Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93643
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王翰聰zh_TW
dc.contributor.advisorHan-Tsung Wangen
dc.contributor.author陳柔妘zh_TW
dc.contributor.authorRou-Yun Chenen
dc.date.accessioned2024-08-06T16:32:26Z-
dc.date.available2024-08-07-
dc.date.copyright2024-08-06-
dc.date.issued2024-
dc.date.submitted2024-07-24-
dc.identifier.citation行政院農業委員會,2022。https://www.tfa.com.tw/newsInfo/721
范耕榛、張俊達、賴京佑、洪兮雯、謝怡慧、程梅萍。2023。飼糧中不同精芻料比對泌乳牛甲烷排放量之評估。中國畜牧學會會誌第52期:331。
蘇華維、楊再俊、曹志軍、喬綠、劉文奇、李勝利。2011。利用瘤胃能氮平衡原理評價奶牛全混合日糧的能氮平衡。中國畜牧雜誌第9期:45-49。
謝怡慧、范耕榛、賴京佑、洪兮雯、許晉賓、程梅萍。2023。飼糧不同精粗料比對泌乳山羊甲烷排放量的影響。中國畜牧學會會誌第52期:314。
Antone, U., J. Zagorska, V. Sterna, A. Jemeljanovs, A. Berzins, and D. Ikauniece. 2015. Effects of dairy cow diet supplementation with carrots on milk composition, concentration of cow blood serum carotenes, and butter oil fat-soluble antioxidative substances. Agron. Res. 13:879–891.
Aschenbach, J. R., G. B. Penner, F. Stumpff, and G. Gabel. 2011. Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH. J. Anim. Sci. 89:1092-1107. doi:10.2427/jas.2010-3301
Azizi, A., M. Hashemi, and A. Sharifi. 2018. Effect of different dietary levels of carrot pulp on in vitro gas production, nutrients digestibility and rumen fermentation. Anim. Prod. 7:47-56. doi: 10.22124/AR.2019.10787.1331
Bach, A., S. Calsamiglia, and M. D. Stern. 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88:9-21. doi:10.3168/jds.S0022-0302(05)73133-7
Battelli, M., S. Colombini, P. Parma, G. Galassi, G. M. Crovetto, M. Spanghero, D. Pravettoni, S. A. Zanzani, M. T. Manfredi, and L. Rapetti. 2023. In vitro effects of different levels of quebracho and chestnut tannins on rumen methane production, fermentation parameters, and microbiota. Front. Vet. Sci. 10:1178288. doi.org/10.3389/fvets.2023.1178288
Beauchemin, K. A., T. A. McAllister, and S. M. McGinn. 2009. Dietary mitigation of enteric methane from cattle. CABI Rev. 1-18.
doi:10.1079/PAVSNNR20094035
Beauchemin, K., M. Kreuzer, F. O’mara, and T. McAllister. 2008. Nutritional management for enteric methane abatement: a review. Aust. J. Exp. Agric. 48:21-27. doi.org/10.1071/EA07199
Beever, D., M. Dhanoa, H. Losada, R. Evans, S. Cammell, and J. France. 1986. The effect of forage species and stage of harvest on the processes of digestion occurring in the rumen of cattle. Br. J. Nutr. 56:439-454.
doi:10.1079/BJN19860124
Beever, D., M. Dhanoa, H. Losada, R. Evans, S. Cammell, and J. France. 1986. The effect of forage species and stage of harvest on the processes of digestion occurring in the rumen of cattle. Br. J. Nutr. 56:439-454. doi.org/10.1079/BJN19860124
Beuvink, J., and S. Spoelstra. 1992. Interactions between substrate, fermentation end-products, buffering systems and gas production upon fermentation of different carbohydrates by mixed rumen microorganisms in vitro. Appl. Microbiol. Biotechnol. 37:505-509. doi.org/10.1007/BF00180978
Blümmel, M., and E. Ørskov. 1993. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Anim. Feed. Sci. Technol. 40:109-119. doi.org/10.1016/0377-8401(93)90150-I
Blümmel, M., D. Givens, and A. Moss. 2005. Comparison of methane produced by straw fed sheep in open-circuit respiration with methane predicted by fermentation characteristics measured by an in vitro gas procedure. Anim. Feed Sci. Technol. 123:379-390. doi:10.1016/j.anifeedsci.2005.06.001
Boadi, D., and K. Wittenberg. 2002. Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Can. J. Anim. Sci. 82:201-206. doi.org/10.4141/A01-017
Boadi, D., C. Benchaar, J. Chiquette, and D. Massé. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows. Can. J. Anim. Sci. 84:319-335. doi:10.4141/A03-109
Boadi, D., K. Wittenberg, S. Scott, D. Burton, K. Buckley, J. Small, and K. Ominski. 2004b. Effect of low and high forage diet on enteric and manure pack greenhouse gas emissions from a feedlot. Can. J. Anim. Sci. 84:445-453. doi.org/10.4141/A03-079
Bodas, R., N. Prieto, R. García-González, S. Andrés, F. J. Giráldez, and S. López. 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci. Technol. 176:78-93. doi:10.1016/j.anifeedsci.2012.07.010
Bodas, R., S. López, M. Fernandez, R. García-González, A. Rodríguez, R. Wallace, and J. González. 2008. In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim. Feed Sci. Technol. 145:245-258. doi:10.1016/j.anifeedsci.2007.04.015
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. doi.org/10.1016/0003-2697(76)90527-3
Brito, A., and G. Broderick. 2006. Effect of varying dietary ratios of alfalfa silage to corn silage on production and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 89:3924-3938. doi.org/10.3168/jds.S0022-0302(06)72435-3
Broderick, G., and J. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63:64-75 doi: 10.3168/jds.S0022-0302(80)82888-8
Brooks, M. A., R. Harvey, N. Johnson, and M. Kerley. 2012. Rumen degradable protein supply affects microbial efficiency in continuous culture and growth in steers. J. Anim. Sci. 90:4985-4994. doi.org/10.2527/jas.2011-4107
Browne, P. D., and H. Cadillo-Quiroz. 2013. Contribution of transcriptomics to systems-level understanding of methanogenic archaea. Archaea. 2013:1-11 doi:10.1155/2013/586369
Buddle, B. M., M. Denis, G. T. Attwood, E. Altermann, P. H. Janssen, R. S. Ronimus, C. S. Pinares-Patiño, S. Muetzel, and D. N. Wedlock. 2011. Strategies to reduce methane emissions from farmed ruminants grazing on pasture. Vet. J. 188:11-17. doi:10.1016/j.tvjl.2010.02.019
Camiña, F., C. Trasar-Cepeda, F. Gil-Sotres, and C. Leirós. 1998. Measurement of dehydrogenase activity in acid soils rich in organic matter. Soil Biol. Biochem. 30:1005-1011. doi:10.1016/S0038-0717(98)00010-8
Cerrato-Sánchez, M., S. Calsamiglia, and A. Ferret. 2008. Effect of the magnitude of the decrease of rumen pH on rumen fermentation in a dual-flow continuous culture system. J. Anim. Sci. 86:378-383. doi.org/10.2527/jas.2007-0180
Chagunda, M., and T. Yan. 2011. Do methane measurements from a laser detector and an indirect open-circuit respiration calorimetric chamber agree sufficiently closely? Anim. Feed Sci. Technol. 165:8-14. doi:10.1016/j.anifeedsci.2011.02.005
Chagunda, M., D. Ross, J. Rooke, T. Yan, J.-L. Douglas, L. Poret, N. McEwan, P. Teeranavattanakul, and D. Roberts. 2013. Measurement of enteric methane from ruminants using a hand-held laser methane detector. Acta. Agr. Scand. A-Anim. Sci. 63:68-75. doi:10.1080/09064702.2013.797487
Chen, L., G. Guo, X. Yuan, J. Zhang, A. Wen, X. Sun, and T. Shao. 2017. Effect of ensiling whole crop oat with lucerne in different ratios on fermentation quality, aerobic stability and in vitro digestibility on the Tibetan plateau. J. of Anim. Physiol. Anim. Nutr. 101: 144-153. doi: 10.1111/jpn.12577
Chew, B. P. 1995. Antioxidant vitamins affect food animal immunity and health. J. Nutr. 125:1804-1808. doi.org/10.1093/jn/125.suppl_6.1804S
Choi, Y. Y., N. H. Shin, S. J. Lee, Y. J. Lee, H. S. Kim, J. S. Eom, S. S. Lee, E. T. Kim, and S. S. Lee. 2021. In vitro five brown algae extracts for efficiency of ruminal fermentation and methane yield. J. Appl. Psychol. 33:1253-1262. doi:10.1007/s10811-020-02361-4
Cone, J. W., and A. H. van Gelder. 1999. Influence of protein fermentation on gas production profiles. Anim. Feed Sci. Technol. 76:251-264. doi.org/10.1016/S0377-8401(98)00222-3
Crooker, B., C. Sniffen, W. Hoover, and L. Johnson. 1978. Solvents for soluble nitrogen measurements in feedstuffs. J. Dairy Sci. 61:437-447. doi:10.3168/jds.S00220302(78)83618-2
Danielsson, R., M. Ramin, J. Bertilsson, P. Lund, and P. Huhtanen. 2017. Evaluation of a gas in vitro system for predicting methane production in vivo. J. Dairy Sci. 100:8881-8894. doi: 10.3168/jds.2017-12675
Dewhurst, R., D. Davies, and R. Merry. 2000. Microbial protein supply from the rumen. Anim. Feed Sci. Technol. 85:1-21. doi:10.1016/S0377-8401(00)00139-5
Di Marco, O., M. Ressia, S. Arias, M. Aello, and M. Arzadún. 2009. Digestibility of forage silages from grain, sweet and bmr sorghum types: Comparison of in vivo, in situ and in vitro data. Anim. Feed Sci. Technol. 153:161-168. doi:10.1016/j.anifeedsci.2009.06.003
Dijkstra, J. 1994. Production and absorption of volatile fatty acids in the rumen. Livest. Prod. Sci. 39:61-69. doi. 10.1016/0301-6226(94)90154-6
Dijkstra, J., E. Kebreab, A. Bannink, J. France, and S. López. 2005. Application of the gas production technique to feed evaluation systems for ruminants. Anim. Feed Sci. Technol. 123:561-578. doi:10.1016/j.anifeedsci.2005.04.048
Dong, L., W. Zhang, N. Zhang, Y. Tu, and Q. Diao. 2017. Feeding different dietary protein to energy ratios to Holstein heifers: effects on growth performance, blood metabolites and rumen fermentation parameters. J. Anim. Physiol. Anim. Nutr. 101:30-37. doi.org/10.1111/jpn.12493
Duin, E. C., T. Wagner, S. Shima, D. Prakash, B. Cronin, D. R. Yáñez-Ruiz, S. Duval, R. Rümbeli, R. T. StemmlmLer, and R. K. Thauer. 2016. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc. Nat. Acad. Sci. 113:6172-6177.
doi:10.1073/pnas.1600298113
Eastridge, M. 2006. Major advances in applied dairy cattle nutrition. J. Dairy Sci. 89:1311-1323. doi:10.3168/jds.S0022-0302(06)72199-3
Eckard, R., C. Grainger, and C. De Klein. 2010. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest Sci. 130:47-56. doi.org/10.1016/j.livsci.2010.02.010
Elias, D. A., L. R. Krumholz, R. S. Tanner, and J. M. Suflita. 1999. Estimation of methanogen biomass by quantitation of coenzyme M. Appl. Environ. Microbiol. 65:5541-5545. doi.org/10.1128/AEM.65.12.5541-5545.1999
Ellis, J., J. Dijkstra, E. Kebreab, A. Bannink, N. Odongo, B. McBride, and J. France. 2008. Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. J. Agric. Sci. 146:213-233. doi.org/10.1017/S0021859608007752
Fan, G.-J., M.-H. Chen, C.-F. Lee, B. Yu, and T.-T. Lee. 2022. Effects of rice straw fermented with spent Pleurotus sajor-caju mushroom substrates on milking performance in Alpine dairy goats. Anim. Biosci. 35:999-1009. doi: 10.5713/ab.21.0340
FAO. 2016. Reducing enteric methane for improving food security and livelihoods. https://www.slideshare.net/slideshow/reducing-enteric-methane-for-improving-food-security-and-livelihoods/64068136
FAO. 2021. Opportunities to reduce methane emissions from global agriculture. Faculty of Cornell University: Ithaca, NY, USA.
Forwood, D. L., D. B. Holman, A. V. Chaves, and S. J. Meale. 2022. Unsalable vegetables ensiled with sorghum promote heterofermentative lactic acid bacteria and improve in vitro rumen fermentation. Front. Microbiol. 13:835913. doi.org/10.3389/fmicb.2022.835913
Getachew, G., P. Robinson, E. DePeters, S. Taylor, D. Gisi, G. Higginbotham, and T. Riordan. 2005. Methane production from commercial dairy rations estimated using an in vitro gas technique. Anim. Feed Sci. Technol. 123:391-402. doi:10.1016/j.anifeedsci.2005.04.056
Goel, G., and H. P. Makkar. 2012. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 44:729-739. doi:10.1007/s11250-011-9966-2
González‐Muñoz, S. S., H. A. Zavaleta‐Mancera, L. A. Miranda‐Romero, O. Loera‐Corral, J. M. Pinos‐Rodríguez, R. G. Campos‐Montiel, and I. Almaraz‐Buendía. 2019. Histochemical changes in early and mature Festulolium and maturation's effects on rumen bacteria activity and in vitro degradation. Grassl. Sci. 65:23-31. doi.org/10.1111/grs.12217
Goopy, J. P., C. Chang, and N. Tomkins. 2016. A comparison of methodologies for measuring methane emissions from ruminants. pp:97-117 in Methods for measuring greenhouse gas balances and evaluating mitigation options in smallholder agriculture. doi:10.1007/978-3-319-29794-1
Hammond, K., D. Humphries, L. Crompton, C. Green, and C. Reynolds. 2015. Methane emissions from cattle: Estimates from short-term measurements using a GreenFeed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer. Anim. Feed Sci. Technol. 203:41-52. doi:10.1016/j.anifeedsci.2015.02.008
Haque, M. N. 2018. Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 60:1-10. doi: 10.1186/s40781-018-0175-7
Hardan, A., P. C. Garnsworthy, and M. J. Bell. 2021. Detection of methane eructation peaks in dairy cows at a robotic milking station using signal processing. Anim. 12:1-8. doi:10.3390/ani12010026
Hassanat, F., R. Gervais, C. Julien, D. Massé, A. Lettat, P. Chouinard, H. Petit, and C. Benchaar. 2013. Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 96:4553-4567. doi:10.3168/jds.2012-6480
Hegarty, R., J. P. Goopy, R. Herd, and B. McCorkell. 2007. Cattle selected for lower residual feed intake have reduced daily methane production. J. Anim. Sci. 85:1479-1486. doi.org/10.2527/jas.2006-236
Hendrickson, E. L., and J. A. Leigh. 2008. Roles of coenzyme F420-reducing hydrogenases and hydrogen-and F420-dependent methylene-tetrahydromethanopterin dehydrogenases in reduction of F420 and production of hydrogen during methanogenesis. J. Bacteriol. 190:4818-4821. doi:10.1128/jb.00255-08
Hess, H., M. Kreuzer, T. Dıaz, C. E. Lascano, J. E. Carulla, C. R. Soliva, and A. Machmüller. 2003. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Anim. Feed Sci. Technol. 109:79-94. doi:10.1016/S0377-8401(03)00212-8
Hindrichsen, I., H. Wettstein, A. Machmüller, B. Jörg, and M. Kreuzer. 2005. Effect of the carbohydrate composition of feed concentratates on methane emission from dairy cows and their slurry. Environ. Monit. Assess. 107:329-350. doi:10.1007/s10661-005-3008-3
Hristov, A. N., A. Bannink, L. A. Crompton, P. Huhtanen, M. Kreuzer, M. McGee, P. Nozière, C. K. Reynolds, A. R. Bayat, and D. R. Yáñez-Ruiz. 2019. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J. Dairy Sci. 102:5811-5852. doi:10.3168/jds.2018-15829
Hristov, A.N., Oh, J., Firkins, J.L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H.P.S.,Adesogan, A.T., Yang, W., Lee, C., Gerber, P.J., Henderson, B., Tricarico, J.M., 2013. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91: 5045–5069. doi:10.2527/jas.2013-6583.
Huhtanen, P., M. Ramin, and A. Hristov. 2019. Enteric methane emission can be reliably measured by the GreenFeed monitoring unit. Livest. Sci. 222:31-40. doi:10.1016/j.livsci.2019.01.017
Huntington, G., and S. Archibeque. 1999. Practical aspects of urea and ammonia metabolism in ruminants. Proc. Am. Soc. Anim. Sci. 77:1-11. doi:10.2527/jas2000.77E-Suppl1y
IPCC. 2021. AR6 Climate Change: The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/
Janssen, P. H. 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160:1-22.
doi:10.1016/j.anifeedsci.2010.07.002
Javaid, A., M.-u. Nisa, M. Sarwar, and M. Aasif Shahzad. 2008. Ruminal characteristics, blood pH, blood urea nitrogen and nitrogen balance in Nili-ravi Buffalo (Bubalus bubalis) bulls fed diets containing various levels of ruminally degradable protein. Asian J. Anim. Sci. 21:51-58. doi.org/10.5713/ajas.2008.70025
Jenkins, T. C. 1994. Regulation of lipid metabolism in the rumen. J. Nutr. 124:1372S-1376S. doi:10.1093/jn/124.suppl_8.1372S
Jenkins, T., and M. McGuire. 2006. Major advances in nutrition: impact on milk composition. J. Dairy Sci. 89:1302-1310. doi.org/10.3168/jds.S0022-0302(06)72198-1
Johnson, K. A., and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492. doi:10.2527/1995.7382483x
Johnson, K. A., Westberg, H. H., Lamb, B. K., Kincaid, R. L., McCracken, K. J., Unsworth, E. F., and Wylie, A. R. G. 1998. The use of sulphur hexafluoride for measuring methane production by cattle. “Energy metabolism of farm animals”. (Eds KJ McCracken, EF Unsworth, ARG Wylie) 189-192.
Katongole, C. B., and T. Yan. 2020. Effect of varying dietary crude protein level on feed intake, nutrient digestibility, milk production, and nitrogen use efficiency by lactating Holstein-Friesian cows. Anim. 10:1-14. doi.org/10.3390/ani10122439
Kidane, A., M. Øverland, L. T. Mydland, and E. Prestløkken. 2018. Interaction between feed use efficiency and level of dietary crude protein on enteric methane emission and apparent nitrogen use efficiency with Norwegian Red dairy cows. J. Anim. Sci. 96:3967-3982. doi.org/10.1093/jas/sky256
Kim, E. T., S. J. Lee, S. M. Lee, S. S. Lee, I. D. Lee, S. K. Lee, and S. S. Lee. 2015. Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-Australas. J. Anim. Sci. 28:530-537. doi: 10.5713/ajas.14.0692
Kobayashi, N., F. Hou, A. Tsunekawa, T. Yan, F. Tegegne, A. Tassew, Y. Mekuriaw, S. Mekuriaw, B. Hunegnaw, and W. Mekonnen. 2021. Laser methane detector-based quantification of methane emissions from indoor-fed Fogera dairy cows. Anim. Biosci. 34:1415-1424. doi: 10.5713/ab.20.0739
Kohn, R., and R. Boston. 2000. The role of thermodynamics in controlling rumen metabolism. Modelling nutrient utilization in farm animals. 11-24. doi:10.1079/9780851994499.0011
Krishnakumar, A. M., D. Sliwa, J. A. Endrizzi, E. S. Boyd, S. A. Ensign, and J. W. Peters. 2008. Getting a handle on the role of coenzyme M in alkene metabolism. Microbiol. Mol. Biol. Rev. 72:445-456. doi.org/10.1128/mmbr.00005-08
Lana, R. P., J. B. Russell, and M. E. Van Amburgh. 1998. The role of pH in regulating ruminal methane and ammonia production. J. Anim. Sci. 76:2190-2196. doi.org/10.2527/1998.7682190x
Lau, K., Y. Tsang, and S. Chiu. 2003. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere. 52:1539-1546. doi.org/10.1016/S0045-6535(03)00493-4
Lechartier, C., and J.-L. Peyraud. 2011. The effects of starch and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed forage proportion. J. Dairy. Sci. 94:2440-2454. doi.org/10.3168/jds.2010-3285
Li, R., Z. Teng, C. Lang, H. Zhou, W. Zhong, Z. Ban, X. Yan, H. Yang, M. H. Farouk, and Y. Lou. 2019. Effect of different forage-to-concentrate ratios on ruminal bacterial structure and real-time methane production in sheep. Plos one. 14:e0214777. doi.org/10.1371/journal.pone.0214777
Lin, X., Z. Hu, S. Zhang, G. Cheng, Q. Hou, Y. Wang, Z. Yan, K. Shi, and Z. Wang. 2020. A study on the mechanism regulating acetate to propionate ratio in rumen fermentation by dietary carbohydrate type. Adv.Biosci. 11: 369-390. doi.org/10.4236/abb.2020.118026
Long, Y., W. Xiao, Y. Zhao, C. Yuan, D. Wang, Y. Yang, C. Su, P. Paengkoum, and Y. Han. 2024. Effects of Flammulina velutipes mushroom residues on growth performance, apparent digestibility, serum biochemical indicators, rumen fermentation and microbial of Guizhou black goat. Front. Microbiol. 15:1347853. doi.org/10.3389/fmicb.2024.1347853
Lorenzana-Moreno, A. V., H. Leal Lara, L. Corona, O. Granados, and C. C. Márquez-Mota. 2023. Production of 17 strains of edible mushroom grown on corn stover and its effect on the chemical composition and ruminal in vitro digestibility of the residual substrate. Plos one. 18:e0286514.
doi.org/10.1371/journal.pone.0286514
Løvendahl, P., G. Difford, B. Li, M. Chagunda, P. Huhtanen, M. Lidauer, J. Lassen, and P. Lund. 2018. Selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Anim. 12:s336-s349.
doi.org/10.1017/S1751731118002276
Lovett, D., S. Lovell, L. Stack, J. Callan, M. Finlay, J. Conolly, and F. O'mara. 2003. Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livest. Prod. Sci. 84:135-146. doi:10.1016/j.livprodsci.2003.09.010
Maccarana, L., M. Cattani, F. Tagliapietra, L. Bailoni, and S. Schiavon. 2016. Influence of main dietary chemical constituents on the in vitro gas and methane production in diets for dairy cows. J. Anim. Sci. Biotechnol. 7:1-8. doi: 10.1186/s40104-016-0109-5
Machmüller, A., and R. Hegarty. 2006. Alternative tracer gases for the ERUCT technique to estimate methane emission from grazing animals. Int. Congr. Ser. 1293:50-53. doi:10.1016/j.ics.2006.01.029
Macome, F., W. Pellikaan, W. Hendriks, D. Warner, J. Schonewille, and J. Cone. 2018. In vitro gas and methane production in rumen fluid from dairy cows fed grass silages differing in plant maturity, compared to in vivo data. J. Anim. Physiol. Anim. Nutr. 102:843-852. doi:10.1111/jpn.12898
Makkar, H. P. 2002. Applications of the in vitro gas method in the evaluation of feed resources, and enhancement of nutritional value of tannin-rich tree/browse leaves and agro-industrial by-products. [AFRA-African Regional Co-operative Agreement for Research, Development and Training related to Nuclear Science and Technology]. 23-40
Makkar, H., O. Sharma, R. Dawra, and S. Negi. 1982. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65:2170-2173. doi.org/10.3168/jds.S0022-0302(82)82477-6
Martin, C., D. P. Morgavi, and M. Doreau. 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal. 4:351-365.
doi:10.1017/S1751731109990620
McAllister, T., and C. Newbold. 2008. Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 48:7-13. doi:10.1071/EA07218
McDonald, P., R, A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair, and R.G. Wilkinson. 2011. Animal Nutrition seven edition. New York: Pearson.
McGeough, E., P. O'Kiely, P. Foley, K. Hart, T. Boland, and D. Kenny. 2010. Methane emissions, feed intake, and performance of finishing beef cattle offered maize silages harvested at 4 different stages of maturity. J Anim Sci. 88:1479-1491. doi:10.2527/jas.2009-2380
McGinn, S., K. Beauchemin, T. Coates, and D. Colombatto. 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Anim. Sci. 82:3346-3356. doi:10.2527/2004.82113346x
Meale, S., A. Chaves, J. Baah, and T. McAllister. 2012. Methane production of different forages in in vitro ruminal fermentation. Asian-Austral. J. Anim. Sci. 25:86. doi: 10.5713/ajas.2011.11249
Mhlongo, G., C. M. Mnisi, and V. Mlambo. 2021. Cultivating oyster mushrooms on red grape pomace waste enhances potential nutritional value of the spent substrate for ruminants. Plos one. 16:e0246992. doi.org/10.1371/journal.pone.0246992
Mikuła, R., M. Pszczola, K. Rzewuska, S. Mucha, W. Nowak, and T. Strabel. 2021. The effect of rumination time on milk performance and methane emission of dairy cows fed partial mixed ration based on maize silage. Anim. 12:1-12. doi.org/10.3390/ani12010050
Mizrahi, I., and E. Jami. 2018. The compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animal. 12:s220-s232. doi:10.1017/S1751731118001957
Moon, Y. H., S. S. Chang, E. T. Kim, W. G. Cho, S. J. Lee, S. S. Lee, and S. J. Cho. 2015. Effects of spent mushroom (Flammulina velutipes) substrates on in vitro ruminal fermentation characteristics and digestibility of whole crop sorghum silage. J. Mushroom 13:163-169. doi:10.14480/JM.2015.13.3.163
Morgavi, D. P., C. Martin, J.-P. Jouany, and M. J. Ranilla. 2012. Rumen protozoa and methanogenesis: not a simple cause–effect relationship. Br. J. Nutr. 107:388-397. doi.org/10.1017/S0007114511002935
Morgavi, D., E. Forano, C. Martin, and C. J. Newbold. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal. 4:1024-1036.
doi:10.1017/S1751731110000546
Mould, F., K. Kliem, R. Morgan, and R. Mauricio. 2005. In vitro microbial inoculum: A review of its function and properties. Anim. Feed Sci. Technol. 123:31-50. doi:10.1016/j.anifeedsci.2005.04.028
Murphy, M., R. Baldwin, and L. Koong. 1982. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. J. Anim. Sci. 55:411-421. doi.org/10.2527/jas1982.552411x
NRC. 2001. Nutrient Requirements of Dairy Cattle. National Academy Press, Washinton, D. C., USA.
Ørskov, E. R., and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. doi:10.1017/s0021859600063048
Patra, A. K., and J. Saxena. 2009. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie van Leeuwenhoek. 96:363-375. doi:10.1007/s10482-009-9364-1
Paya, H., A. Taghizadeh, S. Lashkari, and S. Shirmohammadi. 2012. Evaluation of rumen fermentation kinetics of some by-products using in situ and in vitro gas production technique. Slovak J. Anim. Sci. 45:127-133. doi:10.3844/ajavsp.2008.7.12
Phakachoed, N., P. Lounglawan, and W. Suksombat. 2012. Effects of xylanase supplementation on ruminal digestibility in fistulated non-lactating dairy cows fed rice straw. Livest. Sci. 149:104-108. doi.org/10.1016/j.livsci.2012.07.002
Phan, C.-W., and V. Sabaratnam. 2012. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl. Microbiol. Biotechnol. 96:863-873. doi: 10.1007/s00253-012-4446-9
Pirondini, M., S. Colombini, M. Mele, L. Malagutti, L. Rapetti, G. Galassi, and G. Crovetto. 2015. Effect of dietary starch concentration and fish oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows. J. Dairy. Sci. 98:357-372. doi.org/10.3168/jds.2014-8092
Poungchompu, O., M. Wanapat, C. Wachirapakorn, S. Wanapat, and A. Cherdthong. 2009. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 63:389-400. doi.org/10.1080/17450390903020406
Pramanik, P., and P. Kim. 2013. Effect of limited nickel availability on methane emission from EDTA treated soils: Coenzyme M an alternative biomarker for methanogens. Chemosphere. 90:873-876.
doi:10.1016/j.chemosphere.2012.07.008
Putri, E. M., M. Zain, L. Warly, and H. Hermon. 2021. Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis. Veterinary world 14:640. doi: 10.14202/vetworld.2021.640-648
Rangubhet, K., M. Mangwe, V. Mlambo, Y. Fan, and H. Chiang. 2017. Enteric methane emissions and protozoa populations in Holstein steers fed spent mushroom (Flammulina velutipes) substrate silage-based diets. Anim. Feed Sci. Technol. 234:78-87. doi.org/10.1016/j.anifeedsci.2017.06.005
Rangubhet, T., P. Kongmun, S. Prasanpanich, and H.-I. Chiang. 2020. Nutritional evaluation of spent mushroom substrate from Pleurotus ostreatus and P. citrinopileatus as roughage for meat goats. Kasetsart University Annual Conference, Bangkok (Thailand). 5-7.
Reynolds, P., and E. Colleran. 1987. Evaluation and improvement of methods for coenzyme F420 analysis in anaerobic sludges. J. Microbiol. Methods. 7:115-130. doi.org/10.1016/0167-7012(87)90032-7
Rugoho, I., J. S. Gibbs, and G. R. Edwards. 2019. Rumen function and foraging behaviour of non-lactating, pregnant dairy cows wintered on kale or grass. N. Z. J. Agric. Res. 62:96-111. doi.org/10.1080/00288233.2018.1461116
Russell, J. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci. 81:3222-3230. doi.org/10.3168/jds.S0022-0302(98)75886-2
Russell, J. B., and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Sci. 292:1119-1122. doi:10.1126/science.1058830
Russell, J. B., and R. B. Hespell. 1981. Microbial rumen fermentation. J. Dairy. Sci. 64:1153-1169. doi.org/10.3168/jds.S0022-0302(81)82694-X
Russell, J., and R. Wallace. 1997. Energy-yielding and energy-consuming reactions, The rumen microbial ecosystem. Springer. 246-282. doi: 10.1007/978-94-009-1453-7
Rymer, C., J. Huntington, B. Williams, and D. Givens. 2005. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed Sci. Technol. 123:9-30. doi:10.1016/j.anifeedsci.2005.04.055
Sejian, V., I. Shekhawat, V. Ujor, T. Ezeji, J. Lakritz, and R. Lal. 2012. Global climate change: enteric methane reduction strategies in livestock. Environ. Stress Amelior. Livest. Prod. 469-499. doi: 10.1007/978-3-642-29205-7_16
Singh, S., B. Kushwaha, S. Nag, A. Mishra, A. Singh, and U. Anele. 2012. In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim. Feed Sci. Technol. 178:2-11. doi.org/10.1016/j.anifeedsci.2012.08.019
Sorg, D., G. F. Difford, S. Mühlbach, B. Kuhla, H. H. Swalve, J. Lassen, T. Strabel, and M. Pszczola. 2018. Comparison of a laser methane detector with the GreenFeed and two breath analysers for on-farm measurements of methane emissions from dairy cows. Comput. Electron. Agric. 153:285-294. doi:10.1016/j.compag.2018.08.024
Sorg, D., S. Mühlbach, F. Rosner, B. Kuhla, M. Derno, S. Meese, A. Schwarm, M. Kreuzer, and H. Swalve. 2017. The agreement between two next-generation laser methane detectors and respiration chamber facilities in recording methane concentrations in the spent air produced by dairy cows. Comput. Electron. Agric. 143:262-272. doi:10.1016/j.compag.2017.10.024
Storm, E., and E. Ørskov. 1983. The nutritive value of rumen micro-organisms in ruminants: 1. Large-scale isolation and chemical composition of rumen micro-organisms. Br. J. Nutr. 50:463-470. doi:10.1079/BJN19830114
Sugimoto, M., W. Saito, M. Ooi, Y. Sato, T. Saito, and K. Mori. 2006. The effects of potato pulp and feeding level of supplements on digestibility, in situ forage degradation and ruminal fermentation in beef steers. Anim. Sci. J. 77:587-594. doi.org/10.1111/j.1740-0929.2006.00390.x
Taylor, C. D., and R. S. Wolfe. 1974. A Simplified Assay for Coenzyme M (HSCH2CH2SO3): Resolution of Methylcobalamin-coenzyme M Methyltransferase and use of sodium borohydride. J. Biol. Chem. 249:4886-4890. doi:10.1016/S0021-9258(19)42404-6
Taylor, C., B. McBride, R. Wolfe, and M. Bryant. 1974. Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium. J. Bacteriol. 120:974-975. doi: 10.1128/jb.120.2.974-975.1974.
Tedeschi, L. O., A. L. Abdalla, C. Álvarez, S. W. Anuga, J. Arango, K. A. Beauchemin, P. Becquet, A. Berndt, R. Burns, and C. De Camillis. 2022. Quantification of methane emitted by ruminants: a review of methods. J. Anim. Sci. 100:1-22. doi.org/10.1093/jas/skac197
Teeranavattanakul, P. 2010. Investigation factors affecting Laser Methane Detector measurements under outdoor condition, MSc thesis, University of Glasgow, Scotland.
Thauer, R. K., A.-K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6:579-591. doi:10.1038/nrmicro1931
Ungerfeld, E. M. 2020. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front. Microbiol. 11:528227. doi.org/10.3389/fmicb.2020.00589
Van Knegsel, A., H. Van den Brand, J. Dijkstra, W. Van Straalen, M. Heetkamp, S. Tamminga, and B. Kemp. 2007. Dietary energy source in dairy cows in early lactation: energy partitioning and milk composition. J. Dairy Sci. 90:1467-1476. doi.org/10.3168/jds.S0022-0302(85)81253-4
Van Soest, P. v., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. doi.org/10.3168/jds.S0022-0302(91)78551-2
Waghorn, G., S. Woodward, M. Tavendale, and D. Clark. 2006. Inconsistencies in rumen methane production—effects of forage composition and animal genotype. Int. Congr. Ser. 1293:115-118. doi.org/10.1016/j.ics.2006.03.004
Wanapat, M., P. Gunun, N. Anantasook, and S. Kang. 2014. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J. Agric. Sci. 152:675-685. doi.org/10.1017/S0021859613000658
Wang, M., Y. Jing, S. Liu, J. Gao, L. Shi, and P. Vercoe. 2016. Soybean oil suppresses ruminal methane production and reduces content of coenzyme F420 in vitro fermentation. Anim. Prod. Sci. 56:627-633. doi.org/10.1071/AN15553
Wilkinson, J., and D. Davies. 2013. The aerobic stability of silage: key findings and recent developments. Grass Forage Sci. 68:1-19. doi:10.1111/j.1365-2494.2012.00891.x
Wiltrout, D., and L. Satter. 1972. Contribution of propionate to glucose synthesis in the lactating and nonlactating cow. J. Dairy Sci. 55:307-317. doi.org/10.3168/jds.S0022-0302(72)85487-0
Wright, A., P. Kennedy, C. O’neill, A. Toovey, S. Popovski, S. Rea, C. Pimm, and L. Klein. 2004. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine. 22:3976-3985.
doi:10.1016/j.vaccine.2004.03.053
Yáñez-Ruiz, D. R., A. Bannink, J. Dijkstra, E. Kebreab, D. P. Morgavi, P. O’Kiely, C. K. Reynolds, A. Schwarm, K. J. Shingfield, and Z. Yu. 2016. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Anim. Feed Sci. Technol. 216:1-18. doi:10.1016/j.anifeedsci.2016.03.016
Zhang, L., J. Chung, Q. Jiang, R. Sun, J. Zhang, Y. Zhong, and N. Ren. 2017. Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values. RSC Adv. 7:40303-40310. doi: 10.1039/C7RA06588D
Zhou, Z., Q. Meng, and Z. Yu. 2011. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl. Environ. Microbiol. 77:2634-2639. doi.org/10.1128/AEM.02779-10
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93643-
dc.description.abstract反芻動物消化代謝過程中產生的甲烷無法被自身利用而需排出,造成2-18%的總能攝取量由此途徑損耗。若能減少反芻動物甲烷排放量,可減緩溫室效應又可提升動物生產效率。目前用於偵測甲烷排放的標準方法為呼吸室法,其成本高昂且單次可測試之實驗動物數很少,應用穩定且高效率的體外發酵系統可以同時間評估大量的飼糧組合在降低甲烷產生的潛力,但體外測試結果常有高估甲烷降低效果的問題。本研究將根據體外試驗建立甲烷生成的間接指標,以快速篩選出有效降低甲烷生成的飼糧調整組合,進一步搭配非侵入式的甲烷偵測設備,在餵飼現場建立可重複測定的簡易裝置,以期能逐步發展成有效率的解決方案。
本實驗第一部分以體外產氣試驗,評估杏鮑菇包青貯與胡蘿蔔青貯用於取代部份乳牛飼糧中之原料對甲烷產生之影響。結果顯示,在利用胡蘿蔔青貯儘管沒有顯著的降低甲烷生成,但可在不增加甲烷生成的同時,增加飼糧的體外消化率以提升其利用效率。利用菇包青貯取代之結果顯示,其體外消化率、產氣動力學、發酵速率與產氣量上並沒有顯著變化,降低了乙酸比例並提高丙酸比例,亦降低了甲烷生成。分析體外試驗樣品中,藉揮發性脂肪酸 (volatile fatty acid, VFA) 計算與輔酶coenzyme M (CoM) 之甲烷變化皆與氣相層析儀 (gas chromatography, GC) 分析之甲烷結果有相同趨勢,因此可做為評估飼糧處理組間相對甲烷生成的參考指標。透過體外試驗及間接指標,有助於分析甲烷降低的機制與飼糧代謝情形,並可有效率的篩選具降低甲烷潛力的飼糧。
體外試驗對甲烷評估之平台建立完成後,搭配自行開發之呼吸罩進行體內外雙向評估,實際測試比較乾乳牛與泌乳牛甲烷排放差異。結果顯示泌乳牛的甲烷生成較高,與其飼糧總發酵量與消化率高有關,其呼吸罩測定結果與體外試驗GC、VFA計算與CoM具有一樣的趨勢,顯示呼吸罩的可應用性。接著於商業牧場分別對初產 (F)、低產 (L)、中產 (M)與高產 (H) 四種不同泌乳牛餵飼TMR進行評估。結果顯示L組的中洗纖維消化率顯著較低,其原因與含較多低消化率的纖維有關。體外指標中,GC分析結果亦顯示了L組在單位可發酵基質有相對較高的甲烷產量,VFA推算值與GC結果有高度相關性(r=0.8764),CoM濃度的結果亦與GC有高度相關性(r=0.7760)。體內呼吸罩試驗結果顯示,餵飼後2小時以單位乳量為基礎下,L組的甲烷生成量相對高,且四組甲烷生成的趨勢與體外試驗發酵GC、VFA推估值和CoM結果相符合。於台大牧場進行不同芻料/精料比例的餵飼結果顯示,隨著精料比例的提高,有助於提高消化率與丙酸生成,而體內呼吸罩試驗於餵飼後2小時計算單位可消化基質下甲烷產量,與體外GC計算單位可消化纖維甲烷產量、體內及體外VFA推估甲烷生成比例及CoM濃度具有相同趨勢,皆顯示精料比例越高甲烷產量越低。根據本實驗結果,自行開發之呼吸罩,可藉由換算單位泌乳量或是加入消化率計算單位可消化基質之甲烷產量,其結果亦與體外發酵24小時在相同樣品下的GC換算每單位可消化基質甲烷產量、VFA推估甲烷生成比例與CoM濃度結果均有相同趨勢。
綜觀本研究結果顯示,利用低成本建置穩定且高效率的體外評估平台,可減少直接進行動物餵飼試驗的動物需求數量及大幅降低先期篩選成本。利用GC、VFA以及CoM於體外發酵24與48小時的結果,結合自行開發之非侵入式的呼吸罩裝置於現場雙向驗證的結果,可強化未來實地驗證動物排放的能力,並快速建立國產原料在反芻動物餵飼價值資料,以應用於達成降低甲烷排放的適合原料搭配方式。
zh_TW
dc.description.abstractMethane (CH4) produced during ruminant digestion cannot be utilized by the animals, resulting in an energy loss of about 2-18% of total intake. Reducing CH4 emissions can mitigate greenhouse gas production and improve animal production efficiency. Diet manipulation is a moderate and sustainable strategy. The standard CH4 detection method, the respiration chamber, is costly and limited in animal numbers. Efficient in vitro fermentation systems can evaluate many diet combinations simultaneously but often overestimate CH4 reduction. This study aims to establish indirect CH4 production indicators from in vitro to quickly screen effective diet adjustments. Additionally, it will use non-invasive CH4 detection equipment to develop a simple, repeatable on-site measurement device, aiming to create an efficient solution.
In the first experiment, an in vitro gas production platform was used to evaluate the impact of replacing ingredients with mushroom silage or carrot silage on methane production. Results showed that both mushroom silage and carrot silage significantly reduced the contents of neutral detergent fiber (NDF) and acid detergent fiber (ADF) (p<0.05). Although carrot silage did not significantly reduce CH4 production, it increased feed digestibility without increasing CH4 emissions, improving feed utilization efficiency. Replacing TMR with mushroom silage did not significantly change digestibility, fermentation rate, or gas production but reduced CH4 production and acetic acid (%). VFA calculated value and CoM concentration show the same trends as CH4 results from gas chromatography (GC) analysis, making them useful indicators for assessing relative CH4 production between different diets. Therefore, the in vitro gas production platform is useful for analyzing CH4 reduction mechanisms and feed metabolism, efficiently screening diets with CH4 reduction potential.
After establishing the in vitro gas production platform, a non-invasive respiration mask will be used for dual in vitro and in vivo assessments at NPUST to compare CH4 emissions between dry and lactating cows. Results showed higher CH4 production in lactating cows, correlated with greater fermentation and digestibility. The mask results aligned with in vitro GC, VFA, and CoM trends, demonstrating its applicability. At a commercial farm, four TMR diets for first (F), low (L), medium (M), and high (H) yielding dairy cows were analyzed. The L group had lower NDF digestibility and higher CH4 productionm (mg/ g digestible DM), with high correlation between GC, VFA calculated results (r = 0.8764), and CoM concentrations (r = 0.7760). Mask in vivo measurements showed the L group had the highest CH4 production (mg/ kg milk production), consistent with in vitro results. At NTU farm, different forage/concentrate ratios (F:C) showed higher concentrates increased digestibility and propionate production. Mask in vivo measurements of CH4 per digestible substrate matched with CH4 production under per unit digestible NDF (mg/ g NDFD), in vivo and in vitro VFA calculated CH4 % and CoM trends, showing lower CH4 with higher concentrate ratios. Overall, mask results aligned with in vitro GC, VFA, and CoM measurements, confirming method consistency.
This study demonstrates that a low-cost, efficient in vitro platform can reduce the number of animals needed for feeding trials and lower screening costs. Using 24- hour in vitro GC, VFA, and CoM results, combined with a non-invasive respiration mask for on-site verification, enhances real-world validation of animal emissions. This approach helps establish the feeding value of domestic ingredients and identifies optimal combinations to reduce CH4 emissions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:32:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-06T16:32:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 I
摘要 II
Abstract IV
目次 VI
圖次 IX
表次 XII
前言 1
壹、文獻探討 2
一、 甲烷的排放 2
二、 反芻動物甲烷生成路徑 3
(一) 日糧的消化分解 3
(二) 揮發性脂肪酸與甲烷生成 6
(三) 甲烷生物合成路徑 9
三、 降低甲烷排放之策略 11
(一) 動物育種 11
(二) 瘤胃發酵調控 12
(三) 飼糧組成調整 13
四、 甲烷排放之檢測法 17
(一) 呼吸室法 17
(二) 局部或追蹤甲烷檢測法 18
(三) 體外試驗技術 19
五、 體外試驗與產氣發酵平台的建立 19
(一) 體外試驗消化率 19
(二) 產氣動力學 20
(三) 發酵代謝物做為甲烷生成評估指標 20
(四) 體外試驗的潛力與限制 21
六、 體內試驗非侵入式呼吸罩裝置開發與應用 23
(一) 動物甲烷排放噯氣頻率 23
(二) 動物不同生理活動下甲烷的排放變化 24
(三) 泌乳牛與乾乳牛產甲烷差異 24
貳、材料與方法 26
一、 試驗樣品準備 27
(一) 烘乾樣品 27
(二) 凍乾樣品 27
(三) 建立體外試驗平台之混合日糧配方 27
二、 TMR成分分析 29
(一) 乾物質與水分測定 29
(二) 中洗纖維 30
(三) 酸洗纖維 31
(四) 粗蛋白 31
(五) 粗脂肪 33
(六) 灰分 34
(七) 非纖維碳水化合物 34
三、 體外試驗平台建立 35
(一) 體外乾物質消化率和中洗纖維消化率 35
(二) 體外發酵產氣實驗 37
(三) 產氣動力學 39
(四) pH值 40
(五) 揮發性脂肪酸分析 40
(六) 氨態氮分析 41
(七) 微生物蛋白質分析 42
四、 甲烷產量評估指標之分析 42
(一) 甲烷氣體濃度分析 42
(二) 輔酶M分析 43
(三) 輔酶F420 分析 44
(四) VFA計算推估甲烷與二氧化碳產量 45
五、 現場體內試驗裝置與應用 46
(一) 非侵入式呼吸罩裝置開發 46
(二) 設備於不同牧場之測試應用 48
六、 統計分析 50
參、結果與討論 51
一、 試驗飼糧的TMR近似分析 51
(一) 杏鮑菇包青貯TMR 51
(二) 胡蘿蔔青貯TMR 52
(三) 屏科大乾乳牛與泌乳牛飼糧 52
(四) 台南商業牧場泌乳牛TMR 53
(五) 台大乾乳牛不同精料比例飼糧 54
二、 體外試驗評估飼糧代謝情形 55
(一) 產氣動力學 55
(二) 消化率 58
(三) 發酵產物 (pH值、NH3-N、MCP) 60
三、 甲烷產量評估指標 63
(一) 氣相層析儀直接分析之甲烷濃度 63
(二) 揮發性脂肪酸 66
(三) 輔酶F420與CoM 74
(四) 建立評估飼糧甲烷生成的體外試驗平台 76
四、 體內試驗與體外試驗整合之呼吸罩實際應用效果 78
(一) 試驗牧場1 ─屏東科技大學畜牧場(NPUST) 78
(二) 試驗牧場2 ─台南地區商業牧場 90
(三) 試驗牧場3 ─台灣大學牧場(NTU) 105
(四) 體外試驗與體內試驗整合 125
肆、結論 126
伍、參考文獻 127
附錄 141
-
dc.language.isozh_TW-
dc.title瘤胃甲烷生成之體內外評估與整合應用zh_TW
dc.titleIn vivo and in vitro evaluation in integrated application of ruminal methane productionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳栢元;范耕榛;陳怡璇zh_TW
dc.contributor.oralexamcommitteeBo-Yuan Chen;Geng-Jen Fan;Yi-Hsuan Chenen
dc.subject.keyword甲烷,飼糧調整,體外產氣,甲烷評估指標,非侵入式呼吸罩,zh_TW
dc.subject.keywordMethane,diet manupulation,in vitro gas production,methane evaluation indicators,non-invasive respiration mask,en
dc.relation.page152-
dc.identifier.doi10.6342/NTU202402231-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-26-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2029-07-24-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
5.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved