請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93636完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游琇伃 | zh_TW |
| dc.contributor.advisor | Hsiu-Yu Yu | en |
| dc.contributor.author | 詹晉 | zh_TW |
| dc.contributor.author | Chin Chan | en |
| dc.date.accessioned | 2024-08-06T16:29:26Z | - |
| dc.date.available | 2024-08-07 | - |
| dc.date.copyright | 2024-08-06 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-26 | - |
| dc.identifier.citation | [1] M. Ali, B. Yameen, R. Neumann, W. Ensinger, W. Knoll, O. Azzaroni, Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries, Journal of the American Chemical Society 130(48) (2008) 16351-16357.
[2] G. Pérez-Mitta, A.S. Peinetti, M.L. Cortez, M.E. Toimil-Molares, C. Trautmann, O. Azzaroni, Highly sensitive biosensing with solid-state nanopores displaying enzymatically reconfigurable rectification properties, Nano Lett. 18(5) (2018) 3303-3310. [3] L. Luo, S.R. German, W.-J. Lan, D.A. Holden, T.L. Mega, H.S. White, Resistive-pulse analysis of nanoparticles, Annual Review of Analytical Chemistry 7 (2014) 513-535. [4] Y. Qiu, C.-Y. Lin, P. Hinkle, T.S. Plett, C. Yang, J.V. Chacko, M.A. Digman, L.-H. Yeh, J.-P. Hsu, Z.S. Siwy, Highly charged particles cause a larger current blockage in micropores compared to neutral particles, ACS Nano 10(9) (2016) 8413-8422. [5] S. Baek, S.-R. Kwon, K. Fu, P.W. Bohn, Ion gating in nanopore electrode arrays with hierarchically organized pH-responsive block copolymer membranes, ACS Applied Materials & Interfaces 12(49) (2020) 55116-55124. [6] K. Lin, C.-Y. Lin, J.W. Polster, Y. Chen, Z.S. Siwy, Charge inversion and calcium gating in mixtures of ions in nanopores, Journal of the American Chemical Society 142(6) (2020) 2925-2934. [7] Z. Zhang, P. Li, X.-Y. Kong, G. Xie, Y. Qian, Z. Wang, Y. Tian, L. Wen, L. Jiang, Bioinspired heterogeneous ion pump membranes: unidirectional selective pumping and controllable gating properties stemming from asymmetric ionic group distribution, Journal of the American Chemical Society 140(3) (2018) 1083-1090. [8] Y. Zhang, G.C. Schatz, Conical nanopores for efficient ion pumping and desalination, The journal of physical chemistry letters 8(13) (2017) 2842-2848. [9] H. Zhang, X. Hou, L. Zeng, F. Yang, L. Li, D. Yan, Y. Tian, L. Jiang, Bioinspired artificial single ion pump, Journal of the American Chemical Society 135(43) (2013) 16102-16110. [10] X. Wu, P. Ramiah Rajasekaran, C.R. Martin, An alternating current electroosmotic pump based on conical nanopore membranes, ACS Nano 10(4) (2016) 4637-4643. [11] Z. Zhang, X.-Y. Kong, K. Xiao, Q. Liu, G. Xie, P. Li, J. Ma, Y. Tian, L. Wen, L. Jiang, Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device, Journal of the American Chemical Society 137(46) (2015) 14765-14772. [12] J. Hwang, T. Sekimoto, W.-L. Hsu, S. Kataoka, A. Endo, H. Daiguji, Thermal dependence of nanofluidic energy conversion by reverse electrodialysis, Nanoscale 9(33) (2017) 12068-12076. [13] L.H. Yeh, F. Chen, Y.T. Chiou, Y.S. Su, Anomalous pH‐dependent nanofluidic salinity gradient power, Small 13(48) (2017) 1702691. [14] C. Li, Z. Zhang, Z. Li, N. Qiao, Z. Liu, Z.Q. Tian, Electrokinetic energy conversion in nanochannels with surface charge-dependent slip, Electrochimica Acta 454 (2023) 142379. [15] T.-Y. Tsou, J.-P. Hsu, Pressure-driven ion separation through a pH-regulated cylindrical nanopore, J. Membr. Sci. 604 (2020) 118073. [16] H. Zhang, X. Quan, X. Fan, G. Yi, S. Chen, H. Yu, Y. Chen, Improving ion rejection of conductive nanofiltration membrane through electrically enhanced surface charge density, Environmental science & technology 53(2) (2018) 868-877. [17] M. Heiranian, A.B. Farimani, N.R. Aluru, Water desalination with a single-layer MoS2 nanopore, Nature communications 6(1) (2015) 8616. [18] A.R. Poggioli, A. Siria, L.r. Bocquet, Beyond the tradeoff: dynamic selectivity in ionic transport and current rectification, The journal of physical chemistry B 123(5) (2019) 1171-1185. [19] E.T. Acar, S.F. Buchsbaum, C. Combs, F. Fornasiero, Z.S. Siwy, Biomimetic potassium-selective nanopores, Science Advances 5(2) (2019) eaav2568. [20] S.J. Kim, Y.-C. Wang, J.H. Lee, H. Jang, J. Han, Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel, Physical review letters 99(4) (2007) 044501. [21] G. Yossifon, P. Mushenheim, Y.-C. Chang, H.-C. Chang, Nonlinear current-voltage characteristics of nanochannels, Physical Review E 79(4) (2009) 046305. [22] R.B. Schoch, J. Han, P. Renaud, Transport phenomena in nanofluidics, Reviews of modern physics 80(3) (2008) 839. [23] Z.S. Siwy, S. Howorka, Engineered voltage-responsive nanopores, Chemical Society Reviews 39(3) (2010) 1115-1132. [24] Z. Zhang, L. Wen, L. Jiang, Bioinspired smart asymmetric nanochannel membranes, Chemical Society Reviews 47(2) (2018) 322-356. [25] T. Gamble, K. Decker, T.S. Plett, M. Pevarnik, J.-F. Pietschmann, I. Vlassiouk, A. Aksimentiev, Z.S. Siwy, Rectification of ion current in nanopores depends on the type of monovalent cations: experiments and modeling, The Journal of Physical Chemistry C 118(18) (2014) 9809-9819. [26] P.-Y. Chuang, J.-P. Hsu, Influence of shape and charged conditions of nanopores on their ionic current rectification, electroosmotic flow, and selectivity, Colloids Surf. Physicochem. Eng. Aspects 658 (2023) 130696. [27] Z.S. Siwy, Ion‐current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater. 16(6) (2006) 735-746. [28] H. Daiguji, Y. Oka, K. Shirono, Nanofluidic diode and bipolar transistor, Nano Lett. 5(11) (2005) 2274-2280. [29] Z. Liu, X. Liu, Y. Wang, D. Yang, C. Li, Ion current rectification in asymmetric charged bilayer nanochannels, Electrochimica Acta 403 (2022) 139706. [30] L.-J. Cheng, L.J. Guo, Rectified ion transport through concentration gradient in homogeneous silica nanochannels, Nano Lett. 7(10) (2007) 3165-3171. [31] A. Alizadeh, W.-L. Hsu, H. Daiguji, M. Wang, Temperature-regulated surface charge manipulates ionic current rectification in tapered nanofluidic channel, IJMS 210 (2021) 106754. [32] L. Wang, W. Guo, Y. Xie, X. Wang, J. Xue, Y. Wang, Nanofluidic diode generated by pH gradient inside track-etched conical nanopore, Radiat. Measur. 44(9-10) (2009) 1119-1122. [33] W.-J. Lan, D.A. Holden, H.S. White, Pressure-dependent ion current rectification in conical-shaped glass nanopores, Journal of the American Chemical Society 133(34) (2011) 13300-13303. [34] J.-P. Hsu, T.-C. Su, P.-H. Peng, S.-C. Hsu, M.-J. Zheng, L.-H. Yeh, Unraveling the anomalous surface-charge-dependent osmotic power using a single funnel-shaped nanochannel, ACS Nano 13(11) (2019) 13374-13381. [35] G. Laucirica, A.G. Albesa, M.E. Toimil-Molares, C. Trautmann, W.A. Marmisollé, O. Azzaroni, Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels, Nano Energy 71 (2020) 104612. [36] M. Karimzadeh, Z. Seifollahi, M. Khatibi, S.N. Ashrafizadeh, Impacts of the shape of soft nanochannels on their ion selectivity and current rectification, Electrochimica Acta 399 (2021) 139376. [37] H. Dartoomi, M. Khatibi, S.N. Ashrafizadeh, Importance of nanochannels shape on blue energy generation in soft nanochannels, Electrochimica Acta 431 (2022) 141175. [38] I. Vlassiouk, Z.S. Siwy, Nanofluidic diode, Nano Lett. 7(3) (2007) 552-556. [39] M. Tagliazucchi, Y. Rabin, I. Szleifer, Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes, ACS Nano 7(10) (2013) 9085-9097. [40] C.-Y. Lin, J.-P. Hsu, L.-H. Yeh, Rectification of ionic current in nanopores functionalized with bipolar polyelectrolyte brushes, Sensors Actuators B: Chem. 258 (2018) 1223-1229. [41] A. Alinezhad, A. Alinezhad, Influence of location junction on ion transfer behavior in conical nanopores with bipolar polyelectrolyte brushes, Electrochimica Acta 425 (2022) 140699. [42] Z. Siwy, I. Kosińska, A. Fuliński, C. Martin, Asymmetric diffusion through synthetic nanopores, Physical review letters 94(4) (2005) 048102. [43] L. Cao, W. Guo, Y. Wang, L. Jiang, Concentration-gradient-dependent ion current rectification in charged conical nanopores, Langmuir 28(4) (2012) 2194-2199. [44] M. Taghipoor, A. Bertsch, P. Renaud, Temperature sensitivity of nanochannel electrical conductance, ACS Nano 9(4) (2015) 4563-4571. [45] A.M. Benneker, H.D. Wendt, R.G. Lammertink, J.A. Wood, Influence of temperature gradients on charge transport in asymmetric nanochannels, Physical chemistry chemical physics 19(41) (2017) 28232-28238. [46] Y. Chen, Z. Zhu, Y. Tian, L. Jiang, Rational ion transport management mediated through membrane structures, Exploration, Wiley Online Library, 2021, p. 20210101. [47] L. Wang, Y. Chen, Bioinspired Dual-Driven Binary Heterogeneous Nanofluidic Ionic Diodes, Langmuir 38(41) (2022) 12450-12456. [48] L.-H. Yeh, M. Zhang, S. Qian, J.-P. Hsu, S. Tseng, Ion concentration polarization in polyelectrolyte-modified nanopores, The Journal of Physical Chemistry C 116(15) (2012) 8672-8677. [49] R. Long, F. Wu, X. Chen, Z. Liu, W. Liu, Temperature-depended ion concentration polarization in electrokinetic energy conversion, International Journal of Heat and Mass Transfer 168 (2021) 120842. [50] R. Long, Z. Luo, Z. Kuang, Z. Liu, W. Liu, Effects of heat transfer and the membrane thermal conductivity on the thermally nanofluidic salinity gradient energy conversion, Nano Energy 67 (2020) 104284. [51] C. Li, Z. Liu, N. Qiao, Z. Feng, Z.Q. Tian, The electroviscous effect in nanochannels with overlapping electric double layers considering the height size effect on surface charge, Electrochimica Acta 419 (2022) 140421. [52] B.B. Owen, R.C. Miller, C.E. Milner, H.L. Cogan, The dielectric constant of water as a function of temperature and pressure1, 2, The Journal of Physical Chemistry 65(11) (1961) 2065-2070. [53] T. Al-Shemmeri, Engineering fluid mechanics, Bookboon2012. [54] B.E. Poling, J.M. Prausnitz, J.P. O’connell, Properties of gases and liquids, McGraw-Hill Education2001. [55] S. Tseng, J.-Y. Lin, J.-P. Hsu, Theoretical study of temperature influence on the electrophoresis of a pH-regulated polyelectrolyte, Anal. Chim. Acta 847 (2014) 80-89. [56] W.M. Haynes, CRC handbook of chemistry and physics, CRC press2016. [57] E.R. Eckert, R.M. Drake Jr, Analysis of heat and mass transfer, (1987). [58] L.-H. Yeh, M. Zhang, N. Hu, S.W. Joo, S. Qian, J.-P. Hsu, Electrokinetic ion and fluid transport in nanopores functionalized by polyelectrolyte brushes, Nanoscale 4(16) (2012) 5169-5177. [59] V.-P. Mai, R.-J. Yang, Active control of salinity-based power generation in nanopores using thermal and pH effects, RSC advances 10(32) (2020) 18624-18631. [60] J.-Y. Lin, C.-Y. Lin, J.-P. Hsu, S. Tseng, Ionic current rectification in a pH-tunable polyelectrolyte brushes functionalized conical nanopore: effect of salt gradient, Analytical chemistry 88(2) (2016) 1176-1187. [61] H. Kimizuka, K. Koketsu, Ion transport through cell membrane, Journal of theoretical biology 6(2) (1964) 290-305. [62] N. Unwin, The structure of ion channels in membranes of excitable cells, Neuron 3(6) (1989) 665-676. [63] B. Hille, Ionic channels in excitable membranes. Current problems and biophysical approaches, Biophysical journal 22(2) (1978) 283-294. [64] G. Wang, W. Brown, M. Kvetny, Structure and dynamics of nanoscale electrical double layer, Current Opinion in Electrochemistry 13 (2019) 112-118. [65] R. Tivony, S. Safran, P. Pincus, G. Silbert, J. Klein, Charging dynamics of an individual nanopore, Nature communications 9(1) (2018) 4203. [66] D.-H. Lin, C.-Y. Lin, S. Tseng, J.-P. Hsu, Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore, Nanoscale 7(33) (2015) 14023-14031. [67] J. Experton, X. Wu, C.R. Martin, From ion current to electroosmotic flow rectification in asymmetric nanopore membranes, Nanomaterials 7(12) (2017) 445. [68] W. Guo, L. Cao, J. Xia, F.Q. Nie, W. Ma, J. Xue, Y. Song, D. Zhu, Y. Wang, L. Jiang, Energy harvesting with single‐ion‐selective nanopores: a concentration‐gradient‐driven nanofluidic power source, Adv. Funct. Mater. 20(8) (2010) 1339-1344. [69] K. Yazda, K. Bleau, Y. Zhang, X. Capaldi, T. St-Denis, P. Grutter, W.W. Reisner, High osmotic power generation via nanopore arrays in hybrid hexagonal boron nitride/silicon nitride membranes, Nano Lett. 21(10) (2021) 4152-4159. [70] J.-P. Hsu, S.-C. Lin, C.-Y. Lin, S. Tseng, Power generation by a pH-regulated conical nanopore through reverse electrodialysis, Journal of Power Sources 366 (2017) 169-177. [71] K. Kant, J. Yu, C. Priest, J.G. Shapter, D. Losic, Impedance nanopore biosensor: influence of pore dimensions on biosensing performance, Analyst 139(5) (2014) 1134-1140. [72] L. Liu, H.C. Wu, DNA‐based nanopore sensing, Angew. Chem. Int. Ed. 55(49) (2016) 15216-15222. [73] W. Shi, A.K. Friedman, L.A. Baker, Nanopore sensing, Analytical chemistry 89(1) (2017) 157-188. [74] Y. Ai, S. Qian, Electrokinetic particle translocation through a nanopore, Physical chemistry chemical physics 13(9) (2011) 4060-4071. [75] Y. Ai, J. Liu, B. Zhang, S. Qian, Field effect regulation of DNA translocation through a nanopore, Analytical chemistry 82(19) (2010) 8217-8225. [76] M. Zhang, Y. Ai, A. Sharma, S.W. Joo, D.S. Kim, S. Qian, Electrokinetic particle translocation through a nanopore containing a floating electrode, Electrophoresis 32(14) (2011) 1864-1874. [77] Z. Siwy, A. Fuliński, Fabrication of a synthetic nanopore ion pump, Physical Review Letters 89(19) (2002) 198103. [78] Z. Zhang, X. Huang, Y. Qian, W. Chen, L. Wen, L. Jiang, Engineering smart nanofluidic systems for artificial ion channels and ion pumps: from single‐pore to multichannel membranes, Adv. Mater. 32(4) (2020) 1904351. [79] D.L. Oatley-Radcliffe, M. Walters, T.J. Ainscough, P.M. Williams, A.W. Mohammad, N. Hilal, Nanofiltration membranes and processes: A review of research trends over the past decade, Journal of Water Process Engineering 19 (2017) 164-171. [80] M.A. Abdel-Fatah, Nanofiltration systems and applications in wastewater treatment, Ain Shams Engineering Journal 9(4) (2018) 3077-3092. [81] C.K. Diawara, Nanofiltration process efficiency in water desalination, Separation & purification reviews 37(3) (2008) 302-324. [82] K. Pal Singh, M. Kumar, Effect of surface charge density and electro-osmotic flow on ionic current in a bipolar nanopore fluidic diode, Journal of Applied Physics 110(8) (2011). [83] C.Y. Lin, L.H. Yeh, J.P. Hsu, S. Tseng, Regulating current rectification and nanoparticle transport through a salt gradient in bipolar nanopores, Small 11(35) (2015) 4594-4602. [84] E.B. Kalman, I. Vlassiouk, Z.S. Siwy, Nanofluidic bipolar transistors, Adv. Mater. 20(2) (2008) 293-297. [85] Y. Ai, J. Liu, B. Zhang, S. Qian, Ionic current rectification in a conical nanofluidic field effect transistor, Sensors Actuators B: Chem. 157(2) (2011) 742-751. [86] E.B. Kalman, O. Sudre, I. Vlassiouk, Z.S. Siwy, Control of ionic transport through gated single conical nanopores, Analytical and bioanalytical chemistry 394 (2009) 413-419. [87] R. Karnik, R. Fan, M. Yue, D. Li, P. Yang, A. Majumdar, Electrostatic control of ions and molecules in nanofluidic transistors, Nano Lett. 5(5) (2005) 943-948. [88] A. Nikolaev, M.E. Gracheva, Poisson–Nernst–Planck model for an ionic transistor based on a semiconductor membrane, Journal of Computational Electronics 13(4) (2014) 818-825. [89] R.B. Schasfoort, S. Schlautmann, J. Hendrikse, A. Van Den Berg, Field-effect flow control for microfabricated fluidic networks, Science 286(5441) (1999) 942-945. [90] A. Alinezhad, M. Khatibi, S.N. Ashrafizadeh, Ionic transfer behavior of bipolar nanochannels resembling PNP nanotransistor, Electrochimica Acta 460 (2023) 142625. [91] E. Mádai, B. Matejczyk, A. Dallos, M. Valiskó, D. Boda, Controlling ion transport through nanopores: modeling transistor behavior, Physical Chemistry Chemical Physics 20(37) (2018) 24156-24167. [92] X. Sui, Z. Zhang, Z. Zhang, Z. Wang, C. Li, H. Yuan, L. Gao, L. Wen, X. Fan, L. Yang, Biomimetic nanofluidic diode composed of dual amphoteric channels maintains rectification direction over a wide pH range, Angew. Chem. Int. Ed. 55(42) (2016) 13056-13060. [93] L.-H. Yeh, M. Zhang, S. Qian, Ion transport in a pH-regulated nanopore, Analytical Chemistry 85(15) (2013) 7527-7534. [94] D. Fertig, M. Valiskó, D. Boda, Controlling ionic current through a nanopore by tuning pH: a Local Equilibrium Monte Carlo study, Molecular Physics 117(20) (2019) 2793-2801. [95] Q. Zhang, Z. Hu, Z. Liu, J. Zhai, L. Jiang, Light‐Gating Titania/Alumina Heterogeneous Nanochannels with Regulatable Ion Rectification Characteristic, Adv. Funct. Mater. 24(4) (2014) 424-431. [96] D. Hu, J. Chen, Z. Su, W. Zhu, Q. Cai, J. Lao, X. Wang, X. Yu, P. Xiao, Critical electric field stabilizing structure of Al2O3/TiO2/Al2O3 thin film for achieving high energy density, Ceram. Int. 49(11) (2023) 17296-17304. [97] S. Mareev, E. Evdochenko, M. Wessling, O. Kozaderova, S. Niftaliev, N. Pismenskaya, V. Nikonenko, A comprehensive mathematical model of water splitting in bipolar membranes: Impact of the spatial distribution of fixed charges and catalyst at bipolar junction, J. Membr. Sci. 603 (2020) 118010. [98] L.-J. Cheng, L.J. Guo, Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices, ACS Nano 3(3) (2009) 575-584. [99] M. Kosmulski, pH-dependent surface charging and points of zero charge II. Update, Journal of colloid and interface science 275(1) (2004) 214-224. [100] W.S. de Lint, N.E. Benes, J. Lyklema, H.J. Bouwmeester, A.J. van der Linde, M. Wessling, Ion adsorption parameters determined from zeta potential and titration data for a γ-alumina nanofiltration membrane, Langmuir 19(14) (2003) 5861-5868. [101] M. Kosmulski, pH-dependent surface charging and points of zero charge: III. Update, Journal of colloid and interface science 298(2) (2006) 730-741. [102] A. Vakilinejad, E. Dubois, L. Michot, M. Jardat, D. Lairez, S. Durand-Vidal, C. Guibert, N. Jouault, Electrical surface properties of nanoporous alumina membranes: influence of nanochannels’ curvature, roughness and composition studied via electrokinetic experiments, Physical Chemistry Chemical Physics 25(41) (2023) 28150-28161. [103] T. Preočanin, N. Kallay, Point of zero charge and surface charge density of TiO2 in aqueous electrolyte solution as obtained by potentiometric mass titration, Croat. Chem. Acta 79(1) (2006) 95-106. [104] B.J. Pedimonte, T. Moest, T. Luxbacher, C. von Wilmowsky, T. Fey, K.A. Schlegel, P. Greil, Morphological zeta-potential variation of nanoporous anodic alumina layers and cell adherence, Acta Biomater. 10(2) (2014) 968-974. [105] J.W. Ntalikwa, Determination of surface charge density of α-alumina by acid-base titration, Bull. Chem. Soc. Ethiop. 21(1) (2007). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93636 | - |
| dc.description.abstract | 由於奈米製造技術的迅速發展,奈米尺度的孔道已經成功被製備並廣泛應用,許多學者正著手探討這類裝置內的電動力學輸送現象。在第一章中,我們考慮了一個在施加外加電場、鹽濃度梯度及溫度梯度下,具有雙極性聚電解質層的圓錐形奈米孔道。藉由數值模擬,我們發現系統中的電動力學行為主要由鹽濃度梯度決定,並受到溫度梯度之輔助。此外,孔道內之離子累積與消耗主要受到聚電解質層中帶電區域的屏蔽效應所影響,此可透過改變鹽濃度梯度和溫度梯度方向(共四種可能之組合)來實現。如果施加小的負電壓,奈米孔道會由陰離子選擇性轉變為陽離子選擇性,且當孔道尖端側的濃度高時,此現象尤其明顯;然而,該現象與溫度無關。當施加鹽濃度梯度時,離子電流整流比會在孔道尖端側的濃度高時出現最大值,而在另一側濃度高時呈現單調遞減。當施加溫度梯度,奈米孔道的整流能力僅會受些微影響。離子選擇性在正電壓下主要受溫度影響,而在負電壓下則由鹽濃度主導。以上研究成果已發表在《Electrochimica Acta》期刊。
在第二章中,基於納維-斯托克斯和泊松-奈恩斯特-普朗克方程的連續體模型,我們模擬出由兩種金屬氧化物(氧化鋁和二氧化鈦)所組成之奈米流體電晶體中的離子傳輸行為。透過改變電解質溶液的pH值,使其橫跨兩種材料的等電點,可進一步調節奈米孔道中三個區域的表面帶電型態,此現象是基於固液界面上帶電官能基團的解離變化。我們考慮了幾個關鍵因素,包含圓錐開口角度(θ)、閘極比例長度(Ω)、電解質溶液濃度(C_"KCl" )以及水解反應的發生。在五個特定的pH值之下,模擬結果皆顯示離子導電率(G)在θ變大時先增後減,而在增加C_"KCl" 時則單調遞增。在高pH之下,G會隨著Ω變大而持續增加;但在中及低pH之下,G則隨著Ω變大會先減後增。水解反應的影響在高pH之下最為劇烈,在正負帶電區域交界處的離子累積最為顯著。在高及中pH之下,奈米孔道的選擇性會有大幅變化,而在低pH之下僅有輕微改變。根據我們的研究結果可知,奈米流體電晶體的離子傳輸特性可以經由不同的孔道幾何形狀與外在環境的設計來有效獲得調控。 | zh_TW |
| dc.description.abstract | Owing to rapid development of nanofabrication technology, nanoscale channels have been successfully prepared and widely utilized. Electrokinetic transport phenomena within these devices are further investigated by researchers. In Chapter 1, we consider a conical nanopore functionalized with bipolar polyelectrolyte (PE) layers subject to applied electric field, concentration gradient (∇C), and thermal gradient (∇T). Through numerical simulation, we find that electrokinetic behavior of the system is primarily governed by ∇C, with the contribution of ∇T being auxiliary. In addition, ion accumulation and depletion within the pore are mainly influenced by the shielding effect of the charged region of PE layers through varying the directions of ∇C and ∇T (four possible combinations). If a small negative voltage bias is applied, an anion-selective nanopore switches to a cation-selective one, and this phenomenon is pronounced when a higher concentration is placed on the nanopore tip side. However, that phenomenon is temperature independent. When ∇C is applied, the ionic current rectification factor R_f shows a maximum value as a higher concentration is placed on the nanopore tip side, while it monotonically decreases as a higher concentration is placed on the other side. As for applying ∇T, the rectification capability of the nanopore is only slightly affected. The ion selectivity S mainly depends on temperature under a positive voltage bias; however, it becomes dominated by concentration when a negative voltage bias is applied. These research findings have been published in the journal Electrochimica Acta.
In Chapter 2, a continuum model based on coupled Navier-Stokes and Poisson-Nernst-Planck (PNP) equations is conducted to simulate ion behaviors within a nanofluidic transistor consisting of two kinds of metal oxides, namely aluminum oxide (Al2O3) and titanium dioxide (TiO2). Through manipulating the pH level of the electrolyte solution across the isoelectric points (IEPs) of both constituent materials, active modulation of the surface charge pattern in each of the three segments of the nanopore is achievable, stemming from varying dissociation levels of charged functional groups at the solid-liquid interface. We introduce several crucial factors, including adjustments to geometric parameters such as the cone angle (θ) and proportional length of the gate (Ω), as well as modifications to the solution environment, encompassing variations in bulk concentration (C_"KCl" ) and occurrence of the water dissociation reaction. Considering five specific pH levels, the results demonstrate that ion conductance (G) experiences initial increases followed by declines with rising θ, and exhibits monotonic increases with increasing C_"KCl" , regardless of pH values. Continuous increases of G occur at high pH but transition to declines followed by increases at moderate and low pH with increasing Ω. Effects of the water dissociation reaction are most pronounced at high pH levels, where ion accumulation at the junction is notable. S of the nanopore undergoes profound alterations at high and moderate pH levels, while only minor changes are observed under low pH conditions. Drawing upon our findings, it becomes evident that the ion transport properties of a nanofluidic transistor can be effectively modulated through distinct geometric configurations and in response to diverse external conditions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:29:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-06T16:29:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III Contents V List of Figures VI List of Tables XIII Chapter 1 Rectification Behavior of a Conical Nanopore Subject to Extra Simultaneously Applied Concentration and Thermal Gradients 1 1.1 Introduction 2 1.2 Theoretical model 6 1.3 Results and discussion 10 1.4 Acknowledgements 32 Chapter 2 Influence of Surface Charges on Ion Transport in a pH-regulated Nanofluidic Transistor 33 2.1 Introduction 34 2.2 Theoretical model 38 2.3 Results and discussion 42 Conclusions 67 References 70 | - |
| dc.language.iso | en | - |
| dc.subject | 溫度梯度 | zh_TW |
| dc.subject | 離子電流整流 | zh_TW |
| dc.subject | 離子選擇性 | zh_TW |
| dc.subject | 可調節電荷 | zh_TW |
| dc.subject | 鹽濃度梯度 | zh_TW |
| dc.subject | 離子傳輸 | zh_TW |
| dc.subject | 奈米流體裝置 | zh_TW |
| dc.subject | Charge regulation | en |
| dc.subject | Ionic current rectification | en |
| dc.subject | Thermal gradient | en |
| dc.subject | Ion transport | en |
| dc.subject | Nanofluidic devices | en |
| dc.subject | Ion selectivity | en |
| dc.subject | Concentration gradient | en |
| dc.title | 奈米流體二極體與電晶體內之離子傳輸機制:鹽濃度梯度、溫度梯度與表面帶電之影響 | zh_TW |
| dc.title | Ion Transport Mechanisms in Nanofluidic Diodes and Transistors: Influences of Salt Gradients, Thermal Gradients, and Surface Charges | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾琇瑱;諶玉真 | zh_TW |
| dc.contributor.oralexamcommittee | Shio-Jenn Tseng;Yu-Jane Sheng | en |
| dc.subject.keyword | 奈米流體裝置,離子傳輸,鹽濃度梯度,溫度梯度,離子電流整流,離子選擇性,可調節電荷, | zh_TW |
| dc.subject.keyword | Nanofluidic devices,Ion transport,Concentration gradient,Thermal gradient,Ionic current rectification,Ion selectivity,Charge regulation, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202402203 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2029-07-24 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
