請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93647完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭修伯 | zh_TW |
| dc.contributor.advisor | Hsiu-Po Kuo | en |
| dc.contributor.author | 李承恩 | zh_TW |
| dc.contributor.author | Cheng-En Li | en |
| dc.date.accessioned | 2024-08-07T16:09:22Z | - |
| dc.date.available | 2024-08-08 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | 1. Peyrin, F. and K. Engelke, CT Imaging: Basics and New Trends. 2020, Springer International Publishing. p. 1-43.
2. De Chiffre, L., et al., Industrial applications of computed tomography. CIRP Annals, 2014. 63(2): p. 655-677. 3. Kastner, J., et al. New X-ray computed tomography methods for research and industry. in 7th Conference on Industrial Computed Tomography (iCT2017). ICT, Leuven, Belgium. . 2017. 4. Ou, X., et al., Recent Development in X-Ray Imaging Technology: Future and Challenges. Research, 2021. 2021. 5. Vicente, M.A., D.C. González, and J. Mínguez, Recent advances in the use of computed tomography in concrete technology and other engineering fields. Micron, 2019. 118: p. 22-34. 6. Buzug, T.M., Computed Tomography. 2011, Springer Berlin Heidelberg. p. 311-342. 7. Abdulateef, S.K. and M.D. Salman, A Comprehensive Review of Image Segmentation Techniques. Iraqi Journal for Electrical & Electronic Engineering, 2021. 17(2). 8. Kumar, M.J., D.G.R. Kumar, and R.V.K. Reddy, Review on image segmentation techniques. International Journal of Scientific Research Engineering & Technology, 2014. 3(6): p. 993-997. 9. Fam, Y., et al., Correlative Multiscale 3D Imaging of a Hierarchical Nanoporous Gold Catalyst by Electron, Ion and X‐ray Nanotomography. ChemCatChem, 2018. 10(13): p. 2858-2867. 10. Becher, J., et al., Mapping the pore architecture of structured catalyst monoliths from nanometer to centimeter scale with electron and X-ray tomographies. The Journal of Physical Chemistry C, 2019. 123(41): p. 25197-25208. 11. Andisheh-Tadbir, M., F.P. Orfino, and E. Kjeang, Three-dimensional phase segregation of micro-porous layers for fuel cells by nano-scale X-ray computed tomography. Journal of Power Sources, 2016. 310: p. 61-69. 12. K. Muradas Mujika, J.A.J.M., A. Framiñán de Miguel, 3d Applications in Radiology as Educational Software. EDULEARN18 Proceedings, 2018: p. 2024-2028. 13. Gao, H.J., et al. Three-Dimensional Visualization of Liver CT Slices by Amira. in 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. 2008. 14. Pruggnaller, S., M. Mayr, and A.S. Frangakis, A visualization and segmentation toolbox for electron microscopy. Journal of Structural Biology, 2008. 164(1): p. 161-165. 15. Song, C., et al., Mechanical properties of the human abdominal wall measured in vivo during insufflation for laparoscopic surgery. Surgical Endoscopy And Other Interventional Techniques, 2006. 20: p. 987-990. 16. Faas, D., C. Buffinton, and D. Sedmera. 3d Reconstruction and Nonlinear Finite Element Analysis of the Embryonic Left Ventricle. in ASME 2007 Summer Bioengineering Conference. 2007. 17. Stalling, D., M. Westerhoff, and H.-C. Hege, Amira: A highly interactive system for visual data analysis. The visualization handbook, 2005. 38: p. 749-67. 18. Yu, J.-F., et al., Smoothing for the Optimal Surface of a 3D Image Model of the Human Ossicles. Journal of Mechanics, 2011. 27(3): p. 431-436. 19. Vásárhelyi, L., et al., Microcomputed tomography–based characterization of advanced materials: a review. Materials Today Advances, 2020. 8: p. 100084. 20. Yang, X., et al., CT-CFD integrated investigation into porosity and permeability of neat early-age well cement at downhole condition. Construction and Building Materials, 2019. 205: p. 73-86. 21. Meirer, F., et al., Mapping Metals Incorporation of a Whole Single Catalyst Particle Using Element Specific X-ray Nanotomography. Journal of the American Chemical Society, 2015. 137(1): p. 102-105. 22. Jurtz, N., M. Kraume, and G.D. Wehinger, Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD). Reviews in Chemical Engineering, 2019. 35(2): p. 139-190. 23. Dixon, A.G., M. Nijemeisland, and E.H. Stitt, Packed Tubular Reactor Modeling and Catalyst Design using Computational Fluid Dynamics, in Advances in Chemical Engineering, G.B. Marin, Editor. 2006, Academic Press. p. 307-389. 24. Liu, S., A. Afacan, and J. Masliyah, Steady incompressible laminar flow in porous media. Chemical Engineering Science, 1994. 49(21): p. 3565-3586. 25. Wang, Z., et al., Porosity distribution in random packed columns by gamma ray tomography. Chemical Engineering and Processing: Process Intensification, 2001. 40(3): p. 209-219. 26. Yin, F., et al., Liquid holdup distribution in packed columns: gamma ray tomography and CFD simulation. Chemical Engineering and Processing: Process Intensification, 2002. 41(5): p. 473-483. 27. Jiang, L., et al., Mass transfer coefficient measurement during brine flush in a CO2-filled packed bed by X-ray CT scanning. International Journal of Heat and Mass Transfer, 2017. 115: p. 615-624. 28. Bu, S.S., et al., On contact point modifications for forced convective heat transfer analysis in a structured packed bed of spheres. Nuclear Engineering and Design, 2014. 270: p. 21-33. 29. Cundall, P.A. and O.D.L. Strack, A discrete numerical model for granular assemblies. Géotechnique, 1979. 29(1): p. 47-65. 30. Tabib, M.V., S.T. Johansen, and S. Amini, A 3D CFD-DEM Methodology for Simulating Industrial Scale Packed Bed Chemical Looping Combustion Reactors. Industrial & Engineering Chemistry Research, 2013. 52(34): p. 12041-12058. 31. Wehinger, G.D., C. Fütterer, and M. Kraume, Contact Modifications for CFD Simulations of Fixed-Bed Reactors: Cylindrical Particles. Industrial & Engineering Chemistry Research, 2017. 56(1): p. 87-99. 32. Moukalled, F., et al., The finite volume method. 2016: Springer. 33. Dixon, A.G., et al., CFD Method To Couple Three-Dimensional Transport and Reaction inside Catalyst Particles to the Fixed Bed Flow Field. Industrial & Engineering Chemistry Research, 2010. 49(19): p. 9012-9025. 34. Karthik, G.M. and V.V. Buwa, Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed. AIChE Journal, 2017. 63(1): p. 366-377. 35. Ma, H., et al., Critical Review of Catalysis for Ethylene Oxychlorination. ACS Catalysis, 2020. 10(16): p. 9299-9319. 36. Scharfe, M., et al., Lanthanide compounds as catalysts for the one-step synthesis of vinyl chloride from ethylene. Journal of Catalysis, 2016. 344: p. 524-534. 37. Gianolio, D., et al., Doped-CuCl2/Al2O3 catalysts for ethylene oxychlorination: Influence of additives on the nature of active phase and reducibility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012. 284: p. 53-57. 38. Leofanti, G., et al., Alumina-Supported Copper Chloride: 1. Characterization of Freshly Prepared Catalyst. Journal of Catalysis, 2000. 189(1): p. 91-104. 39. Wachi, S. and Y. Asai, Kinetics of 1, 2-dichloroethane formation from ethylene and cupric chloride. Industrial & engineering chemistry research, 1994. 33(2): p. 259-264. 40. Al-Zahrani, S.M., A.M. Aljodai, and K.M. Wagialla, Modelling and simulation of 1,2-dichloroethane production by ethylene oxychlorination in fluidized-bed reactor. Chemical Engineering Science, 2001. 56(2): p. 621-626. 41. Montebelli, A., et al., Kinetic and Modeling Study of the Ethylene Oxychlorination to 1,2-Dichloroethane in Fluidized-Bed Reactors. Industrial & Engineering Chemistry Research, 2015. 54(39): p. 9513-9524. 42. Spalart, P.R. and V. Venkatakrishnan, On the role and challenges of CFD in the aerospace industry. The Aeronautical Journal, 2016. 120(1223): p. 209-232. 43. Norton, T. and D.-W. Sun, Computational fluid dynamics (CFD) – an effective and efficient design and analysis tool for the food industry: A review. Trends in Food Science & Technology, 2006. 17(11): p. 600-620. 44. Raynal, L., et al., CFD Applied to Process Development in the Oil and Gas Industry – A Review. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 2016. 71(3): p. 42. 45. Goh, T.Y., et al., Performance analysis of image thresholding: Otsu technique. Measurement, 2018. 114: p. 298-307. 46. Zilske, M., H. Lamecker, and S. Zachow, Adaptive remeshing of non-manifold surfaces. 2007. 47. Jabi, W., et al., Enhancing parametric design through non-manifold topology. Design Studies, 2017. 52: p. 96-114. 48. Walton, O.R. and R.L. Braun, Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of rheology, 1986. 30(5): p. 949-980. 49. Yang, X., et al., Evaluation of coke deposition in catalyst particles using particle-resolved CFD model. Chemical Engineering Science, 2021. 229: p. 116122. 50. Shi, Y., et al., Thermal management of natural gas production from coke oven gas by optimizing catalyst distribution and operation conditions. Chemosphere, 2023. 327: p. 138536. 51. Fuller, E.N., P.D. Schettler, and J.C. Giddings, NEW METHOD FOR PREDICTION OF BINARY GAS-PHASE DIFFUSION COEFFICIENTS. Industrial & Engineering Chemistry, 1966. 58(5): p. 18-27. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93647 | - |
| dc.description.abstract | 本論文使用顯微電腦斷層以2.734 μm的解析度掃描圓環狀乙烯氧氯化觸媒(FOC, AKZO, *Akzo and Nobel merged as AkzoNobel in 1994; AkzoNobel’s catalyst division sold to Albemarle in 1999),獲得觸媒內部的孔隙度分布情形,並使用計算流體力學(Computational Fluid Dynamics, CFD)計算觸媒內部結構於不同孔隙度下的滲透率。研究結果顯示觸媒內的孔隙度為徑向距離的函數,平均孔隙度為0.537;分析三方向的觸媒滲透率與孔隙度的關係,發現相同孔隙度下,徑向與切向滲透率的數值相近,而軸向滲透率較徑向與切向滲透率小,整體滲透率介於1E-13至1E-11 m2之間,以半對數直線型函數可良好描述滲透率與孔隙度的關係。
研究創建三種觸媒放置方向的單顆觸媒填充床模型,圓環狀觸媒之軸心與z軸夾角分別為0、45、90度,並使用離散元素法(Discrete Element Method, DEM)隨機堆疊生成14顆觸媒填充床。研究將顆粒解析毫米尺度CFD與觸媒內部微米結構滲透率結合,探討473 K及523 K下,單顆觸媒填充床於不同放置角度下及14顆觸媒填充床進行乙烯氧氯化反應的流態、熱傳、反應等物理化學現象。單顆觸媒填充模型中,0度放置模型在觸媒內有最大的平均流速,進料溫度為523 K下,乙烯氧氯化反應的反應速率約為473 K下的4.4倍。三種觸媒放置模型中,45度放置模型在觸媒內有最高的局部溫度及平均反應速率,在進料溫度為473 K下各為492.8 K及0.0293 kmol/m3-s,乙烯轉化率為2.53E-4。在14顆觸媒填充模型中,進料溫度為473 K下,反應器內14顆觸媒的平均反應速率為0.0269 kmol/m3-s,乙烯轉化率為2.20E-3。 | zh_TW |
| dc.description.abstract | The internal structure of a hollow cylindrical ethylene oxychlorination catalyst (FOC, AKZO, *Akzo and Nobel merged as AkzoNobel in 1994; AkzoNobel’s catalyst division sold to Albemarle in 1999) was obtained by micro-computed tomography scanning with a resolution of 2.734 μm. Computational Fluid Dynamics (CFD) is then used to calculate the permeability of the catalyst through the porosity distribution from these scanning images. The results show that the porosity in the catalyst is a function of the radial position, and the average porosity is 0.537. The overall permeability in the catalyst ranges from 1E-13 to 1E-11 m2. The relationship between the permeability and porosity can be well described by a semi-logarithmic linear function. In the location with the same porosity values, the radial and tangential permeability values are similar, and the axial permeability is smaller.
Three catalyst orientations are studied in a single catalyst in reactor column model. The angles between the axis of the hollow cylindrical catalyst and the column z-axis are 0, 45, and 90 degrees. The 0-degree orientation model has the largest average flow rate within the catalyst. When the ethylene feeding temperature is 523 K, the oxychlorination reaction rate is 4.4 times larger than that using the feeding temperature of 473 K. When the ethylene feed temperature is 473 K, the 45-degree orientation model has the highest local temperature of 492.8 K and highest average reaction rate of 0.0293 kmol/m3-s. The conversion of the ethylene is 2.53E-4. Discrete Element Method (DEM) is used to create a 14-catalyst packed bed. Coupling the particle-resolved CFD and the catalyst’s permeability the average reaction rate of 14-catalyst in reactor model is 0.0269 kmol/m3-s and the conversion of ethylene is 2.20E-3 when the feed temperature is 473 K. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:09:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T16:09:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次 I
圖次 V 表次 XI 第一章 緒論 1 第二章 文獻回顧 2 2.1 電腦斷層影像 2 2.1.1 電腦斷層設備及影像建構原理 2 2.1.2 影像分割處理 4 2.1.3 可視化三維結構 9 2.2 以電腦斷層影像計算多孔材質之滲透率 11 2.3 顆粒解析之計算流體力學 14 2.3.1 填充床生成 16 2.3.1.1 掃描重建法 16 2.3.1.2 理想顆粒排列法 19 2.3.1.3 隨機顆粒排列法 20 2.3.2 網格劃分 21 2.3.3 有限體積法 23 2.3.4 多孔介質模型 25 2.4 乙烯氧氯化反應 27 2.4.1 乙烯氧氯化觸媒 27 2.4.2 乙烯氧氯化反應速率式 29 2.4.3 乙烯氧氯化反應相關模擬 31 第三章 研究方法 34 3.1 研究流程概述 34 3.2 觸媒電腦斷層影像重建 36 3.2.1 電腦斷層掃描 36 3.2.2 影像預處理 37 3.2.3 決定影像閾值 39 3.2.4 觸媒子結構影像分割暨重建 41 3.3 觸媒孔隙度分析 43 3.4 觸媒子結構之網格生成暨CFD數值模擬 45 3.4.1 幾何修飾暨網格生成 45 3.4.2 CFD模擬參數暨邊界條件設定 48 3.5 以離散元素法建構觸媒填充床 50 3.5.1 正向接觸力模型 51 3.5.2 切向接觸力模型 53 3.5.3 建構觸媒填充床 54 3.6 填充床幾何建立暨網格劃分 56 3.6.1 單顆觸媒填充床 56 3.6.1.1 幾何結構 56 3.6.1.2 網格劃分 56 3.6.2 多顆觸媒填充床 60 3.6.2.1 幾何結構 60 3.6.2.2 網格劃分 63 3.7 CFD數值模擬 66 3.7.1 流體統御方程式 67 3.7.1.1 質量守恆 67 3.7.1.2 動量守恆 67 3.7.1.3 能量守恆 68 3.7.1.4 物質傳輸方程式 69 3.7.2 湍流模型 71 3.7.3 多孔介質模型(Porous media model) 72 3.7.3.1 多孔介質模型的動量方程式 72 3.7.3.2 多孔介質模型的能量方程式 73 3.7.4 反應動力式 74 3.7.5 邊界條件暨參數設定 74 3.8 觸媒幾何定位方式 79 3.9 填充床實驗驗證 80 3.9.1 實驗裝置 80 3.9.2 實驗步驟 81 第四章 結果與討論 82 4.1 觸媒內結構之影像分析 82 4.1.1 四種方向上之孔隙度分析 82 4.1.2 徑向孔隙度分布分析 85 4.2 觸媒內結構之CFD 88 4.2.1 滲透率分布情形 88 4.2.2 滲透率之迴歸分析 89 4.2.2.1 以修改後的Ergun方程式進行迴歸分析 89 4.2.2.2 以半對數直線型方程式進行迴歸分析 90 4.3 單顆觸媒填充床 92 4.3.1 網格獨立性測試 92 4.3.2 觸媒放置位置對壓降及流速分布的影響 94 4.3.3 觸媒放置位置對溫度分布的影響 98 4.3.4 觸媒放置位置對乙烯氧氯化反應的影響 101 4.4 CFD-DEM模型驗證 109 4.5 14顆觸媒填充床 111 4.5.1 14顆觸媒填充床內之壓降與流速分布 111 4.5.2 14顆觸媒填充床之溫度分布與乙烯氧氯化反應 113 第五章 結論 116 參考文獻 117 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 顯微電腦斷層掃描 | zh_TW |
| dc.subject | 乙烯氧氯化反應 | zh_TW |
| dc.subject | 滲透率 | zh_TW |
| dc.subject | 孔隙度 | zh_TW |
| dc.subject | 顆粒解析尺度CFD | zh_TW |
| dc.subject | particle-resolved CFD | en |
| dc.subject | permeability | en |
| dc.subject | Micro-computed tomography (μ-CT) | en |
| dc.subject | ethylene oxychlorination | en |
| dc.subject | porosity | en |
| dc.title | 觸媒填充床內微米至毫米尺度的微結構對乙烯進行氧氯化反應之影響 | zh_TW |
| dc.title | Simulations of Ethylene Oxychlorination on Catalysts Packed Bed with X-ray Resolved Micron-millimeter Resolutions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 徐振哲;黃安婗 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Che Hsu;An-Ni Huang | en |
| dc.subject.keyword | 顯微電腦斷層掃描,顆粒解析尺度CFD,孔隙度,滲透率,乙烯氧氯化反應, | zh_TW |
| dc.subject.keyword | Micro-computed tomography (μ-CT),particle-resolved CFD,porosity,permeability,ethylene oxychlorination, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202402683 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2026-08-01 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 9.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
