請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93633
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王翰聰 | zh_TW |
dc.contributor.advisor | Han-Tsung Wang | en |
dc.contributor.author | 張喬婷 | zh_TW |
dc.contributor.author | Chiao-Ting Chang | en |
dc.date.accessioned | 2024-08-06T16:26:34Z | - |
dc.date.available | 2024-08-07 | - |
dc.date.copyright | 2024-08-06 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-27 | - |
dc.identifier.citation | 陳靜宜、王翰聰。2021。綜論報告:豬隻體外仿生消化模擬系統的建立與應用。中國畜牧學會會誌。50: 23-48。
Abedi, E., and S. M. B. Hashemi. 2020. Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon. 6: e04974. Aguirre, L., E. M. Hebert, M. S. Garro, and G. S. de Giori. 2014. Proteolytic activity of Lactobacillus strains on soybean proteins. LWT - Food Sci. Technol. 59: 780-785. Ahmed, S. T., J. Hoon, H.-S. Mun, and C.-J. Yang. 2014. Evaluation of Lactobacillus Bacillus-based probiotics as alternatives to antibiotics in enteric microbial challenged weaned piglets. Afr. J. Microbiol. Res. 8: 96-104. Alexopoulos, C., I. E. Georgoulakis, A. Tzivara, S. K. Kritas, A. Siochu, and S. C. Kyriakis. 2004. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J. Anim. Physiol. Anim. Nutr. 88: 381-392. Alvin, R., A. Dave, B. J. Louise, A. B. Lou, C. Angelbert, M. C. Gabrielle, and M. Andrew. 2019. Tryptophanase and tryptophan synthetase in Escherichia Coli. Int. J. Biol. Sci. 1: 6-11. Bach Knudsen, K. E. 2001. The nutritional significance of “dietary fibre” analysis. Anim. Feed Sci. Technol. 90: 3-20. Balasubramanian, B., T. Li, and I. H. Kim. 2016. Effects of supplementing growing-finishing pig diets with Bacillus spp. probiotic on growth performance and meat-carcass grade quality traits. R. Bras. Zootec. 45: 93-100. Barasch, I. B., and J. L. Grimes. 2021. The effect of a heat-stable xylanase on digesta viscosity, apparent metabolizable energy and growth performance of broiler chicks fed a wheat-based diet. Poult. Sci. 100: 101275. Barba-Vidal, E., S. M. Martín-Orúea, and L. Castillejos. 2019. Practical aspects of the use of probiotics in pig production: A review. Livest. Sci. 223: 84-96. Bedford, M. R. 2018. The evolution and application of enzymes in the animal feed industry: the role of data interpretation. Br. Poult. Sci. 59: 486-493. Bedford, M. R., and J. H. Apajalahti. 2022. The role of feed enzymes in maintaining poultry intestinal health. J. Sci. Food Agric. 102: 1759-1770. Bee, G., N. Quiniou, H. Maribo, G. Zamaratskaia, and P. G. Lawlor. 2020. Strategies to meet nutritional requirements and reduce boar taint in meat from entire male pigs and immunocastrates. Animals. 10: 1950. Belloumi, D., S. Calvet, M. I. Roca, P. Ferrer, A. Jiménez‑Belenguer, M. Cambra‑López, P. García‑Rebollar, E. Climent, J. Martínez‑Blanch, M. Tortajada, E. Chenoll, A. Bermejo, and A. Cerisuelo. 2023. Effect of providing citrus pulp-integrated diet on fecal microbiota and serum and fecal metabolome shifts in crossbred pigs. Sci. Rep. 13: 17596. Benedetti, M. S., T. Boucher, A. Carlsson, and C. J. Fowler. 1983. Intestinal metabolism of tyramine by both forms of monoamine oxidase in the rat. 32: 47-52. Betancur, C., Y. Martínez, G. Tellez-Isaias, R. Castillo, and X. Ding. 2021. Effect of oral administration with Lactobacillus plantarum CAM6 strain on sows during gestation-lactation and the derived impact on their progeny performance. Mediat. Inflamm. 2021: 6615960. Bindelle, J., A. Buldgen, J. Wavreille, R. Agneessens, J. P. Destain, B. Wathelet, and P. Leterme. 2007. The source of fermentable carbohydrates influences the in vitro protein synthesis by colonic bacteria isolated from pigs. Animal. 1: 1126-1133. Bindelle, J., A. Buldgen, M. Delacollette, J. Wavreille, R. Agneessens, J. P. Destain, and P. Leterme. 2009. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria. Anim. Sci. 87: 583-593. Body, W., and H. C. Lichstein. 1955. The effect of carbohydrates on the tryptophanase activity of bacteria. J. Bacteriol. 69: 584-589. Boontiam, W., P. Phaenghairee, V. Van Hoeck, B. L. Vasanthakumari, I. Somers, and A. Wealleans. 2022. Xylanase impact beyond performance: Effects on gut structure, faecal volatile fatty acid content and ammonia emissions in weaned piglets fed diets containing fibrous ingredients. Animals. 12: 3043. Cadogan, D. J., and M. Choct. 2015. Pattern of non-starch polysaccharide digestion along the gut of the pig: Contribution to available energy. Anim. Nutr. 1: 160-165. Cao, T., Y. Zheng, and H. Dong. 2023. Control of odor emissions from livestock farms: A review. Environ. Res. 225: 115545. Cao, Y., R. Aquino-Martinez, E. Hutchison, H. Allayee, A. J. Lusis, and F. E. Rey. 2022. Role of gut microbe-derived metabolites in cardiometabolic diseases: Systems based approach. Mol. Metab. 64: 101557. Casas, G. A., H. N. Lærke, K. E. Bach Knudsen, and H. H. Stein. 2019. Arabinoxylan is the main polysaccharide in fiber from rice coproducts, and increased concentration of fiber decreases in vitro digestibility of dry matter. Anim. Feed Sci. Technol. 247: 255-261. Chen, S., S. Maulu, J. Wang, X. Xie, X. Liang, H. Wang, J. Wang, and M. Xue. 2024. The application of protease in aquaculture: Prospects for enhancing the aquafeed industry. Anim. Nutr. 16: 105-121. Chen, Y., L. Zeng, Y. Liao, J. Li, B. Zhou, Z. Yang, and J. Tang. 2020. Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (camellia sinensis) manufacturing process. Foods. 9: 66. Choct, M. 1997. Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling International. 6: 13-26. Choct, M., A. Kocher, D. L. E. Waters, D. Pettersson, and G. Ross. 2004. A comparison of three xylanases on the nutritive value of two wheats for broiler chickens. Br. J. Nutr. 92: 53-61. Choi, W., W. Lee, and K. Kim. 2024. Odor generation pattern of swine manure according to the processing form of feed. J. Anim. Sci. Technol. 66: 219-231. Clark, J. H., T. H. Klusmeyer, and M. R. Cameron. 1992. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J. Dairy Sci. 75: 2304-2323. Clarke, L. C., T. Sweeney, E. Curley, V. Gath, S. K. Duffy, S. Vigors, G. Rajauria, and J. V. O’Doherty. 2018. Effect of β-glucanase and β-xylanase enzyme supplemented barley diets on nutrient digestibility, growth performance and expression of intestinal nutrient transporter genes in finisher pigs. Anim. Feed Sci. Technol. 238: 98-110. Costa, J., and A. Ahluwalia. 2019. Advances and current challenges in intestinal in vitro model engineering: A digest. Front. Bioeng. Biotechnol. 7: 144. de Lange, C. F. M., J. Pluske, J. Gong, and C. M. Nyachoti. 2010. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livest. Sci. 134: 124-134. de Vries, S., A. M. Pustjens, M. A. Kabel, S. Salazar-Villanea, W. H. Hendriks, and W. J. Gerrits. 2013. Processing technologies and cell wall degrading enzymes to improve nutritional value of dried distillers grain with solubles for animal feed: an in vitro digestion study. J. Agric. Food Chem. 61: 8821-8828. Dai, X., and H. Karring. 2014. A determination and comparison of urease activity in feces and fresh manure from pig and cattle in relation to ammonia production and pH changes. PLOS ONE. 9: e110402. Davila, A. M., F. Blachier, M. Gotteland, M. Andriamihaja, P. H. Benetti, Y. Sanz, and D. Tomé. 2013. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol. Res. 68: 95-107. Dempsey, E., and S. C. Corr. 2022. Lactobacillus spp. for gastrointestinal health: current and future perspectives. Front. Immunol. 13: 840245. Deslandes, B., C. Gariepy, and A. Houde. 2001. Review of microbiological and biochemical effects of skatole on animal production. Livest. Prod. Sci. 71: 193-200. Derqaoui, S., M. Oukessou, and S. Nassik. 2022. NSPases: can those exogenous enzymes really constitute natural growth cofactors in broiler chickens? Int. J. Adv. Res. 10: 450-464. Dhanoa, M. S., S. López, C. D. Powell, R. Sanderson, J. L. Ellis, J.-A. M. D. Murray, A. Garber, B. A. Williams, and J. France. 2021. An illustrative analysis of atypical gas production profiles obtained from in vitro digestibility studies using fecal inoculum. Animals. 11: 1069. Dikeman, C. L., K. A. Barry, M. R. Murphy, and G. C. Fahey Jr. 2007. Diet and measurement techniques affect small intestinal digesta viscosity among dogs. Nutr. Res. 27: 56-65. Dong, B., S. Liu, C. Wang, and Y. Cao. 2018. Effects of xylanase supplementation to wheat-based diets on growth performance, nutrient digestibility and gut microbes in weanling pigs. Asian-Australas. J. Anim. Sci. 31: 1491-1499. Dupont, D., M. Alric, S. Blanquet-Diot, G. Bornhorst, C. Cueva, A. Deglaire, S. Denis, M. Ferrua, R. Havenaar, J. Lelieveld, A. R. Mackie, M. Marzorati, O. Menard, M. Minekus, B. Miralles, I. Recio, and P. Van den Abbeele. 2019. Can dynamic in vitro digestion systems mimic the physiological reality? Crit. Rev. Food Sci. Nutr. 59: 1546-1562. Duport, C., M. Jobin, and P. Schmitt. Adaptation in Bacillus cereus: From stress to disease. Front. Microbiol. 7: 1550. Elean, M., L. Albarracin, J. Villena, H. Kitazawa, L. Saavedra, and E. M. Hebert. 2023. In silico comparative genomic analysis revealed a highly conserved proteolytic system in Lactobacillus delbrueckii. Int. J. Mol. Sci. 24: 11309. Elling-Staats, M. L., A. K. Kies, J. W. Cone, W. F. Pellikaan, and R. P. Kwakkel. 2023. Animal. 17: 100768. Fayol-Messaoudi, D., C. N. Berger, M. H. Coconnier-Polter, V. Liévin-Le Moal, and A. L. Servin. 2005. pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium. Appl. Environ. Microbiol. 71: 6008-6013. Furuya, S. 1980. A new in vitro method for estimating digestibility of animal feeds. Jpn. Agric. Res. Q. 14: 52-55. Galli, G. M., I. Andretta, C. Levesque, T. Stefanello, C. L. Carvalho, J. Y. Perez Pelencia, G. Bueno Martins, B. Souza de Lima Cony, C. Romeiro de Oliveira, C. H. Franceschi, and M. Kipper. 2024. Using probiotics to improve nutrient digestibility and gut-health of weaned pigs: a comparison of maternal and nursery supplementation strategies. Front. Vet. Sci. 11: 1356455. Gao, K., C.-L. Mu, A. Farzi, and W.-Y. Zhu. 2020. Tryptophan metabolism: A link between the gut microbiota and brain. Adv. Nutr. 11: 709-723. Gauvry, E., A.-G. Mathot, O. Couvert, I. Leguérinel, and L. Coroller. 2021. Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1. Int. J. Food Microbiol. 337: 108915. Guan, Z.-W., E.-Z. Yu, and Q. Feng. 2021. Soluble dietary fiber, one of the most important nutrients for the gut microbiota. Molecules. 26: 6802. Hailemariam, S., S. Zhao, Y. He, and J. Wang. 2021. Urea transport and hydrolysis in the rumen: A review. Anim. Nutr. 7: 989-996. Hao, C., Y. Pan, Z. Zhang, and Y. Zeng. 2019. Kinetic determination of urease activity in fresh pig feces and slurry and the effect on ammonia production at different conditions. Sustainability. 11: 6396. Hashemi, M., A. Seidavi, F. Javandel, and S. Gamboa. 2017. Influence of non-starch polysaccharide-degrading enzymes on growth performance, blood parameters, and carcass quality of broilers fed corn or wheat/barley-based diets. Rev. Colomb. Cienc. Pec. 30: 4. He, X., B. Yu, J. He, Z. Huang, X. Mao, P. Zheng, Y. Luo, J. Luo, Q. Wang, H. Wang, J. Yu, and D. Chen. 2020. Effects of xylanase on growth performance, nutrients digestibility and intestinal health in weaned piglets. 233: 103940. Heczko, P., Ł. Kozie´n, and M. Strus. 2023. Special Issue “An Update on Lactobacillus”: Editorial. Microorganisms. 11: 1400. Heo, J. M., F. O. Opapeju, J. R. Pluske, J. C. Kim, D. J. Hampson, and C. M. Nyachoti. 2013. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds J. Anim. Physiol. Anim. Nutr. 97: 207-237. Hernández-López, A., D. A. S. Félix, Z. Z. Sierra, I. G. Bravo, T. D. Dinkova, and A. X. Avila-Alejandre. 2020. Quantification of reducing sugars based on the qualitative technique of benedict. ACS Omega. 5: 32403-32410. Hsu, J. E., S. H. Lo, Y. Y. Lin, H. T. Wang, and C. Y. Chen. 2022. Effects of essential oil mixtures on nitrogen metabolism and odor emission via in vitro simulated digestion and in vivo growing pig experiments. J. Sci. Food Agric. 102: 1939-1947. Hu, J., Y. H. Kim, and I. H. Kim. 2021. Effects of two bacillus strains probiotic supplement on reproduction performance, nutrient digestibility, blood profile, fecal score, excreta odor contents and fecal microflora in lactation sows, and growth performance in sucking piglets. Livest. Sci. 244: 104293. Hu, Z., L. Feng, Q. Jiang, W. Wang, B. Tan, X. Tang, and Y. Yin. 2023. Intestinal tryptophan metabolism in disease prevention and swine production. Anim. Nutr. 15: 364-374. Huang, S., J. Wei, H. Yu, X. Hao, J. Zuo, C. Tan, and J. Deng. 2020. Effects of dietary fiber sources during gestation on stress status, abnormal behaviors and reproductive performance of sows. Animals. 10: 141. Isaacson, R., and H. B. Kim. 2012. The intestinal microbiome of the pig. Anim. Health Res. Rev. 13: 100-109. Islam, M. R., S. Arthur, J. Haynes, M. R. Butts, N. Nepal, and U. Sundaram. 2022. The role of gut microbiota and metabolites in obesity-associated chronic gastrointestinal disorders. Nutrients. 14: 624. Jensen, M. T., R. P. COX, and B. B. Jensen. 1995. 3-Methylindole (skatole) and indole production by mixed populations of pig fecal bacteria. Appl. Environ. Microb. 61: 3180-3184. Jeong, J., J. Kim, S. Lee, and I. Kim. 2015. Evaluation of Bacillus subtilis and Lactobacillus acidophilus probiotic supplementation on reproductive performance and noxious gas emission in sows. Ann. Anim. Sci. 15: 699-709. Jha, R., and P. Leterme. 2012. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal. 6: 603-611. Jha, R., and J. F. D. Berrocoso. 2016. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Anim. Feed Sci. Technol. 212: 18-26. Ji, H., J. Hu, S. Zuo, S. Zhang, M. Li, and S. Nie. 2022. In vitro gastrointestinal digestion and fermentation models and their applications in food carbohydrates. Crit. Rev. Food Sci. Nutr. 62: 5349-5371. Jiang, S. M., L. Jia, and M. H. Zhang. 2015. Probiotic and lactulose: influence on gastrointestinal flora and pH value in minimal hepatic encephalopathy rats. Int. J. Clin. Exp. Med. 8: 9996-10000. Jin, L. Z., Y. W. Ho, N. Abdullah, S. Jalaludin. 1997. Probiotics in poultry: Modes of action. World Poult. Sci. J. 53: 351-368. Juricova, H., J. Matiasovicova, M. Faldynova, A. Sebkova, T. Kubasova, H. Prikrylova, D. Karasova, M. Crhanova, H. Havlickova, and I. Rychlik. 2022. Probiotic Lactobacilli do not protect chickens against Salmonella enteritidis infection by competitive exclusion in the intestinal tract but in feed, outside the chicken host. Microorganisms. 10: 219. Karunaratne, N. D., R. W. Newkirk, A. G. van Kessel, M. R. Bedford, and H. L. Classen. 2021. Hulless barley and beta-glucanase levels in the diet affect the performance of coccidiosis-challenged broiler chickens in an age-dependent manner. Poult. Sci. 100: 776-787. Kaur, L., B. Mao, A. S. Beniwal, Abhilash, R. Kaur, F. M. Chian, and J. Singh. 2022. Alternative proteins vs animal proteins: The influence of structure and processing on their gastro-small intestinal digestion. Trends Food Sci. Tech. 122: 275-286. Kiernan, D. P., J. V. O’Doherty, and T. Sweeney. 2023. The effect of maternal probiotic or symbiotic supplementation on sow and offspring gastrointestinal microbiota, health, and performance. Animals. 13: 2996. Knarreborg, A., J. Beck, M. T. Jensen, A. Laue, N. Agergaard, and B. B. Jensen. 2002. Effect of non-starch polysaccharides on production and absorption of indolic compounds in entire male pigs. Anim. Sci. 74: 445-453. Lan, R., T. Li, and I. Kim. 2017. Effects of xylanase supplementation on growth performance, nutrient digestibility, blood parameters, fecal microbiota, fecal score and fecal noxious gas emission of weaning pigs fed corn-soybean meal-based diet. Anim. Sci. J. 88: 1398-1405. Latif, A., A. Shehzad, S. Niazi, A. Zahid, W. Ashraf, M. W. Iqbal, A. Rehman, T. Riaz, R. M. Aadil, I. M. Khan, F. Özogul, J. M. Rocha, T. Esatbeyoglu, and S. A. Korma. 2023. Probiotics: mechanism of action, health benefits and their application in food industries. Front. Microbiol. 14: 1216674. Le, P. D., A. J. A. Aarnink, N. W. M. Ogink, P. M. Becker, and M. W. A. Verstegen. 2005. Odour from animal production facilities: its relationship to diet. Nutr. Res. Rev. 18: 3-30. Li, G, and K. D. Young. 2013. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology. 159: 402-410. Li, X, B. Zhang, Y. Hu, and Y. Zhao. 2021. New insights into gut-bacteria-derived indole and its derivatives in intestinal and liver diseases. Front. Pharmacol. 12: 769501. Li, Y., S. Hou, J. Chen, W. Peng, W. Wen, F. Chen, and X. Huang. 2019. Oral administration of Lactobacillus delbrueckii during the suckling period improves intestinal integrity after weaning in piglets. J. Funct. Foods. 63: 103591. Liao, S. F., and M. Nyachoti. 2017. Using probiotics to improve swine gut health and nutrient utilization. Anim. Nutr. 3: 331-343. Liu, D., Y. Wei, X. Liu, Y. Zhou, L. Jiang, J. Yin, F. Wang, Y. Hu, A. N. Nanjaraj Urs, Y. Liu, E. L. Ang, S. Zhao, H. Zhao, and Y. Zhang. 2018. Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole. Nat. commun. 9: 4224. Liu, S., C. Ma, L. Liu, D. Ning, Y. Liu, and B. Dong. 2019. β-xylosidase and β-mannosidase in combination improved growth performance and altered microbial profiles in weanling pigs fed a corn-soybean meal-based diet. Asian Australas. J. Anim. Sci. 32: 1734-1744. Liu,Y., Y. Hou, G. Wang, X. Zheng, and H. Hao. 2020. Gut microbial metabolites of aromatic amino acids as signals in host–microbe interplay. Trends Endocrin. Met. 31: 818-834. Lo, S.-H., C.-Y. Chen, and H.-T. Wang. 2022. Three-step in vitro digestion model for evaluating and predicting fecal odor emission from growing pigs with different dietary protein intakes. Anim. Biosci. 35: 1592-1605. Lu, D., Y. Pi, H. Ye, Y. Wu, Y. Bai, S. Lian, D. Han, D. Ni, X. Zou, J. Zhao, S. Zhang, B. Kemp, N. Soede, and J. Wang. 2022. Consumption of dietary fiber with different physicochemical properties during late pregnancy alters the gut microbiota and relieves constipation in sow model. Nutrients. 14: 2511. Lyu, F., W. H. Hendriks, A. F. B. van der Poel, and M. Thomas. 2022. Particle size distribution, energy consumption, nutrient composition and in vitro ileal digestion characteristics of hammer milled maize and soybean meal affected by moisture content. Anim. Feed Sci. Technol. 288: 115317. Ma, Q., N. Meng, Y. Li, and J. Wang. 2021. Occurrence, impacts, and microbial transformation of 3-methylindole (skatole): A critical review. J. Hazard. Mater. 416: 126181. Malathi, V., and G. Devegowda. 2001. In vitro evaluation of nonstarch polysaccharide digestibility of feed ingredients by enzymes. Poult. Sci. 80: 302-305. Maske, B. L., G. V. de Melo Pereira, A. d. S. Vale, D. P. de Carvalho Neto, S. G. Karp, J. A. Viesser, J. D. D. Lindner, M. G. Pagnoncelli, V. T. Soccol, and C. R. Soccol. 2021. A review on enzyme-producing lactobacilli associated with the human digestive process: From metabolism to application. Enzyme Microb. Technol. 149: 109836. Mc Alpine, P. O., C. J. O’Shea, P. F. Varley, P. Solan, T. Curran, and J. V. O’Doherty. 2012. The effect of protease and nonstarch polysaccharide enzymes on manure odor and ammonia emissions from finisher pigs. J. Anim. Sci. 90: 369-371. Menon, N., D. Richmond, M. R. Rahman, and B. R. K. Menon. 2022. Versatile and facile one-pot biosynthesis for amides and carboxylic acids in E. coli by engineering auxin pathways of plant microbiomes. ACS Catal. 12: 2309-2319. Mercado, V., and J. Olmos. 2022. Bacteriocin production by Bacillus species: isolation, characterization, and application. Probiotics Antimicrob. Proteins. 14: 1151–1169. Morgan, N., M. M. Bhuiyan, A. Wallace, and R. Hopcroft. 2022a. Comparing a single dose of xylanase to a double dose or cocktail of non-starch polysaccharide-degrading enzymes in broiler chicken diets. J. Appl. Anim. Nutr. 10: 91-102. Morgan, N., M. M. Bhuiyan, and R. Hopcroft. 2022b. Non-starch polysaccharide degradation in the gastrointestinal tract of broiler chickens fed commercial-type diets supplemented with either a single dose of xylanase, a double dose of xylanase, or a cocktail of non-starch polysaccharide-degrading enzymes. Poult. Sci. 101: 101846. Mulet-Cabero, A. I., L. Egger, R. Portmann, O. Ménard, S. Marze, M. Minekus, S. Le Feunteun, A. Sarkar, MM. Grundy, F. Carrière, M. Golding, D. Dupont, I. Recio, A. Brodkorb, and A. Mackie. 2020. A standardised semi-dynamic in vitro digestion method suitable for food - an international consensus. Food Funct. 11: 1702-1720. Muscariello, L., B. De Siena, and R. Marasco. 2020. Lactobacillus cell surface proteins involved in interaction with mucus and extracellular matrix components. Curr. Microbiol. 77: 3831-3841. Nakatani, M., R. Inoue, S. Tomonaga, K. Fukuta, and T. Tsukahara. 2018. Production, absorption, and blood flow dynamics of short-chain fatty acids produced by fermentation in piglet hindgut during the suckling–weaning period. Nutrients. 10: 1220. Nasreen, C., G. J. Mohiddin, M. Srinivasulu, A. R. Padmini, P. Ramanamma, and V. Rangaswamy. 2012. Interaction effects of insecticides on enzyme activities in black clay soil from groundnut (Arachis hypogaea L.) fields. Environ. Res. Eng. Manag. 2: 21-28. Nguyen, D. H., S. D. Upadhaya, X. J. Lei, J. Yin, and I. H. Kim. 2019. Influence of dietary protease supplementation to corn–soybean meal-based high- and low-energy diets on growth performance, nutrient digestibility, blood profiles, and gas emission in growing pigs. Can. J. Anim. Sci. 99: 482-488. O’Neill, H. M., J. Smith, and M. Bedford. 2014. Multi-carbohydrase enzymes for non-ruminants. Asian Australas. J. Anim. Sci. 27: 290. O’Shea, C. J., P. O. Mc Alpine, P. Solan, T. Curran, P. F. Varley, A. M. Walsh, and J. V. O. Doherty. 2014. The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower–finisher pigs. Anim. Feed Sci. Technol. 189: 88-97. Paeslack, N., M. Mimmler, S. Becker, Z. Gao, M. P. Khuu, A. Mann, F. Malinarich, T. Regen, and C. Reinhardt. 2022. Microbiota‑derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids. 54: 1339-1356. Pandey, S., E. S. Kim, J. H. Cho, M. Song, H. Doo, S. Kim, G. B. Keum, J. Kwak, S. Ryu, Y. Choi, J. Kang, J. J. Lee, and H. B. Kim. 2023. Swine gut microbiome associated with non-digestible carbohydrate utilization. Front. Vet. Sci. 10: 1231072. Passos, A. A., I. Park, P. Ferket, E. V. Heimendahl, and S. W. Kim. 2015. Effect of dietary supplementation of xylanase on apparent ileal digestibility of nutrients, viscosity of digesta, and intestinal morphology of growing pigs fed corn and soybean meal based diet. Anim. Nutr. 1: 19-23. Pedersen, M., S. Dalsgaard, K. Bach Knudsen, S. Yu, and H. Lærke. 2014. Compositional profile and variation of distillers dried grains with solubles from various origins with focus on non-starch polysaccharides. Anim. Feed Sci. Technol. 197: 130-141. Pereira, W. A., S. M. Franco, I. L. Reis, C. M. N. Mendonça, A. C. M. Piazentin, P. O. S. Azevedo, M. L. P. Tse, E. C. P. De Martinis, M. Gierus, and R. P. S. Oliveira. 2022. Beneficial effects of probiotics on the pig production cycle: An overview of clinical impacts and performance. Vet. Microbiol. 269: 109431. Perera, W. N. U., M. R. Abdollahi, F. Zaefarian, T. J. Wester, and V. Ravindran. 2022. Barley, an undervalued cereal for poultry diets: limitations and opportunities. Animals. 12: 2525. Petry, A. L., and J. F. Patience. 2020. Xylanase supplementation in corn-based swine diets: a review with emphasis on potential mechanisms of action. J. Anim. Sci. 98: skaa318. Pieper, R., R. Jha, B. Rossnagel, A. G. Van Kessel, W. B. Souffrant, and P. Leterme. 2008. Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weaned piglets., FEMS Microbiol. Ecol. 66: 556-566. Pieper, R., C. Boudry, J. Bindelle, W. Vahjen, and J. Zentek. 2014. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets. Arch. Anim. Nutr. 68: 263-280. Powell, C. D., M. S. Dhanoa, A. Garber, J. M. D. Murray, S. López, J. L. Ellis, and J. France. 2020. Models based on the Mitscherlich equation for describing typical and atypical gas production profiles obtained from in vitro digestibility studies using equine faecal inoculum. Animals. 10: 308. Prakash, S., R. M. Maas, P.-M. M. M. Fransen, F. Kokou, J. W. Schrama, and A. J. P. Philip. 2023. Effect of feed ingredients on nutrient digestibility, waste production and physical characteristics of rainbow trout (Oncorhynchus mykiss) faeces. Aquaculture. 574: 739621. Puwastien, P., B. Burlingame, M. Raroengwichit, and P. Sungpung. 2000. ASEAN Food Composition Tables. Mahidol University. Rao, Z.-X., M. D. Tokach, J. C. Woodworth, J. M. DeRouchey, R. D. Goodband, and J. T. Gebhardt. 2023. Effects of various feed additives on finishing pig growth performance and carcass characteristics: A review. Animals. 13: 200. Rist, V. T. S., E. Weiss, M. Eklund, and R. Mosenthin. 2013. Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review. Animal. 7: 1067-1078. Roager, H. M., and T. R. Licht. 2018. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9: 3294. Rodríguez-Romero, J. d. J., A. C. Durán-Castañeda, A. P. Cárdenas-Castro, J. A. Sánchez-Burgos, V. M. Zamora-Gasga, and S. G. Sáyago-Ayerdi. 2022. What we know about protein gut metabolites: Implications and insights for human health and diseases. Food Chem.: X. 13: 100195. Rowland, I., G. Gibson, A. Heinken, K. Scott, J. Swann, I. Thiele, and K. Tuohy. 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57: 1-24. Russell, J. B., J. D. O’ Connor, D. G. Fox, P. J. van Soest, and C. J. Sniffen. 1992. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 70: 3551-3561. Russell, J. B., and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Science. 292: 1119-1122. Rychen, G., G. Aquilina, G. Azimonti, V. Bampidis, M. de L. Bastos, G. Bories, A. Chesson, P. S. Cocconcelli, G. Flachowsky, J. Gropp, B. Kolar, M. Kouba, M. López-Alonso, S. L. Puente, A. Mantovani, B. Mayo, F. Ramos, M. Saarela, R. E. Villa, R. J. Wallace, P. Wester, M. Anguita, and J. Galobar. 2018. Guidance on the assessment of the efficacy of feed additives. EFSA Journal. 16: 5274. Saleh, F., A. Ohtsuka, T. Tanaka, and K. Hayashi. 2003a. Effect of enzymes of microbial origin on in vitro digestibilities of dry matter and crude protein in maize. Poult. Sci. J. 40: 274-281. Saleh, F., A. Ohtsuka, T. Tanaka, and K. Hayashi. 2003b. Effect of enzymes of microbial origin on in vitro digestibilities of dry matter and crude protein in soybean meal. Anim. Sci. J. 74: 23-29. Saleh, F., A. Ohtsuka, T. Tanaka, and K. Hayashi. 2004. Carbohydrases are digested by proteases present in enzyme preparations during in vitro digestion. J. Poult. Sci. 41: 229-235. Salonen, A., L. Lahti, J. Salojärvi, G. Holtrop, K. Korpela, S. H. Duncan, P. Date, F. Farquharson, A. M. Johnstone, G. E. Lobley, P. Louis, H. J. Flint, and W. M. de Vos. 2014. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8: 2218-2230. Sampath, V., S. Cho, J. Jeong, S. Mun, C. H. Lee, R. G. Hermes, A. Taechavasonyoo, N. Smeets, S. Kirwan, K. Han, and I. H. Kim. 2024. Dietary Bacillus spp. supplementation to both sow and progenies improved post-weaning growth rate, gut function, and reduce the pro-inflammatory cytokine production in weaners challenged with Escherichia coli K88. Anim. Microb. 6: 3. Sato, A., K. Soeno, R. Kikuchi, M. Narukawa-Nara, C. Yamazaki, Y. Kakei, A. Nakamura, and Y. Shimada. 2022. Indole-3-pyruvic acid regulates TAA1 activity, which plays a key role in coordinating the two steps of auxin biosynthesis. Proc. Natl. Acad. Sci. 119: e2203633119. Schofield, P., R. E. Pitt, and A. N. Pell. 1994. Kinetics of fiber digestion from in vitro gas production. J. Anim. Sci. 72: 2980-2991. Serena-Romero, G., A. Ignot-Gutiérrez, O. Conde-Rivas, M. Y. Lima-Silva, A. J. Martínez, D. Guajardo-Flores, and E. Cruz-Huerta. 2023. Impact of in vitro digestion on the digestibility, amino acid release, and antioxidant activity of amaranth (Amaranthus cruentus L.) and cañihua (Chenopodium pallidicaule Aellen) proteins in Caco-2 and Hepg2 cells. Antioxidants. 12: 2075. Shen, J., L. Yang, K. You, T. Chen, Z. Su, Z. Cui, M. Wang, W. Zhang, B. Liu, K. Zhou, and H. Lu. 2022. Indole-3-acetic acid alters intestinal microbiota and alleviates ankylosing spondylitis in mice. Front. Immunol. 13: 762580. Shen, T. C., L. Albenberg, K. Bittinger, C. Chehoud, Y. Y. Chen, C. A. Judge, L. Chau, J. Ni, M. Sheng, A. Lin, B. J. Wilkins, E. L. Buza, J. D. Lewis, Y. Daikhin, I. Nissim, M. Yudkoff, F. D. Bushman, and G. D. Wu. 2015. Engineering the gut microbiota to treat hyperammonemia. J. Clin. Invest. 125: 2841-2850. Shi, J., D. Zhao, S. Song, M. Zhang, G. Zamaratskaia, X. Xu, G. Zhou, and C. Li. 2020. High-meat-protein high-fat diet induced dysbiosis of gut microbiota and tryptophan metabolism in wistar rats. J. Agric. Food Chem. 68: 6333-6346. Shu, L., J. Gu, Q. Wang, S. Sun, Y. Cui, J. Fell, W. S. Mak, J. B. Siegel, J. Shi, G. J. Lye, F. Baganz, and J. Hao. 2022. The pyruvate decarboxylase activity of IpdC is a limitation for isobutanol production by Klebsiella pneumoniae. Biotechnol. Biofuels. Bioprod. 15: 41. Śliżewska, K., and A. Chlebicz-Wójcik. 2020. Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology. 9: 423. Soares, N. 2021. NSP degrading enzymes in piglet nutrition - a tool for better performance. International Pig Topic. 36: 27-28. Sousa, R., I. Recio, D. Heimo, S. Dubois, P. J. Moughan, S. M. Hodgkinson, R. Portmann, and L. Egger. 2023. In vitro digestibility of dietary proteins and in vitro DIAAS analytical workflow based on the INFOGEST static protocol and its validation with in vivo data. Food Chim. 404: 134720. Su, X., Y. Gao, and R. Yang. 2022. Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis. Cells. 11: 2296. Su, Y., C. Liu, H. Fang, and D. Zhang. 2020. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Fact. 19: 173. Taleb, S. 2019. Tryptophan dietary impacts gut barrier and metabolic diseases. Front. Immunol. 10: 2113. Tian, Z., Y. Cui, H. Lu, G. Wang, and X. Ma. 2021. Effect of long-term dietary probiotic Lactobacillus reuteri 1 or antibiotics on meat quality, muscular amino acids and fatty acids in pigs. Meat Sci. 171: 108234. Tiwari, U. P., H. Chen, S. W. Kim, and R. Jha. 2018. Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Anim. Feed Sci. Technol. 245: 77-90. Umu, Ö. C. O., K. Rudi, and D. B. Diep. 2017. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Microb. Ecol. Health Disease. 28: 1348886. Valente Junior, D. T., J. L. Genova, S. W. Kim, A. Saraiva, and G. C. Rocha. 2024. Carbohydrases and phytase in poultry and pig nutrition: a review beyond the nutrients and energy matrix. Animals. 14: 226. Vangsøe, C. T., E. Bonnin, M. Joseph‐Aime, L. Saulnier, V. Neugnot‐Roux, and K. E. Bach Knudsen. 2020. Improving the digestibility of cereal fractions of wheat, maize, rice by a carbohydrase complex rich in xylanases and arabinofuranosidases: An in vitro digestion study. J. Sci. Food Agric. 5: 1910-1919. Veraeke, I. J., N. A. Dierick, D. I. Demeyer, and J. A. Decuypere. 1989. Approach to the energetic importance of fibre digestion in pigs. II. An experimental approach to hindgut digestion. Anim. Feed Sci. Technol. 23: 169-194. Vermeirssen, V., J. V. Camp, and W. Verstraete. 2004. Bioavailability of angiotensin I converting enzyme inhibitory peptides. Brit. J. Nutr. 92: 357-366. Vieco-Saiz, N., Y. Belguesmia, R. Raspoet, E. Auclair, F. Gancel, I. Kempf, and D. Drider. 2019. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. 10: 57. Wang, D., F. Cheng, Y. Wang, J. Han, F. Gao, J. Tian, K. Zhang, and Y. Jin. 2022. The changes occurring in proteins during processing and storage of fermented meat products and their regulation by lactic acid. Bacteria. Foods. 11: 2427. Wang, M., S. X. Tang, and Z. L. Tan. 2011. Modeling in vitro gas production kinetics: Derivation of Logistic–Exponential (LE) equations and comparison of models. Anim. Feed Sci. Technol. 165: 137-150. Wang, M., S. Wichienchot, X. He, X. Fu, Q. Huang, and B. Zhang. 2019. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci. Technol. 88: 1-9. Wang, R., M. Mohammadi, A. Mahboubi, and M. J. Taherzadeh. 2021. In-vitro digestion models: a critical review for human and fish and a protocol for in-vitro digestion in fish. Bioeng. 12: 3040-3064. Wang, Y., J. Wu, M. Lv, Z. Shao, M. Hungwe, J. Wang, X. Bai, J. Xie, Y. Wang, and W. Geng. 2021. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front. Bioeng. Biotechnol. 9: 612285. Wesoly, R., and U. Weiler. 2012. Nutritional influences on skatole formation and skatole metabolism in the pig. Animals. 2: 221-242. Williams, B. A., M. W. Bosch, H. Boer, M. W. Verstegen, and S. Tamminga. 2005. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim. Feed Sci. Technol. 123: 445-462. Williams, B. B., A. H. Van Benschoten, P. Cimermancic, M. S. Donia, M. Zimmermann, M. Taketani, A. Ishihara, P. C. Kashyap, J. S. Fraser, and M. A. Fischbach. 2014. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe. 16: 495-503. Williams, B. A., L. J. Grant, M. J. Gidley, and D. Mikkelsen. 2017. Gut fermentation of dietary fibres: physico-chemistry of plant cell walls and implications for health. Int. J. Mol. Sci. 18: 2203. Williams, B. A., D. Mikkelsen, B. M. Flanagan, and M. J. Gidley. 2019.“Dietary fibre”: moving beyond the“soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. J. Anim. Sci. Biotechnol. 10: 45. Wood, T. M., and K. M. Bhat. 1988. Methods for measuring cellulase activities. Methods Enzymol. 160: 87-112. Woyengo, T. A., R. Jha, E. Beltranena, and R. T. Zijlstra. 2016. In vitro digestion and fermentation characteristics of canola co-products simulate their digestion in the pig intestine. Animal. 10: 911-918. Wu, W., H. Zhou, Y. Chen, C. Li, C., Y. Guo, and J. Yuan. 2022. Optimization of compound ratio of exogenous xylanase and debranching enzymes supplemented in corn-based broiler diets using in vitro simulated gastrointestinal digestion and response surface methodology. Animals. 12: 2641. Xia, J., H. Fan, J. Yang, T. Song, L. Pang, H. Deng, Z. Ren, and J. Deng. 2022. Research progress on diarrhoea and its mechanism in weaned piglets fed a high-protein diet. J. Anim. Physiol. Anim. Nutr. 106: 1277-1287. Xie, H., P. Gao, Z.-M. Lu, F.-Z. Wang, L.-J. Chai, J.-S. Shi, H.-L. Zhang, Y. Geng, X.-J. Zhang, and Z.-H. Xu. 2023. Changes in physicochemical characteristics and metabolites in the fermentation of goji juice by Lactiplantibacillus plantarum. Food Biosci. 54: 102881. Xin, M., M. Zhao, J. Tian, and B. Li. 2023. Guidelines for in vitro simulated digestion and absorption of food. Food Frontiers. 4: 524-532. Yan, C. L., H. S. Kim, J. S. Hong, J. H. Lee, Y. G. Han, Y. H. Jin, S. W. Son, S. H. Ha, and Y. Y. Kim. 2017. Effect of dietary sugar beet pulp supplementation on growth performance, nutrient digestibility, fecal microflora, blood profiles and diarrhea incidence in weaning pigs. J. Anim. Sci. Technol. 59: 18. Yáñez-Ruiz, D. R., D. Morgavi, T. Misselbrook, M. Melle, S. Dreijere, O. Aes, and M. Sekowski. 2017. Feeding strategies to reduce methane and ammonia emissions. EIP-AGRI. Yang, Y., J. H. Park, and I. H. Kim. 2019. Effect of probiotic containing Lactobacillus plantarum on growth performance, nutrient digestibility, and fecal microbiota in weaning pigs. Can. J. Anim. Sci. 100: 205-209. Yasuda, K. 2007. Effects of inulin on iron utilization by young anemic pigs and implications for human nutrition. Cornell University. Master thesis. Ye, J, and Q. Fu. 2023. Screening of skatole-degrading bacteria and control of human fecal odor by compound bacteria. Ann. Microbiol. 73: 22. Yi, H., L. Wang, Y. Xiong, X. Wen, Z. Wang, X. Yang, K. Gao, and Z. Jiang. 2018. Effects of Lactobacillus reuteri LR1 on the growth performance, intestinal morphology, and intestinal barrier function in weaned pigs. J. Anim. Sci. 96: 2342-2351. Yin, J., and I.-H. Kim. 2019. Effects of multi-enzyme supplementation in a corn and soybean meal-based diet on growth performance, apparent digestibility, blood characteristics, fecal microbes and noxious gas emission in growing pigs. Korean J. Agric. Sci. 46: 1. Yu, Y., S. Lin, Z. Chen, B. Qin, Z. He, M. Cheng, M. Sun, and J. Sun. 2023. Bacteria-driven bio-therapy: From fundamental studies to clinical trials. Nano Today. 48: 101731. Zhang, D., H. Ji, S. Wang, Y. Liu, M. Chen, and H. Liu. 2023. Lactobacillus-driven feed fermentation regulates microbiota metabolism and reduces odor emission from the feces of pigs. mSystems. 8: e00988-23. Zhang, Y., Y. Zhang, F. Liu, Y. Mao, Y. Zhang, H. Zeng, S. Ren, L. Guo, Z. Chen, N. Hrabchenko, J. Wu, and J. Yu. 2023. Mechanisms and applications of probiotics in prevention and treatment of swine diseases. Porc. Health Manag. 9: 5. Zhang, H., N. V. Wielen, B. V. Hee, J. Wang, W. Hendriks, and M. Gilbert. 2020. Impact of fermentable protein, by feeding high protein diets, on microbial composition, microbial catabolic activity, gut health and beyond in pigs. Microorganisms. 8: 1735. Zhang, L., X. Sun, X. Lu, S. Wei, Q. Sun, L. Jin, G. Song, J. You, and F. Li. 2022. Characterization of peanut protein hydrolysate and structural identification of umami-enhancing peptides. Molecules. 27: 2853. Zhao, P. Y., and I. H. Kim. 2015. Effect of direct-fed microbial on growth performance, nutrient digestibility, fecal noxious gas emission, fecal microbial flora and diarrhea score in weanling pigs. Anim. Feed Sci. Technol. 200: 86-92. Zhao, S., L. Lv, T. Wu, Z. Feng, Q. Li, L. Lei, Z. Liu, H. Zhang, and Y. Ren. 2023. A combined pig model to determine the net absorption of volatile fatty acids in the large intestine under different levels of crude fiber. Anim. Model Exp. Med. 6: 375-380. Zhou, K., Q. Zhou, X. Han, Z. Gao, R. Peng, X. Lin, X. Cheng, and W. Zhao. 2022. In vitro digestion and fecal fermentation of polysaccharides from hawthorn and its impacts on human gut microbiota. Processes. 10: 1922. Zhou, J., J. Tu, L. Wang, L. Yang, G. Yang, S. Zhao, X. Zeng, and S. Qiao. 2022. Free amino acid-enriched diets containing rapidly but not slowly digested carbohydrate promote amino acid absorption from intestine and net fluxes across skeletal muscle of pigs. J. Nutr. 152: 2471-2482. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93633 | - |
dc.description.abstract | 精準餵飼為豬隻生產中降低成本並提高生產效益的重要策略。藉由添加飼糧添加物提高飼糧利用率,並降低豬糞臭味排放是豬隻生產過程相當重要的飼養操作。然而,動物試驗評估飼糧添加物效果成本高且效率低,無法全面分析飼糧在各階段消化的情況。相比之下,體外仿生消化(in vitro bionics digestion)技術具有減少動物使用、高效率、可重複和快速篩選的優勢,且其評估結果與動物體內法(in vivo)高度相關。本實驗室已建立三段式體外消化與發酵平台(three-stage in vitro digestion and fermentation platform),模擬飼糧在胃、小腸消化及大腸發酵的過程,並確立通用的消化條件。接下來,將尋找合適的指標,以全面評估飼糧添加物的效果。
本研究第一部分使用體外消化與發酵平台評估不同飼糧添加物。消化階段以營養分釋放量及消化率為指標,發酵階段以臭味物質、微生物酵素活性、發酵率和產氣動力學為指標。試驗一,利用非澱粉多醣酶(non-starch polysaccharase, NSPase)測試這些評估指標的適用性。結果顯示,藉由分析還原糖、游離胺基酸的釋放量以及營養分消化率,可以評估NSPase添加對提升原料和飼糧營養價值的效果。藉由分析發酵率、產氣動力學和臭味物質,可以評估NSPase添加對飼糧降解程度的影響。消化殘餘物中微生物可利用的基質越少,有助於減少臭味物質的產生。利用不同指標綜合評估飼糧添加物,有助於了解其對豬隻飼糧消化的影響,並提供適當添加濃度及改良建議。然而,NSPase在體外降解飼糧的過程中可能會產生黏性物質,因此應注意飼糧的固液比,以避免營養分釋放效果不佳的問題。試驗二,利用微生物製劑進行體內外試驗。複合型益生菌產品配合母豬餵飼試驗;以粉末或發酵液形式添加的Lactobacillus reuteri分離株R-2和Lactobacillus delbrueckii菌株配合生長豬餵飼試驗,以完成體內外添加效果之雙向評估,驗證體外評估結果之有效性。實驗結果證明,利用體外消化與發酵平台可以釐清飼糧添加物在消化與發酵階段對飼糧的作用機制。在不模擬結腸吸收的情況下,該平台也能評估其對臭味物質產生的潛在影響,並有助於篩選出能夠有效提高飼糧消化率並降低臭味排放的最佳添加濃度。然而,在評估飼糧添加物對採食量、性狀表現、免疫調控、腸道微生物代謝機制、腸道健康等方面的影響時,體外評估仍存在先天的侷限性。飼糧添加物的實際效果仍需要透過動物試驗來驗證。 本研究第二部分延續前一部分試驗二添加不同乳酸菌的餵飼試驗,進一步探討吲哚類化合物的形成途徑。收集豬隻盲腸內容物及糞便,利用LC-MS測定吲哚類化合物的濃度,並結合酵素動力參數進行分析,以釐清微生物代謝色胺酸(tryptophan, Trp)的機制。結果顯示,當Trp含量較低時,可被代謝成吲哚(indole)和吲哚-3-丙酮酸(indole-3-pyruvate, IPyA);當Trp含量較高時,較可能以Trp →色胺(tryptamine)→ 吲哚-3-乙醛(indole-3-acetaldehyde, IAAld)→ 吲哚-3-乙酸(indole-3-acetate, IAA)→ 糞臭素(skatole)途徑產生糞臭素。因此,盡可能減少消化殘餘物中的Trp含量,可避免Trp被代謝成臭味檢測閾值(odor detection threshold)極低的糞臭素,進一步減少臭味排放。 綜上所述,本研究確定了適合評估飼糧添加物對飼糧消化與臭味排放的指標。體內外雙向評估試驗的結果顯示,進行體外試驗可以探討飼糧添加物對飼糧的作用機制,在一定程度上可以解釋體內試驗反映的結果。希望利用體外消化評估與精簡的動物試驗,完成「預測—偵測—決策」的工作。 | zh_TW |
dc.description.abstract | Precision nutrition is a crucial strategy in pig production for reducing cost and enhancing production efficiency. Improving feed utilization and reducing pig fecal odor emissions through supplementing feed additives is an important feeding operation in the pig production process. However, evaluating the effects of feed additives using animal experiments is costly and inefficient, and does not allow for a comprehensive analysis of feed digestion at various stages. In contrast, in vitro bionics digestion offers the advantages of reduced animal use, high efficiency, reproducibility, and rapid screening, with the results being highly correlated with the in vivo method. A three-stage in vitro digestion and fermentation platform has been established in our laboratory to simulate the process of feed digestion in the stomach, small intestine and fermentation in the large intestine, and to establish generalized digestion conditions. The next step is to find suitable parameters to fully evaluate the effects of feed additives.
In the first part of this study, different feed additives were evaluated using in vitro digestion and fermentation platform. Nutrient release and digestibility were measured in the digestion phase, while odorous compounds, microbial enzyme activity, fermentability and gas production kinetics were measured in the fermentation phase. Trial 1, the applicability of the parameters was tested using non-starch polysaccharidases (NSPase). The results showed that by analyzing the release of reducing sugar, free amino acids, and nutrient digestibility, the effect of NSPase supplementation on enhancing the nutritional value of raw materials and feeds could be evaluated. Additionally, by analyzing fermentability, gas production kinetics and odorous compounds, the impact of NSPase supplementation on feed degradation could be evaluated. The less substrate available to the microorganisms in the digested residue, the fewer odorous compounds are produced. A comprehensive evaluation of feed additives using different parameters can help to understand their impact on pig feed digestion and provide recommendations for appropriate supplemental levels and modifications. However, the in vitro degradation of feed by NSPase may result in the production of sticky substances. Therefore, attention should be paid to the solid-liquid ratio of the feed to avoid poor nutrient release. Trial 2, using microbial addtives in both in vivo and in vitro experiments. A probiotic complex product was supplemented in the sow diet; Lactobacillus reuteri R2 and Lactobacillus delbrueckii strains were supplemented either in powder or fermentation broth in the growing pig diet. Conducting a bidirectional evaluation of the supplemental effects in vitro and in vivo, verifying the reliability of the in vitro results. The experimental results indicated that using the in vitro digestion and fermentation platform could clarify the mechanisms of feed additives during the digestion and fermentation stages. Without simulating colonic absorption, the platform could also evaluate its potential impact on the production of odorous compounds. It assisted in screening out optimal levels of feed additives that can enhance feed digestibility and reduce odor emissions. However, in vitro evaluations have inherent limitations when evaluating the effects of feed additives on feed intake, performance, immune regulation, intestinal microbial metabolism, and gut health. The actual effects of feed additives still require verification through animal experiments. In the second part of this study, it continued the feeding experiments with different Lactobacillus additives from the previous stage to further investigate the pathways of indolic compounds formation. Cecal contents and feces of pigs were collected, and the concentrations of indolic compounds were analyzed using LC-MS, combined with enzyme kinetic parameters to clarify the microbial metabolism mechanism of tryptophan (Trp). The results showed that when the Trp concentration is low, it can be metabolized into indole and indole-3-pyruvate (IPyA); when the Trp concentration is high, it is more likely to follow the pathway of Trp → tryptamine → indole-3-acetaldehyde (IAAld) → indole-3-acetate (IAA) → skatole to produce skatole. Therefore, minimizing the Trp concentration in the digested residues can prevent Trp from being metabolized into skatole, which has a very low odor detection threshold, thereby further reducing odor emissions. In conclusion, this study identified suitable parameters for evaluating the effects of feed additives on feed digestion and odor emissions. The results of bidirectional in vitro and in vivo evaluations indicated that conducting in vitro experiments could elucidate the mechanisms of feed additives on feed, to some extent explaining the results reflected in in vivo experiments. We aim to use streamlined animal experiments alongside in vitro digestion evaluations to complete the "predict-detect-decide" process. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:26:33Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-06T16:26:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝辭 I
摘要 II Abstract IV 目次 VII 圖次 X 表次 XII 前言 1 第一章 文獻探討 2 一、飼糧添加物效果評估的困難與挑戰 2 (一) 動物體內法(in vivo)評估 2 (二) 體外仿生消化(in vitro bionics digestion)評估 3 二、 體外消化與發酵平台評估指標之建立 6 (一) 體外消化評估指標設定 6 (二) 體外發酵評估指標設定 8 三、 非澱粉多醣酶與益生菌豬隻飼養之應用 17 (一) 非澱粉多醣酶(non-starch polysaccharase, NSPase) 17 (二) 益生菌(probiotics) 21 四、 腸道微生物代謝色胺酸之途徑 26 (一) 吲哚與糞臭素之形成途徑 27 (二) 影響吲哚與糞臭素生成之因素 29 第二章 研究目的 34 第三章 研究架構 35 第四章 材料與方法 37 一、 試驗使用之飼糧添加物 37 (一) 非澱粉多醣酶 37 (二) 複合型益生菌 38 (三) 乳酸菌(Lactobacillus sp.)添加劑 38 二、 三段式體外消化與發酵平台 39 (一) 消化基質近似分析 39 (二) 體外消化流程與試驗 46 (三) 體外消化產物分析 61 (四) 體外消化殘餘物分析 66 (五) 體外發酵流程與試驗 67 (六) 體外發酵產物分析 73 (七) 體外發酵殘餘物分析 83 三、 餵飼試驗效果驗證 85 (一) 豬隻糞便採樣 85 (二) 樣品處理與分析項目 85 四、 吲哚類化合物生成途徑之探討 89 五、 統計分析 90 第五章 結果與討論 91 一、 NSPase產品對原料降解能力測定 91 (一) 玉米 91 (二) 大麥 95 (三) 小麥 97 (四) 大豆粕 99 (五) 可溶性玉米酒粕(DDGS) 101 二、 NSPase產品添加對肥育豬飼糧消化與腸道發酵之整體影響評估 104 (一) 飼糧營養分釋放效果 104 (二) 飼糧營養分消化率與發酵率 109 (三) 飼糧消化殘餘物發酵產氣動力學 111 (四) 臭味物質與酵素活性 114 三、 複合型益生菌產品添加對懷孕後期母豬料消化與腸道發酵之整體影響評估 120 (一) 飼糧營養分釋放效果 120 (二) 飼糧營養分消化率與發酵率 122 (三) 飼糧消化殘餘物發酵產氣動力學 124 (四) 臭味物質與微生物酵素活性 127 四、 不同乳酸菌添加對生長豬飼糧消化與腸道發酵之整體影響評估 133 (一) 飼糧營養分釋放效果及消化率 133 (二) 飼糧消化殘餘物之發酵率和產氣動力學 139 (三) 臭味物質與酵素活性 144 五、 吲哚類化合物生成途徑分析 150 第六章 結論 153 第七章 參考文獻 154 | - |
dc.language.iso | zh_TW | - |
dc.title | 體外消化與發酵平台應用於豬隻不同飼糧添加物之評估 | zh_TW |
dc.title | Evaluation of in vitro digestion and fermentation platform for different feed additives for pigs | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 洪靖崎;蕭士翔;柯孟韡 | zh_TW |
dc.contributor.oralexamcommittee | Ching-Chi Hung;Shih-Hsiang Hsiao;Meng-Wei Ke | en |
dc.subject.keyword | 體外消化,體外發酵,飼糧添加物,臭味排放,指標評估, | zh_TW |
dc.subject.keyword | in vitro digestion,in vitro fermentation,feed additives,odor emissions,parameter evaluation, | en |
dc.relation.page | 170 | - |
dc.identifier.doi | 10.6342/NTU202402345 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-07-29 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
dc.date.embargo-lift | 2029-07-27 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.77 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。