請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93628完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施博仁 | zh_TW |
| dc.contributor.advisor | Po-Jen Shih | en |
| dc.contributor.author | 陳玗汶 | zh_TW |
| dc.contributor.author | Yu-Wen Chen | en |
| dc.date.accessioned | 2024-08-06T16:23:55Z | - |
| dc.date.available | 2024-08-07 | - |
| dc.date.copyright | 2024-08-06 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-26 | - |
| dc.identifier.citation | 1. Tham, Y.-C., et al., Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology, 2014. 121(11): p. 2081-2090.
2. Thomas, S.-M., et al., The effectiveness of teleglaucoma versus in-patient examination for glaucoma screening: a systematic review and meta-analysis. PloS one, 2014. 9(12): p. e113779. 3. Eghrari, A.O., S.A. Riazuddin, and J.D. Gottsch, Overview of the cornea: structure, function, and development. Progress in molecular biology and translational science, 2015. 134: p. 7-23. 4. DelMonte, D.W. and T. Kim, Anatomy and physiology of the cornea. Journal of Cataract & Refractive Surgery, 2011. 37(3): p. 588-598. 5. Gipson, I.K., Age-related changes and diseases of the ocular surface and cornea. Invest Ophthalmol Vis Sci, 2013. 54(14): p. ORSF48-53. 6. Munjal, A. and E.J. Kaufman, Arcus senilis, in StatPearls [Internet]. 2023, statpearls publishing. 7. Willoughby, C.E., et al., Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function–a review. Clinical & Experimental Ophthalmology, 2010. 38: p. 2-11. 8. Moazed, K.T. and K.T. Moazed, Iris anatomy. The Iris: understanding the essentials, 2020: p. 15-29. 9. 蔡岸圻, 當代醫藥法規月刊第131期, 2021: p. pp. 26-27. 10. Tamm, E.R. and E. Lütjen-Drecoll, Ciliary body. Microscopy Research and Technique, 1996. 33(5): p. 390-439. 11. Cunha-Vaz, J., The blood-ocular barriers. Survey of ophthalmology, 1979. 23(5): p. 279-296. 12. Milston, R., M.C. Madigan, and J. Sebag, Vitreous floaters: etiology, diagnostics, and management. Survey of ophthalmology, 2016. 61(2): p. 211-227. 13. Ferreira, J.A., et al., Numerical simulation of aqueous humor flow: From healthy to pathologic situations. Applied Mathematics and Computation, 2014. 226: p. 777-792. 14. Aziz, K. and D.S. Friedman, Tonometers—which one should I use? Eye, 2018. 32(5): p. 931-937. 15. Moses, R.A., The Goldmann applanation tonometer. American journal of ophthalmology, 1958. 46(6): p. 865-869. 16. Ambrósio Jr, R., et al., Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Revista Brasileira de Oftalmologia, 2013. 72: p. 99-102. 17. 青光眼. 高雄榮民總醫院眼科部 2024; Available from: https://org.vghks.gov.tw/oph/News_Content.aspx?n=08ADECCA86537C23&sms=5D2CDAEC8F5F19BB&s=C19FB470EFA66111. 18. Mursch-Edlmayr, A.S., et al., Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Transl Vis Sci Technol, 2020. 9(2): p. 55. 19. Jonas, J.B., et al., Central corneal thickness correlated with glaucoma damage and rate of progression. Invest Ophthalmol Vis Sci, 2005. 46(4): p. 1269-74. 20. Saxena, A., et al., A Glaucoma Detection using Convolutional Neural Network.pdf. ICESC 2020: p. pp. 815-820. 21. 洪大展. 無感的青光眼---視野常無感的逐漸喪失. 郭綜合醫院 2017; Available from: https://www.kgh.com.tw/Dep/Article/142/10. 22. Thakur, N. and M. Juneja, Classification of glaucoma using hybrid features with machine learning approaches. Biomedical Signal Processing and Control, 2020. 62. 23. Gagnon, M.-M., et al., Corneal endothelial cell density in glaucoma. Cornea, 1997. 16(3): p. 314-318. 24. Janson, B.J., et al., Glaucoma-associated corneal endothelial cell damage: A review. Surv Ophthalmol, 2018. 63(4): p. 500-506. 25. McManes, A. Glaucoma causes: What we know about intraocular pressure (IOP) and optic nerve damage. ALL ABOUT VISION 2023. 26. Wu, N., Y. Chen, and X. Sun, Association between ocular biomechanics measured with Corvis ST and glaucoma severity in patients with untreated primary open angle glaucoma. Translational Vision Science & Technology, 2022. 11(6): p. 10-10. 27. Chou, C.-C., et al., Corvis Biomechanical Factor facilitates the detection of primary angle closure glaucoma. Translational Vision Science & Technology, 2022. 11(10): p. 7-7. 28. Li, L., et al., A Large-Scale Database and a CNN Model for Attention-Based Glaucoma Detection. IEEE Trans Med Imaging, 2020. 39(2): p. 413-424. 29. An, G., et al., Comparison of Machine-Learning Classification Models for Glaucoma Management. J Healthc Eng, 2018. 2018: p. 6874765. 30. Zheng, C., et al., Artificial intelligence in glaucoma. Curr Opin Ophthalmol, 2019. 30(2): p. 97-103. 31. Koehrsen, W. Random Forest Simple Explanation. Medium 2017; Available from: https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d. 32. Patle, A. and D.S. Chouhan. SVM kernel functions for classification. in 2013 International conference on advances in technology and engineering (ICATE). 2013. IEEE. 33. Luque, A., et al., The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 2019. 91: p. 216-231. 34. Fawcett, T., An introduction to ROC analysis. Pattern recognition letters, 2006. 27(8): p. 861-874. 35. Zill, D.G., Advanced engineering mathematics. 2020: Jones & Bartlett Learning. 36. Schönefeld, V., Spherical harmonics. Computer Graphics and Multimedia Group, Technical Note. RWTH Aachen University, Germany, 2005. 18. 37. Liao, Y.-C., Analysis of Corneal Air-Puff Test and Tracking of Keratoconus Development. 2023, National Taiwan University. 38. Liu, Z., A.J. Huang, and S.C. Pflugfelder, Evaluation of corneal thickness and topography in normal eyes using the Orbscan corneal topography system. British journal of ophthalmology, 1999. 83(7): p. 774-778. 39. Cooper, L.L. and F.S. Shore, The effects of data and graph type on concepts and visualizations of variability. Journal of statistics education, 2010. 18(2). 40. Mishra, P., et al., Application of student's t-test, analysis of variance, and covariance. Annals of cardiac anaesthesia, 2019. 22(4): p. 407-411. 41. Jung, Y., H.-Y.L. Park, and C.K. Park, Association between corneal deformation amplitude and posterior pole profiles in primary open-angle glaucoma. Ophthalmology, 2016. 123(5): p. 959-964 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93628 | - |
| dc.description.abstract | 隨著青光眼成為高齡化社會中的主要視覺健康問題,更準確的早期診斷成為當前重要的研究課題。本研究旨在探討罹患青光眼對角膜應力表現的影響,以及角膜參數與青光眼判讀的相關性,以提高早期診斷的準確性和效率。研究使用了由Corvis® ST眼壓機拍攝的角膜影像,這些數據來自青光眼患者和正常受試者,並且收集自多個醫療機構的眼科門診。首先我們對角膜影像進行初步的處理,將影像二值化後對角膜上緣進行曲線擬合。隨後,將曲線進行Legendre展開並依照模態特徵建立參數,比較青光眼患者與正常受試者之間的差異,並使用統計方法找出最具顯著性的參數,最後利用機器學習作分類驗證。結果顯示,青光眼患者的角膜參數與正常受試者存在顯著差異(p值小於0.05)。使用機器學習模型分類的準確率達到82%以上。另外,開角型和閉鎖型青光眼患者之間在靠近鼻側和顳側的角膜參數也存在顯著差異(p值亦小於0.05)。使用機器學習模型分類的準確率則可達到70%以上。本研究證實了角膜參數在青光眼輔助診斷中的潛力。通過結合影像處理技術和機器學習分析,我們能夠提高青光眼早期診斷的準確性和效率。未來的研究可以進一步優化這些方法,並探討更多角膜參數的應用,以實現更全面的診斷系統。這對於應對高齡化社會中日益增長的青光眼患者具有重要意義。 | zh_TW |
| dc.description.abstract | As glaucoma becomes a major visual health issue in an aging society, more accurate early diagnosis has become a crucial research topic. This study aims to investigate the impact of glaucoma on corneal stress performance and the correlation between corneal parameters and glaucoma diagnosis, to improve the accuracy and efficiency of early diagnosis. The study utilized corneal imaging data captured by the Corvis® ST tonometer, collected from glaucoma patients and normal subjects from multiple ophthalmology clinics. First, we performed initial processing of the corneal images by binarizing the images and fitting curves to the upper edge of the cornea. Then, we expanded the curves using Legendre polynomials and established parameters based on modal characteristics to compare differences between glaucoma patients and normal subjects. We used statistical methods to identify the most significant parameters and finally used machine learning for classification validation. The results showed significant differences in corneal parameters between glaucoma patients and normal subjects (p-value < 0.05). The accuracy of the machine learning model classification reached over 82%. Additionally, significant differences were found in corneal parameters near the nasal and temporal sides between open-angle and closed-angle glaucoma patients (p-value also < 0.05). The classification accuracy of the machine learning model for these parameters reached over 70%. This study confirmed the potential of corneal parameters in assisting the diagnosis of glaucoma. By combining image processing techniques and machine learning analysis, we can improve the accuracy and efficiency of early glaucoma diagnosis. Future research can further optimize these methods and explore the application of additional corneal parameters to achieve a more comprehensive diagnostic system. This is of significant importance in addressing the growing number of glaucoma patients in an aging society. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:23:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-06T16:23:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 i
中文摘要 ii ABSTRACT iii 目 次 iv 圖 次 vi 表 次 xii 第一章 緒論 1 1.1 研究動機 2 1.2 眼睛結構介紹 3 1.2.1 角膜 3 1.2.2 虹膜與睫狀體 5 1.2.3 前房、後房、房水液及玻璃體 6 1.3 研究問題與其重要性 8 第二章 文獻回顧 10 2.1 眼內壓的量測 10 2.1.1 壓平式眼壓計 12 2.1.2 Corvis® ST 12 2.2 青光眼的生理研究 14 2.3 機器學習使用於青光眼診斷研究 17 2.3.1 隨機森林 19 2.3.2 支援向量機 20 2.3.3 神經網路 21 2.3.4 機器學習效能的評估指標 22 第三章 研究方法 24 3.1 受試者角膜影像資訊蒐集與處理 24 3.2 角膜噴氣試驗的分析與模態展開係數 30 3.3 參數選擇及機器學習驗證 38 第四章 研究結果 42 4.1 青光眼角膜參數之驗證 42 4.2 閉鎖型青光眼與正常受試者之簡化分析與特徵 46 4.3 開角型青光眼與正常受試者之簡化分析與特徵 55 4.4 開角型青光眼與閉鎖型青光眼之簡化分析與特徵 66 第五章 討論、結論與未來展望 74 5.1 討論 74 5.2 結論 77 5.3 未來展望 78 參考文獻 80 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 影像處理 | zh_TW |
| dc.subject | 角膜參數 | zh_TW |
| dc.subject | 青光眼 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 噴氣試驗 | zh_TW |
| dc.subject | glaucoma | en |
| dc.subject | image processing | en |
| dc.subject | air-puff test | en |
| dc.subject | corneal parameters | en |
| dc.subject | machine learning | en |
| dc.title | 角膜振動特徵於青光眼之輔助診斷 | zh_TW |
| dc.title | Corneal Vibration Characteristics in The Auxiliary Diagnosis of Glaucoma | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周建志;劉進興 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Chih Chou;Chin-Hsin Liu | en |
| dc.subject.keyword | 青光眼,角膜參數,機器學習,影像處理,噴氣試驗, | zh_TW |
| dc.subject.keyword | glaucoma,corneal parameters,machine learning,image processing,air-puff test, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202401736 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2026-08-01 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2026-08-01 | 7.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
