Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93606
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁文傑zh_TW
dc.contributor.advisorMan-Kit Leungen
dc.contributor.author張中瑞zh_TW
dc.contributor.authorChung-Jui Changen
dc.date.accessioned2024-08-06T16:13:53Z-
dc.date.available2024-08-07-
dc.date.copyright2024-08-06-
dc.date.issued2024-
dc.date.submitted2024-06-14-
dc.identifier.citation1. Bernanose, A.; Comte, M.; Vouaux, P., Sur un nouveau mode d'émission lumineuse chez certains composés organiques. J. Chim. Phys. 1953, 50, 64-68.
2. Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in organic crystals. J. Chem. Phys. 1963, 38, 2042-2043.
3. Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913-915.
4. Baldo, M. A.; O’Brien, D. F.; Thompson, M. E.; Forrest, S. R., Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 1999, 60, 14422-14428.
5. Zou, S.-J.; Shen, Y.; Xie, F.-M.; Chen, J.-D.; Li, Y.-Q.; Tang, J.-X., Recent advances in organic light-emitting diodes: toward smart lighting and displays. Materials Chemistry Frontiers 2020, 4, 788-820.
6. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395, 151-154.
7. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234-238.
8. Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C., Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 2011, 98.
9. Zeng, W.; Lai, H.-Y.; Lee, W.-K.; Jiao, M.; Shiu, Y.-J.; Zhong, C.; Gong, S.; Zhou, T.; Xie, G.; Sarma, M.; Wong, K.-T.; Wu, C.-C.; Yang, C., Achieving nearly 30% external quantum efficiency for orange–red organic light emitting diodes by employing thermally activated delayed fluorescence emitters composed of 1,8-naphthalimide-acridine hybrids. Adv. Mater. 2018, 30, 1704961.
10. Yao, L.; Yang, B.; Ma, Y., Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics. Sci. China Chem. 2014, 57, 335-345.
11. Baluschev, S.; Yakutkin, V.; Miteva, T.; Avlasevich, Y.; Chernov, S.; Aleshchenkov, S.; Nelles, G.; Cheprakov, A.; Yasuda, A.; Müllen, K.; Wegner, G., Blue-green up-conversion: noncoherent excitation by NIR light. Angew. Chem. Int. Ed. 2007, 46, 7693-7696.
12. Baluschev, S.; Miteva, T.; Yakutkin, V.; Nelles, G.; Yasuda, A.; Wegner, G., Up-conversion fluorescence: noncoherent excitation by sunlight. Phys. Rev. Lett. 2006, 97, 143903.
13. Monguzzi, A.; Tubino, R.; Hoseinkhani, S.; Campione, M.; Meinardi, F., Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. Phys. Chem. Chem. Phys. 2012, 14, 4322-4332.
14. Mahato, P.; Monguzzi, A.; Yanai, N.; Yamada, T.; Kimizuka, N., Fast and long-range triplet exciton diffusion in metal–organic frameworks for photon upconversion at ultralow excitation power. Nat. Mater 2015, 14, 924-930.
15. Wu, W.; Sun, J.; Ji, S.; Wu, W.; Zhao, J.; Guo, H., Tuning the emissive triplet excited states of platinum(ii) Schiff base complexes with pyrene, and application for luminescent oxygen sensing and triplet–triplet-annihilation based upconversions. Dalton Trans. 2011, 40, 11550-11561.
16. Gray, V.; Dzebo, D.; Abrahamsson, M.; Albinsson, B.; Moth-Poulsen, K., Triplet–triplet annihilation photon-upconversion: towards solar energy applications. Phys. Chem. Chem. Phys. 2014, 16, 10345-10352.
17. Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F., Upconversion luminescent materials: advances and applications. Chem. Rev. 2015, 115, 395-465.
18. Huang, Z.; Li, X.; Yip, B. D.; Rubalcava, J. M.; Bardeen, C. J.; Tang, M. L., Nanocrystal size and quantum yield in the upconversion of green to violet light with CdSe and anthracene derivatives. Chem. Mater. 2015, 27, 7503-7507.
19. Adachi, C.; Baldo, M. A.; Forrest, S. R.; Lamansky, S.; Thompson, M. E.; Kwong, R. C., High-efficiency red electrophosphorescence devices. Appl. Phys. Lett. 2001, 78, 1622-1624.
20. Xiang, H.-F.; Chan, S.-C.; Wu, K. K.-Y.; Che, C.-M.; Lai, P. T., High-efficiency red electrophosphorescence based on neutral bis(pyrrole)-diimine platinum(ii) complex. Chem. Commun. 2005, 1408-1410.
21. Fukagawa, H.; Shimizu, T.; Hanashima, H.; Osada, Y.; Suzuki, M.; Fujikake, H., Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes. Adv. Mater. 2012, 24, 5099-5103.
22. Kim, K.-H.; Liao, J.-L.; Lee, S. W.; Sim, B.; Moon, C.-K.; Lee, G.-H.; Kim, H. J.; Chi, Y.; Kim, J.-J., Crystal organic light-emitting diodes with perfectly oriented non-doped Pt-based emitting layer. Adv. Mater. 2016, 28, 2526-2532.
23. Chen, W.-C.; Sukpattanacharoen, C.; Chan, W.-H.; Huang, C.-C.; Hsu, H.-F.; Shen, D.; Hung, W.-Y.; Kungwan, N.; Escudero, D.; Lee, C.-S.; Chi, Y., Modulation of solid-state aggregation of square-planar Pt(II) based emitters: enabling highly efficient deep-red/near infrared electroluminescence. Adv. Funct. Mater. 2020, 30, 2002494.
24. Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J., Different Schiff bases—structure, importance and classification. Molecules 2022, 27, 787.
25. Xavier, A.; Srividhya, N., Synthesis and study of Schiff base ligands. IOSR j. appl. chem. 2014, 7, 06-15.
26. Cordes, E.; Jencks, W., On the mechanism of Schiff base formation and hydrolysis. J. Am. Chem. Soc. 1962, 84, 832-837.
27. Zhang, J.; Xu, L.; Wong, W.-Y., Energy materials based on metal Schiff base complexes. Coord. Chem. Rev. 2018, 355, 180-198.
28. Che, C.-M.; Chan, S.-C.; Xiang, H.-F.; Chan, M. C. W.; Liu, Y.; Wang, Y., Tetradentate Schiff base platinum(ii) complexes as new class of phosphorescent materials for high-efficiency and white-light electroluminescent devices. Chem. Commun. 2004, 1484-1485.
29. Kagatikar, S.; Sunil, D., Schiff bases and their complexes in organic light emitting diode application. J. Electron. Mater. 2021, 50, 6708-6723.
30. Che, C.-M.; Kwok, C.-C.; Lai, S.-W.; Rausch, A. F.; Finkenzeller, W. J.; Zhu, N.; Yersin, H., Photophysical properties and OLED applications of phosphorescent platinum(II) Schiff base complexes. Chem. Eur. J. 2010, 16, 233-247.
31. Parker, C. A.; Hatchard, C. G.; Bowen, E. J., Delayed fluorescence from solutions of anthracene and phenanthrene. Proc. Math. Phys. Eng. Sci. 1962, 269, 574-584.
32. Singh-Rachford, T. N.; Castellano, F. N., Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 2010, 254, 2560-2573.
33. Islangulov, R. R.; Kozlov, D. V.; Castellano, F. N., Low power upconversion using MLCT sensitizers. Chem. Commun. 2005, 3776-3778.
34. Wu, W.; Ji, S.; Wu, W.; Shao, J.; Guo, H.; James, T. D.; Zhao, J., Ruthenium(II)–polyimine–coumarin light-harvesting molecular arrays: design rationale and application for triplet–triplet-annihilation-based upconversion. Eur. J. Chem. 2012, 18, 4953-4964.
35. Ji, S.; Wu, W.; Wu, W.; Guo, H.; Zhao, J., Ruthenium (II) polyimine complexes with a long‐lived 3 IL excited state or a 3 MLCT/3 IL equilibrium: efficient triplet sensitizers for low‐power upconversion. Angew. Chem. Int. Ed. 2011, 7, 1626-1629.
36. Ji, S.; Guo, H.; Wu, W.; Wu, W.; Zhao, J., Ruthenium(II) polyimine–coumarin dyad with non-emissive 3IL excited state as sensitizer for triplet–triplet annihilation based upconversion. Angew. Chem. Int. Ed. 2011, 50, 8283-8286.
37. Wu, W.; Sun, J.; Cui, X.; Zhao, J., Observation of the room temperature phosphorescence of Bodipy in visible light-harvesting Ru(ii) polyimine complexes and application as triplet photosensitizers for triplet–triplet-annihilation upconversion and photocatalytic oxidation. J. Mater. Chem. C 2013, 1, 4577-4589.
38. Yi, X.; Zhao, J.; Wu, W.; Huang, D.; Ji, S.; Sun, J., Rhenium(i) tricarbonyl polypyridine complexes showing strong absorption of visible light and long-lived triplet excited states as a triplet photosensitizer for triplet–triplet annihilation upconversion. Dalton Trans. 2012, 41, 8931-8940.
39. Yi, X.; Zhao, J.; Sun, J.; Guo, S.; Zhang, H., Visible light-absorbing rhenium(i) tricarbonyl complexes as triplet photosensitizers in photooxidation and triplet–triplet annihilation upconversion. Dalton Trans. 2013, 42, 2062-2074.
40. Sun, J.; Wu, W.; Guo, H.; Zhao, J., Visible-light harvesting with cyclometalated iridium(III) complexes having long-lived 3IL excited states and their application in triplet–triplet-annihilation based upconversion. Eur. J. Inorg. Chem. 2011, 2011, 3165-3173.
41. Sun, J.; Wu, W.; Zhao, J., Long-lived room-temperature deep-red-emissive intraligand triplet excited state of naphthalimide in cyclometalated ir(III) complexes and its application in triplet-triplet annihilation-based upconversion. Eur. J. Chem. 2012, 18, 8100-8112.
42. Hissler, M.; Connick, W. B.; Geiger, D. K.; McGarrah, J. E.; Lipa, D.; Lachicotte, R. J.; Eisenberg, R., Platinum diimine bis(acetylide) complexes:  synthesis, characterization, and luminescence properties. Inorg. Chem. 2000, 39, 447-457.
43. Sun, H.; Guo, H.; Wu, W.; Liu, X.; Zhao, J., Coumarin phosphorescence observed with N⁁NPt(ii) bisacetylide complex and its applications for luminescent oxygen sensing and triplet–triplet-annihilation based upconversion. Dalton Trans. 2011, 40, 7834-7841.
44. Monguzzi, A.; Tubino, R.; Meinardi, F., Upconversion-induced delayed fluorescence in multicomponent organic systems: role of Dexter energy transfer. Phys. Rev. B 2008, 77, 155122.
45. Guo, H.; Li, Q.; Ma, L.; Zhao, J., Fluorene as π-conjugation linker in N^N Pt(ii) bisacetylide complexes and their applications for triplet–triplet annihilation based upconversion. J. Mater. Chem. 2012, 22, 15757-15768.
46. Guo, H.; Qin, H.; Chen, H.; Sun, H.; Zhao, J., Phenylacetylide ligand mediated tuning of visible-light absorption, room temperature phosphorescence lifetime and triplet–triplet annihilation based up-conversion of a diimine Pt(II) bisacetylide complex. Dyes Pigm. 2013, 99, 908-915.
47. Liu, L.; Huang, D.; Draper, S. M.; Yi, X.; Wu, W.; Zhao, J., Visible light-harvesting trans bis(alkylphosphine) platinum(ii)-alkynyl complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion. Dalton Trans. 2013, 42, 10694-10706.
48. Zhong, F.; Zhao, J., An N^N platinum(II) bis(acetylide) complex with naphthalimide and pyrene ligands: synthesis, photophysical properties, and application in triplet–triplet annihilation upconversion. Eur. J. Inorg. Chem. 2017, 2017, 5196-5204.
49. Sripathy, K.; MacQueen, R. W.; Peterson, J. R.; Cheng, Y. Y.; Dvořák, M.; McCamey, D. R.; Treat, N. D.; Stingelin, N.; Schmidt, T. W., Highly efficient photochemical upconversion in a quasi-solid organogel. J. Mater. Chem. C 2015, 3, 616-622.
50. Xun, Z.; Zeng, Y.; Chen, J.; Yu, T.; Zhang, X.; Yang, G.; Li, Y., Pd–porphyrin oligomers sensitized for green-to-blue photon upconversion: the more the better? Eur. J. Chem. 2016, 22, 8654-8662.
51. Gao, C.; Prasad, S. K. K.; Zhang, B.; Dvořák, M.; Tayebjee, M. J. Y.; McCamey, D. R.; Schmidt, T. W.; Smith, T. A.; Wong, W. W. H., Intramolecular versus intermolecular triplet fusion in multichromophoric photochemical upconversion. J. Phys. Chem. C 2019, 123, 20181-20187.
52. Penconi, M.; Ortica, F.; Elisei, F.; Gentili, P. L., New molecular pairs for low power non-coherent triplet–triplet annihilation based upconversion: dependence on the triplet energies of sensitizer and emitter. J. Lumin. 2013, 135, 265-270.
53. Bacchi, A.; Carcelli, M.; Gabba, L.; Ianelli, S.; Pelagatti, P.; Pelizzi, G.; Rogolino, D., Syntheses, characterization and X-ray structure of palladium(II) and nickel(II) complexes of tetradentate pyrrole containing ligands. Inorg. Chim. Acta 2003, 342, 229-235.
54. D’Andrade, B. W.; Datta, S.; Forrest, S. R.; Djurovich, P.; Polikarpov, E.; Thompson, M. E., Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Org. Electron. 2005, 6, 11-20.
55. Merkel, P. B.; Dinnocenzo, J. P., Low-power green-to-blue and blue-to-UV upconversion in rigid polymer films. J. Lumin. 2009, 129, 303-306.
56. Jiang, X.; Zhu, N.; Zhao, D.; Ma, Y., New cyclometalated transition-metal based photosensitizers for singlet oxygen generation and photodynamic therapy. Sci. China Chem. 2016, 59, 40-52.
57. Adam, W.; Ahrweiler, M.; Sauter, M.; Schmiedeskamp, B., Oxidation of indoles by singlet oxygen and dimethyldioxirane: Isolation of indole dioxetanes and epoxides by stabilization through nitrogen acylation. Tetrahedron Lett. 1993, 34, 5247-5250.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93606-
dc.description.abstract磷光有機發光二極體是OLED領域中相當常見的一類化合物。本篇論文利用含有吡咯(Pyrrole)及其衍生物的醛類和一級氨在溫和的酸催化下合成希夫鹼的配位基,此類配位基具有製備和純化相當容易的優勢。透過和過度金屬鈀和鉑配位,在重金屬效應的幫助下得以進行磷光放光。我們成功合成出一系列希夫鹼相關衍生物的金屬錯合物分子。此外,透過將苯環及吡咯分別替換為萘(Naphthalene)及吲哚(Indole),對配位基的不同位置進行苯環的共振延長,其金屬螯合物的放光波長會有不同程度的紅移。吡咯錯合物之放光多落在680奈米的紅光區段,且能夠被固化於高分子薄膜中進行薄膜態的放光。而含吲哚基團的鉑錯合物甚至可達到900奈米的近紅外光區段。所有材料熱裂解溫度皆大於攝氏300度,具有不錯的熱穩定性。
除了放光特性外,以吡咯基團為配基的金屬化合物具有和9,10-二苯蒽(9,10-Diphenylanthracene, DPA)進行三重態-三重態湮滅光子上轉換 (TTA-UC)的能力,可扮演光敏劑的角色,將所吸收的綠光轉移至受體引發TTA現象,而放出更高能量的藍光。本實驗成功合成出四種能夠和DPA進行TTA-UC的分子,Ph-Py-Pt, Ph-Py-Pd, Na-Py-Pt, 及Na-Py-Pd。其中,以Na-Py-Pd具備最好的光敏劑特性。其具有16.1%的QYUC。Ph-Py-Pt 則具備最大之淬息常數4.7x 109 M-1s-1。
最終,透過密度泛函理論,配合X-ray單晶繞射分析,我們推論其配基間的非平面扭轉振動模式是降低其量子效率的主因,因此,未來進行材料設計上可透過成環的概念設計分子來增加量子效率。由於已知悉共振延長對光色紅移效果的影響,可在未來深紅光及近紅外光磷光材料的設計上,提供光色修飾的構想。
zh_TW
dc.description.abstractA series of Schiff base ligands were synthesized by combining pyrrole and benzene moiety, and their corresponding Pd(II) and Pt(II) complexes chelation was accomplished. As the replacement by naphthalene and indole group, the phosphorescence emission performed a red-shift to a different extent. The conjugation extension of benzene moiety caused a 10 nm red shift, while the indole subunit moved the phosphorescence emission from deep-red to NIR windows. Although the PLQY was relatively low due to vibrational relaxation, the extension concept gave an idea to the deep-red NIR phosphorescence emitter design. Furthermore, the pyrrole-containing complexes exhibit their potential as a triplet sensitizer with 9,10-Diphenylanthracene (DPA) to demonstrate the triple-triplet up-conversion (TTAUC) phenomenon. Na-Py-Pd showed the highest QYUC, 16.1%, and Ph-Py-Pt performed the highest bimolecular quenching constants, 4.7x 109 M-1s-1. Moreover, Ph-In-Pt demonstrateses the potential for a singlet oxygen generation sensitizer.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:13:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-06T16:13:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
謝辭 II
摘要 III
Abstract IV
目次 V
圖次 VII
表次 X
化合物名稱與結構 XI
第一章 緒論 1
1.1有機發光二極體起源 1
1.2有機分子發光機制 2
1.3機發光二極體元件 4
1.4有機發光二極體材料發展 5
第二章 研究動機與文獻回顧 12
2.1 研究動機 12
2.2 文獻回顧 12
2.2.1紅色磷光材料 12
2.2.2 希夫鹼材料 15
2.2.3 三重態-三重態湮滅光子上轉換光敏劑 16
2.3分子設計 25
2.4 合成途徑 26
第三章 結果與討論 29
3.1熱性質分析 29
3.2光物理性質分析 31
3.3電化學分析 39
3.4三重態-三重態湮滅光敏劑性質分析 43
3.5理論計算分析 47
3.6晶體結構分析 56
3.7單重態氧生成性質分析 62
第四章 結論 64
第五章 實驗部分 65
5.1 實驗儀器 65
5.2 試劑與溶劑 66
5.3 合成方法與步驟 66
第六章 參考資料 74
第七章 附錄 80
7.1 化合物之1H NMR 及13C NMR 80
7.2 化合物之TGA圖譜及DSC圖譜 102
7.3 化合物之X-ray 晶體數據 105
-
dc.language.isozh_TW-
dc.subject紅光zh_TW
dc.subject金屬錯合物zh_TW
dc.subject磷光zh_TW
dc.subject光敏劑zh_TW
dc.subject三重態-三重態湮滅光子上轉換zh_TW
dc.subjectPd complexen
dc.subjecttriple-triplet annihilation up-conversion(TTAUC)en
dc.subjectsensitizeren
dc.subjectred phosphorescenceen
dc.subjectpyrroleen
dc.subjectconjugation extensionen
dc.subjectPt complexen
dc.title探討共振延長對含吡咯基團希夫鹼之鈀金屬及鉑金屬錯合物磷光放光影響及其作為光敏劑之應用zh_TW
dc.titleInvestigate Conjugation Extension of Pyrrole-Containing Palladium(II) and Platinum(II) Schiff Bases Complexes Phosphorescence and Their Application as Photosensitizeren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李君浩;邱天隆;林伯彥zh_TW
dc.contributor.oralexamcommitteeJiun-Haw Lee;Tien-Lung Chiu;Bo-Yen Linen
dc.subject.keyword三重態-三重態湮滅光子上轉換,紅光,光敏劑,磷光,金屬錯合物,zh_TW
dc.subject.keywordtriple-triplet annihilation up-conversion(TTAUC),sensitizer,red phosphorescence,pyrrole,conjugation extension,Pt complex,Pd complex,en
dc.relation.page141-
dc.identifier.doi10.6342/NTU202401167-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-06-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2029-06-14-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
9.79 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved