Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93635
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘建興zh_TW
dc.contributor.advisorFrederick Kin Hing Phoaen
dc.contributor.author陳柏伍zh_TW
dc.contributor.authorPo-Wu Chenen
dc.date.accessioned2024-08-06T16:28:23Z-
dc.date.available2025-07-22-
dc.date.copyright2024-08-06-
dc.date.issued2024-
dc.date.submitted2024-07-26-
dc.identifier.citation[1] T. H. Achim Zeileis and K. Hornik. Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17(2):492–514, 2008.
[2] H. Akaike. Information Theory and an Extension of the Maximum Likelihood Principle, pages 199–213. Springer New York, New York, NY, 1998.
[3] angrin.tlri.gov.tw. Husbandry data. https://www.angrin.tlri.gov.tw/asp/TAGC_UID_sale9.asp.
[4] M. Ashouri, F. K. H. Phoa, C.-H. Chen, and G. Shmueli. An interactive clusteringbased visualization tool for air quality data analysis. Aerosol and Air Quality Research, 23(12):230124, 2023.
[5] U. A. Bhatti, Y. Yan, M. Zhou, S. Ali, A. Hussain, Q. Huo, Z. Yu, and L. Yuan. Time series analysis and forecasting of air pollution particulate matter (pm2.5): An sarima and factor analysis approach. IEEE Access, 2021.
[6] Y.-C. Chen, C.-H. Lin, and C.-C. Chen. Estimating the fine-grained pm2.5 for airbox sensor fault detection in taiwan. IEEE Xplore, 2020.
[7] M.-K. Chung, F.-S. Ching, and L.-J. Chen. From participatory sensing to public37 private partnership: The development of airbox project in taiwan. Institute of Information Science, Academia Sinica, Taipei, Taiwan, 2021.
[8] data.gov.tw. gas data. https://data.gov.tw/dataset/130271.
[9] X. Fang, C. F. Chong, X. Yang, and Y. Wang. Clustering algorithms based noise identification from air pollution monitoring data. In 2022 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), pages 1–6, Dec 2022.
[10] history.colife.org.tw. Main airbox data. https://history.colife.org.tw/#/.
[11] G. Huang, L.-J. Chen, W.-H. Hwang, S. Tzeng, and H.-C. Huang. Real-time pm2.5 mapping and anomaly detection from airboxes in taiwan. Environmetrics, 29(8):e2537, 2018.
[12] idbpark. industrial data. https://idbpark.bip.gov.tw/Environ/statistical.
[13] Y.-H. Li and F. K. H. Phoa. An investigation to the spread of covid-19 via time series clustering and its data visualization via r/shiny app. NTU, 2023.
[14] C.-Y. Lo, W.-H. Huang, M.-F. Ho, M.-T. Sun, L. J. Chen, K. Sakai, and W.-S. Ku. Recurrent learning on PM2.5 prediction based on clustered airbox dataset: Extended abstract. In 2022 IEEE 38th International Conference on Data Engineering (ICDE), pages 1563–1564, 2022.
[15] O. E. Okereke, I. S. Iwueze, and C. O. Omekara. Penalties for misclassification of a pure diagonal bilinear process of order two as a moving average process of order two. American Journal of Applied Mathematics and Statistics, 2(1):47–52, 2014. 38
[16] religion.moi.gov.tw. Temple data. https://religion.moi.gov.tw/Religion/FoundationTemple?ci=1.
[17] Z. Ren and X. Ji. On prediction of air pollutants with takagi-sugeno models based on a hierarchical clustering identification method. Atmospheric Pollution Research, 14:101731, 03 2023.
[18] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49, 1978.
[19] S. Salvador and P. Chan. Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis, 3(11508), Jan. 2007.
[20] K. K. R. Samal, K. S. Babu, S. K. Das, and A. Acharaya. Time series based air pollution forecasting using sarima and prophet model. In Proceedings of the 2019 International Conference on Information Technology and Computer Communications, ITCC ’19, page 80–85, New York, NY, USA, 2019. Association for Computing Machinery.
[21] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978.
[22] segis.moi.gov.tw. population data. https://segis.moi.gov.tw/STAT/Web/Portal/STAT_PortalHome.aspx.
[23] S. Siami-Namini, N. Tavakoli, and A. Siami Namin. A comparison of arima and lstm in forecasting time series. Journal of Forecasting Techniques, 2018. 39
[24] theworld.fandom.com. Metro data. https://zh.wikipedia.org/zh-tw/%E8% 87%BA%E7%81%A3%E6%8D%B7%E9%81%8B%%B3%BB%E7%B5%B1.
[25] trmc.org.tw. Concrete data. https://www.trmc.org.tw/tw/member.asp.
[26] wikipedia. Powerplant data. https://zh.wikipedia.org/zh-tw/%E8%87%BA%E7%81%A3%E7%99%BC%E9%9B%BB%E5%BB%0%E5%88%97%E8%A1%A8.
[27] A. Zeileis, T. Hothorn, and K. Hornik. party with the mob: Model-based recursive partitioning in r. The Comprehensive R Archive Network, 1(2):14–22, 2009.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93635-
dc.description.abstract鑒於台灣嚴重的空氣污染問題,我們的研究目標是準確地捕捉和預測 PM2.5 濃度,這對於監測空氣質量並協助專家們確定 PM2.5 源頭至關重要。我們利用基於 DTW 的時間序列模型來實現這一目標,該模型首先使用 DTW 計算每個時間序列之間的距離,並根據這些距離將類似模式的時間序列分組為不同的群集。我們採用了常見的分群方法,如階層式分群,以實現這一步驟。接著,我們將 SARIMA 模型應用於每個群集,以捕捉趨勢並預測未來的值。此外,我們還利用 Python/Dash 可視化工具進行視覺分析,以促進對 AirBox 數據的理解。透過這些分析工具,我們能夠觀察 PM2.5 的趨勢,並識別影響濃度水平的關鍵特徵,進而更好地了解台灣的空氣污染情況。

本研究的背景涉及在台灣部署 AirBox 設備的相關信息,以及先前對空氣質量監測站和創新方法(如 MOB 或 MTSC)的研究。這些既有研究為我們的工作奠定了基礎,並提供了寶貴的參考。我們將這些信息結合,以更好地理解台灣空氣污染問題的本質,並為改善環境質量提供重要的指引。

通過本研究的分析方法,我們將能夠更好地理解時間序列數據的模式和趨勢,從而提高對 PM2.5 濃度數據的分類和分析能力。通過分析 AirBox 數據,我們可以更好地識別影響 PM2.5 濃度的因素,進而針對這些因素制定更有效的空氣質量管理策略。我們的研究成果將為未來的工作提供重要的研究方向和參考依據
zh_TW
dc.description.abstractDue to the serious air pollution issue in Taiwan, we aim to accurately capture and predict PM2.5 concentrations. This is crucial for monitoring air quality and helps experts determine the source of PM2.5. This study utilizes DTW-based Partitioning Time Series Models, which first use DTW to calculate the distance between each time series, grouping those with similar patterns into clusters based on their DTW-distances. Common clustering methods such as hierarchical clustering, are employed. Subsequently, SARIMA models are applied to capture trends and forecast future values. In addition, we use Python/Dash visualization tools to promote visual analysis of the AirBox data, allowing us to observe PM2.5 trends and identify key features affecting concentration levels. This helps us better understand air pollution in Taiwan. The background involves the deployment of AirBox devices across Taiwan, and previous research on air quality monitoring stations and innovative methods like MOB or MTSC has laid the foundation for this study.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:28:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-06T16:28:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals of this Project . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 2 Literature Review 3
2.1 The Airbox Project . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Some Related Analysis on Airbox . . . . . . . . . . . . . . . . . . . 3
2.3 A Review on Exploration Methods . . . . . . . . . . . . . . . . . . . 4
Chapter 3 Proposed Analysis Method 7
3.1 The Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Dynamic Time Warping (DTW) . . . . . . . . . . . . . . . . . . . . 7
3.3 Information Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Attribute and Decision Tree . . . . . . . . . . . . . . . . . . . . . . 10
3.5 A Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Python/Dash Visualization App . . . . . . . . . . . . . . . . . . . . 15
Chapter 4 Airbox Data Analysis 19
4.1 Introduction to Our Airbox Data . . . . . . . . . . . . . . . . . . . . 19
4.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Features Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Model Construction and Results Comparison . . . . . . . . . . . . . 22
4.5 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Chapter 5 Conclusion 35
5.1 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Future Directions and Challenges . . . . . . . . . . . . . . . . . . . 36
References 37
-
dc.language.isoen-
dc.subjectDASH應用程式zh_TW
dc.subjectPM2.5zh_TW
dc.subject聚類zh_TW
dc.subjectSARIMAzh_TW
dc.subject時間序列zh_TW
dc.subjectDTW(動態時間規則)zh_TW
dc.subject空氣盒子zh_TW
dc.subjectPM2.5en
dc.subjectDTW (Dynamic Time Warping)en
dc.subjectTime seriesen
dc.subjectSARIMAen
dc.subjectAirBoxen
dc.subjectClusteringen
dc.subjectDASH appen
dc.title基於 DTW 的分割時間序列模型進行 Python/Dash 可視化分析台灣空氣盒子數據zh_TW
dc.titleUsing DTW-based Partitioning Time Series Models with Python/Dash Visualization Analysis AirBox Data in Taiwanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor楊鈞澔zh_TW
dc.contributor.coadvisorChun-Hao Yangen
dc.contributor.oralexamcommittee張漢利;黃信誠zh_TW
dc.contributor.oralexamcommitteeHendri Sutrisno;Hsin-Cheng Huangen
dc.subject.keywordDTW(動態時間規則),時間序列,SARIMA,空氣盒子,PM2.5,聚類,DASH應用程式,zh_TW
dc.subject.keywordDTW (Dynamic Time Warping),Time series,SARIMA,AirBox,PM2.5,Clustering,DASH app,en
dc.relation.page40-
dc.identifier.doi10.6342/NTU202402061-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-28-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用數學科學研究所-
dc.date.embargo-lift2025-07-22-
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved