (2018). Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science 360, 1210-1213. Nien, T.-S. (2023). A study on gene expression profiles of two cocultured cyanobacteria that are differentially acclimated in visible light and far-red light. In Department of Life Science (National Taiwan University), pp. 87. Nien, T.-S., Bryant Donald, A., and Ho, M.-Y. (2022). Use of quartz sand columns to study far-red light photoacclimation (FaRLiP) in cyanobacteria. Applied and Environmental Microbiology 88, e00562-00522. Niu, T.C., Lin, G.M., Xie, L.R., Wang, Z.Q., Xing, W.Y., Zhang, J.Y., and Zhang, C.C. (2019). Expanding the potential of CRISPR-Cpf1-based genome editing technology in the cyanobacterium Anabaena PCC 7120. ACS Synthetic Biology 8, 170-180. Pineau, B., Girard‐Bascou, J., Eberhard, S., Choquet, Y., Trémolières, A., Gérard‐Hirne, C., Bennardo‐Connan, A., Decottignies, P., Gillet, S., and Wollman, F.A. (2003). A single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores in Chlamydomonas reinhardtii. European Journal of Biochemistry 271, 329-338. Sanfilippo, J.E., Garczarek, L., Partensky, F., and Kehoe, D.M. (2019). Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annual Review of Microbiology 73, 407-433. Silori, Y., Willow, R., Nguyen, H.H., Shen, G., Song, Y., Gisriel, C.J., Brudvig, G.W., Bryant, D.A., and Ogilvie, J.P. (2023). Two-dimensional electronic spectroscopy of the far-red-light photosystem II reaction center. The Journal of Physical Chemistry Letters, 10300-10308. Ueno, Y., Aikawa, S., Niwa, K., Abe, T., Murakami, A., Kondo, A., and Akimoto, S. (2017). Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II. Photosynthesis Research 133, 235-243. Umena, Y., Kawakami, K., Shen, J.-R., and Kamiya, N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55-60. Ungerer, J., and Pakrasi, H.B. (2016). Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Scientific Reports 6, 39681. Wang, X., He, J., and Le, K. (2018). Making point mutations in Escherichia coli BL21 genome using the CRISPR-Cas9 system. FEMS Microbiology Letters 365. Wang, Y., Li, X., Chen, X., and Siewers, V. (2022). CRISPR/Cas9-mediated point mutations improve alpha-amylase secretion in Saccharomyces cerevisiae. FEMS Yeast Research 22. Zamzam, N., Rakowski, R., Kaucikas, M., Dorlhiac, G., Viola, S., Nurnberg, D.J., Fantuzzi, A., Rutherford, A.W., and van Thor, J.J. (2020). Femtosecond visible transient absorption spectroscopy of chlorophyll-f-containing photosystem II. Proceedings of the National Academy of Sciences of the United States of America 117, 23158-23164. Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V., and Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771. Zhang, J., Yang, F., Yang, Y., Jiang, Y., and Huo, Y.X. (2019). Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum. Microbial Cell Factories 18, 60. Zhao, C., Gan, F., Shen, G., and Bryant, D.A. (2015). RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP). Frontiers in Microbiology 6, 1303. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93649 | - |
| dc.description.abstract | 某些藍綠菌生長在遠紅光(λ=700~800 nm)時,會進行遠紅光轉換並表達在FaRLiP基因簇中光系統的同源基因,重組在白光(λ=400~700 nm)生長時表現的光系統。 PsbA3、PsbC2和PsbD3是在遠紅光轉換過程中重組光系統 II的三個蛋白質次單元。這三個蛋白質次單元具有保守的殘基,並與吸收遠紅光的葉綠素d及葉綠素f專一地結合。先前的研究中,蛋白質結構和光譜資料說明了這些葉綠素參與了遠紅光下光合作用中的電子傳遞及能量傳遞。然而,這些研究缺乏活體證據。此外,目前仍缺乏能在行遠紅光轉換的藍綠菌中產生點突變的系統,因此難以研究這些殘基點位。
在本研究中,我們嘗試利用 CRISPR-Cpf1 系統在能進行遠紅光轉換的藍綠菌Synechococcus sp. PCC 7335的PsbA3、PsbC2以及PsbD3中產生點突變。在三個次單元中,我們成功的在PsbD3次單元產生了Y191W點突變。這個保守位點的酪氨酸殘基和電子傳遞鏈中的葉綠素a產生建結。並且,相對於白光下表達光系統二的殘基,該酪氨酸被認為能改變此葉綠素a的能量。此外,由於由於引子設計錯誤,造成Y191W外的另一個點突變N220D也被產生了。生長實驗中,突變株與野生型相比在遠紅光下生長得較慢。對突變株的光譜分析顯示,遠紅光下生長的突變株相對於野生型,具有更多白光下表達的光系統。我們在突變株細胞的氧活性測試中,發現突變株的光系統二失去了利用遠紅光的能力。此外,高效液相層析沒有在遠紅光下生長的突變株細胞中檢測到葉綠素d。 我們利用蔗糖梯度進行的光系統分離。與野生型相比,適應遠紅光的突變株分離較多的光系統分數。突變株的光系統二發出與野生型不同的螢光訊號;而在另一個分層中則同時發出來自白光表達光系統二及遠紅光表達光系統一的訊號。最後,我們對突變株進行蛋白質質譜分析,檢測到了遠紅光下表達光系統二中所有次單元的訊號。這些結果表明在突變株中,遠紅光下表達的光系統二的組裝可能因點突變而受到影響,並且葉綠素d的存在可能取決於組裝的完整性。 此研究中,我們利用CRISPR-Cpf1在Synechococcus sp. PCC 7335中產生點突變,而結果顯示該系統仍有待改進。對突變株的分析則顯示,特定殘基可能參與了的光系統二的組裝。這些結果提供了在藍綠菌中基因編輯改進的方向,並增加了我們對利用遠紅光光合作用的理解。 | zh_TW |
| dc.description.abstract | When exposed in far-red light (FRL, λ=700~800 nm), some cyanobacteria perform far-red light photoacclimation (FaRLiP) and express a set of homologue genes of photosystem in the FaRLiP gene cluster that remodel photosystem (PS) expressed in white light (WL, λ=400~700 nm). PsbA3, PsbC2 and PsbD3 are three of the protein subunits that remodel the photosystem II (PSII) during FaRLiP. The three subunits contain conserved residues that provides specific bindings to chlorophylls, including FRL-absorbing chlorophyll (Chl) d and Chl f. Structure and spectroscopic information suggests these Chls contribute to FRL-using photosynthesis and function in the electron transfer chain (ETC) or energy transfer process. However, in vivo evidences for such suggestion is lacking. Furthermore, there is lacking an established mutagenesis method to generate point mutation in FaRLiP cyanobacteria to study these residues.
In this study, we attempted to utilize CRISPR-Cpf1 system to generate point mutations in the three PSII subunits of a FaRLiP cyanobacteria, Synechococcus sp. PCC 7335. Point mutations was generated in PsbD3, which introduced an Y191W mutation to an ETC-related Chl a binding tyrosine residue. The residue was suspected to alter the energy of binding Chl a compared to residues in WL-expressed PSII. Additionally, an N220D mutations was accidently generated by a primer design error. We found that the mutant grew slower under FRL compared to wild type. Spectroscopic analysis of mutant grown under FRL revealed higher amount of WL-expressed photosystem in mutant compared to WT, while oxygen evolution showed that the PSII of mutant cells lost FRL-using ability. Moreover, pigment analysis by high performance liquid chromatography detected no Chl d in cells grown under FRL. Photosystem isolation by sucrose gradient showed increased fraction layer compared to WT. The PSII fraction in the mutant emitted distinct signals from WT, while a fraction emitted signals from both WL-expressed PSII and FRL-expressed PSI. Finally, protein mass spectroscopy analysis of the fractions in mutant detected all subunits in the FRL-expressed PSII. These results suggest that the assembly of FRL-expressed PSII is affected due to point mutations, and the integrity of such PSII may be required for the existence of Chl d. Overall, we utilized the CRISPR-Cpf1 to generate point mutations in Synechococcus sp. PCC 7335, showing the system still to be improved, and suggested the assembly-related function of specific residues in photosystem II. These findings pave the way for developing the gene editing system in FaRLiP cyanobacteria and expand the knowledge of FRL-utilizing photosynthesis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:10:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T16:10:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
致謝 ii 摘要 iii Abstract v Table of Contents vii List of Figures x List of Tables xi List of Appendices xii Chapter 1. Introduction 1 Chapter2. Material and methods 7 2.1 Cyanobacterial strain and culture conditions 7 2.2 Mutagenesis of psbA3, psbC2 and psbD3 7 2.3 Modification of pSL2680 plasmid for CRISPR-Cpf1 gene editing 8 2.4 Conjugative transformation and mutagenesis of Synechococcus sp. PCC 7335 9 2.5 Absorbance spectroscopy and room temperature and low-temperature (77K) fluorescence spectroscopy 9 2.6 Pigments extraction and high performance liquid chromatography (HPLC) analysis 10 2.7 Oxygen evolution 10 2.8 Photosystem II extraction 11 2.9 In-solution digestions for LC-MS/MS analysis 12 Chapter 3. Results 14 3.1 Construction of CRSIPR plasmid and mutagenesis 14 3.2 The growth rate of N220D/Y191W mutant under far-red light decreased compared to WT 15 3.3 Spectroscopic properties of N220D/Y191W mutant cells grown under FRL 16 3.4 Oxygen evolution of Syn7335 WT and FRL-N220D/Y191W mutant cells 17 3.5 No chlorophyll d was detected by HPLC in N220D/Y191W mutant grown under FRL 19 3.6 Isolation of photosystems by sucrose gradient and spectral properties of each fractions 19 3.7 Identification of proteins in each fraction using protein mass spectrometry 22 Chapter 4. Discussion 24 4.1 Mutagenesis and conjugation efficiency of CRISPR-Cpf1 system 24 4.2 Possible effect of Y191W and N220D mutations on PsbD3 27 4.3 Hypothesis for the undetected Chl d in FRL-N220D/Y191W cells 28 4.4 Changes of photosystem compositions in N220D/Y191W after exposed to FRL 29 Conclusion and future works 31 Figures 33 Tables 48 References 52 Appendices 60 | - |
| dc.language.iso | en | - |
| dc.subject | 葉綠素d | zh_TW |
| dc.subject | CRISPR基因編輯 | zh_TW |
| dc.subject | 光系統二 | zh_TW |
| dc.subject | 遠紅光轉換 | zh_TW |
| dc.subject | 藍綠菌 | zh_TW |
| dc.subject | 點突變 | zh_TW |
| dc.subject | chlorophyll d (Chl d) | en |
| dc.subject | cyanobacteria | en |
| dc.subject | far-red light photoacclimation (FaRLiP) | en |
| dc.subject | point mutation | en |
| dc.subject | CRISPR gene editing | en |
| dc.subject | photosystem II (PSII) | en |
| dc.title | 在利用遠紅光的藍綠菌Synechococcus sp. PCC 7335中研究光系統II反應中心次單元PsbD3之點突變對於光系統II功能影響 | zh_TW |
| dc.title | Effects of point mutations on photosystem II reaction center subunit PsbD3 in a far-red light-utilizing cyanobacterium Synechococcus sp. PCC 7335 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李秀敏;朱修安;傅瀚儀 | zh_TW |
| dc.contributor.oralexamcommittee | Hsou-Min Li;Hsiu-An Chu;Han-Yi Fu | en |
| dc.subject.keyword | 藍綠菌,遠紅光轉換,點突變,CRISPR基因編輯,光系統二,葉綠素d, | zh_TW |
| dc.subject.keyword | cyanobacteria,far-red light photoacclimation (FaRLiP),point mutation,CRISPR gene editing,photosystem II (PSII),chlorophyll d (Chl d), | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202402270 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-30 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| dc.date.embargo-lift | 2029-08-02 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-08-02 | 3.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
