Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93604
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳嘉文zh_TW
dc.contributor.advisorKevin C.-W. Wuen
dc.contributor.author羅偉哲zh_TW
dc.contributor.authorWei-Che Loen
dc.date.accessioned2024-08-06T16:13:02Z-
dc.date.available2024-08-08-
dc.date.copyright2024-08-06-
dc.date.issued2024-
dc.date.submitted2024-07-12-
dc.identifier.citation(1) Olabi, A.; Abdelkareem, M. A. Renewable energy and climate change. Renewable and Sustainable Energy Reviews 2022, 158, 112111.
(2) Pandey, S.; Zhang, W.; Assmann, S. M. Roles of ion channels and transporters in guard cell signal transduction. FEBS Letters 2007, 581, 2325-2336.
(3) Olson, T. M.; Terzic, A. Human K ATP channelopathies: diseases of metabolic homeostasis. Pflügers Archiv-European Journal of Physiology 2010, 460, 295-306.
(4) Zheng, S. p.; Huang, L. b.; Sun, Z.; Barboiu, M. Self‐assembled artificial ion‐channels toward natural selection of functions. Angewandte Chemie International Edition 2021, 60, 566-597.
(5) Han, W. B.; Kim, D. J.; Kim, Y. M.; Ko, G. J.; Shin, J. W.; Jang, T. M.; Han, S.; Kang, H.; Lim, J. H.; Eom, C. H. Electric Eel‐Inspired Soft Electrocytes for Solid‐State Power Systems. Advanced Functional Materials 2024, 34, 2309781.
(6) Brown, M. A.; Goel, A.; Abbas, Z. Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface. Angewandte Chemie International Edition 2016, 55, 3790-3794.
(7) Xiao, K.; Jiang, L.; Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 2019, 3, 2364-2380.
(8) Tong, X.; Liu, S.; Crittenden, J.; Chen, Y. Nanofluidic membranes to address the challenges of salinity gradient power harvesting. ACS Nano 2021, 15, 5838-5860.
(9) Kohonen, M. M.; Karaman, M. E.; Pashley, R. M. Debye length in multivalent electrolyte solutions. Langmuir 2000, 16, 5749-5753.
(10) Bocquet, L.; Charlaix, E. Nanofluidics, from bulk to interfaces. Chemical Society Reviews 2010, 39, 1073-1095.
(11) Trefalt, G.; Behrens, S. H.; Borkovec, M. Charge regulation in the electrical double layer: ion adsorption and surface interactions. Langmuir 2016, 32, 380-400.
(12) Daiguji, H. Ion transport in nanofluidic channels. Chemical Society Reviews 2010, 39, 901-911.
(13) Vlassiouk, I.; Smirnov, S.; Siwy, Z. Ionic selectivity of single nanochannels. Nano Letters 2008, 8, 1978-1985.
(14) Zhu, Z.; Wang, D.; Tian, Y.; Jiang, L. Ion/molecule transportation in nanopores and nanochannels: from critical principles to diverse functions. Journal of the American Chemical Society 2019, 141, 8658-8669.
(15) Cheng, L.-J.; Guo, L. J. Nanofluidic diodes. Chemical Society Reviews 2010, 39, 923-938.
(16) Siwy, Z. S. Ion‐current rectification in nanopores and nanotubes with broken symmetry. Advanced Functional Materials 2006, 16, 735-746.
(17) Guo, W.; Tian, Y.; Jiang, L. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. Accounts of Chemical Research 2013, 46, 2834-2846.
(18) Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L. High-performance ionic diode membrane for salinity gradient power generation. Journal of the American Chemical Society 2014, 136, 12265-12272.
(19) Sui, X.; Zhang, Z.; Li, C.; Gao, L.; Zhao, Y.; Yang, L.; Wen, L.; Jiang, L. Engineered nanochannel membranes with diode-like behavior for energy conversion over a wide pH range. ACS Applied Materials & Interfaces 2018, 11, 23815-23821.
(20) Zhu, X.; Hao, J.; Bao, B.; Zhou, Y.; Zhang, H.; Pang, J.; Jiang, Z.; Jiang, L. Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system. Science Advances 2018, 4, eaau1665.
(21) Siria, A.; Bocquet, M.-L.; Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nature Reviews Chemistry 2017, 1, 0091.
(22) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to metal–organic frameworks. ACS Publications 2012, 112, 673-674.
(23) Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Metal–organic frameworks: Structures and functional applications. Materials Today 2019, 27, 43-68.
(24) Li, J.-R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H.-K.; Balbuena, P. B.; Zhou, H.-C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews 2011, 255, 1791-1823.
(25) Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–organic frameworks for separations. Chemical Reviews 2012, 112, 869-932.
(26) Liao, Y.-T.; Matsagar, B. M.; Wu, K. C.-W. Metal–organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustainable Chemistry & Engineering 2018, 6, 13628-13643.
(27) Konnerth, H.; Matsagar, B. M.; Chen, S. S.; Prechtl, M. H.; Shieh, F.-K.; Wu, K. C.-W. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coordination Chemistry Reviews 2020, 416, 213319.
(28) Hsu, S.-H.; Li, C.-T.; Chien, H.-T.; Salunkhe, R. R.; Suzuki, N.; Yamauchi, Y.; Ho, K.-C.; Wu, K. C.-W. Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs). Scientific Reports 2014, 4, 6983.
(29) Chueh, C.-C.; Chen, C.-I.; Su, Y.-A.; Konnerth, H.; Gu, Y.-J.; Kung, C.-W.; Wu, K. C.-W. Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. Journal of Materials Chemistry A 2019, 7, 17079-17095.
(30) Hou, J.; Wang, H.; Zhang, H. Zirconium metal–organic framework materials for efficient ion adsorption and sieving. Industrial & Engineering Chemistry Research 2020, 59, 12907-12923.
(31) Ahmadijokani, F.; Molavi, H.; Rezakazemi, M.; Tajahmadi, S.; Bahi, A.; Ko, F.; Aminabhavi, T. M.; Li, J.-R.; Arjmand, M. UiO-66 metal–organic frameworks in water treatment: A critical review. Progress in Materials Science 2022, 125, 100904.
(32) Liu, Y.-C.; Yeh, L.-H.; Zheng, M.-J.; Wu, K. C.-W. Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Science Advances 2021, 7, eabe9924.
(33) Bárcia, P. S.; Guimarães, D.; Mendes, P. A.; Silva, J. A.; Guillerm, V.; Chevreau, H.; Serre, C.; Rodrigues, A. E. Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66. Microporous and Mesoporous Materials 2011, 139, 67-73.
(34) Liu, Y.; Wang, X.; Wei, H. Light-responsive nanozymes for biosensing. Analyst 2020, 145, 4388-4397.
(35) Lee, L.-R.; Lee, M.-J.; Lin, Y.-L.; Chen, Y.-F.; Zheng, S.; Chang, M.-H.; Chen, J.-T. Pyranine-Grafted Nanoporous Membranes for Sensing Paraquat Derivatives. ACS Applied Nano Materials 2023, 6, 6831-6840.
(36) Wen, L.; Hou, X.; Tian, Y.; Zhai, J.; Jiang, L. Bio‐inspired photoelectric conversion based on smart‐gating nanochannels. Advanced Functional Materials 2010, 20, 2636-2642.
(37) Ahmed, S.; Khan, F. S. A.; Mubarak, N. M.; Khalid, M.; Tan, Y. H.; Mazari, S. A.; Karri, R. R.; Abdullah, E. C. Emerging pollutants and their removal using visible-light responsive photocatalysis–a comprehensive review. Journal of Environmental Chemical Engineering 2021, 9, 106643.
(38) Xiao, K.; Xie, G.; Li, P.; Liu, Q.; Hou, G.; Zhang, Z.; Ma, J.; Tian, Y.; Wen, L.; Jiang, L. A biomimetic multi-stimuli-response ionic gate using a hydroxypyrene derivation-functionalized asymmetric single nanochannel. Advanced Materials (Deerfield Beach, Fla.) 2014, 26, 6560-6565.
(39) Wang, L.; Wen, Q.; Jia, P.; Jia, M.; Lu, D.; Sun, X.; Jiang, L.; Guo, W. Light‐Driven Active Proton Transport through Photoacid‐and Photobase‐Doped Janus Graphene Oxide Membranes. Advanced Materials 2019, 31, 1903029.
(40) Pattle, R. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature 1954, 174, 660-660.
(41) Gao, J.; Liu, X.; Jiang, Y.; Ding, L.; Jiang, L.; Guo, W. Understanding the giant gap between single‐pore‐and membrane‐based nanofluidic osmotic power generators. Small 2019, 15, 1804279.
(42) Ma, T.; Balanzat, E.; Janot, J.-M.; Balme, S. Nanopore Functionalized by Highly Charged Hydrogels for Osmotic Energy Harvesting. ACS Applied Materials & Interfaces 2019, 11, 12578-12585.
(43) Li, Z. Q.; Zhu, G. L.; Mo, R. J.; Wu, M. Y.; Ding, X. L.; Huang, L. Q.; Wu, Z. Q.; Xia, X. H. Light‐Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal–Organic Framework Membranes. Angewandte Chemie International Edition 2022, 61.
(44) Su, Y.; Hou, J.; Zhao, C.; Han, Q.; Hu, J.; Zhang, H. Flexible UiO-66-(COOH) 2 metal–organic framework membranes for salinity gradient power generation. Chemical Engineering Journal 2023, 476, 146649.
(45) Li, R.; Jiang, J.; Liu, Q.; Xie, Z.; Zhai, J. Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy 2018, 53, 643-649.
(46) Zhang, Z.; He, L.; Zhu, C.; Qian, Y.; Wen, L.; Jiang, L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nature Communications 2020, 11, 875.
(47) Nandi, R.; Amdursky, N. The dual use of the pyranine (HPTS) fluorescent probe: A ground-state pH indicator and an excited-state proton transfer probe. Accounts of Chemical Research 2022, 55, 2728-2739.
(48) Ragon, F.; Campo, B.; Yang, Q.; Martineau, C.; Wiersum, A. D.; Lago, A.; Guillerm, V.; Hemsley, C.; Eubank, J. F.; Vishnuvarthan, M. Acid-functionalized UiO-66 (Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties. Journal of Materials Chemistry A 2015, 3, 3294-3309.
(49) Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth. Angewandte Chemie International Edition 2009, 48, 4739-4743.
(50) Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr‐based metal–organic frameworks: from nano to single crystals. Chemistry–A European Journal 2011, 17, 6643-6651.
(51) Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V. Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66 (Zr). Journal of the American Chemical Society 2013, 135, 11465-11468.
(52) Li, P.; Xie, G.; Kong, X. Y.; Zhang, Z.; Xiao, K.; Wen, L.; Jiang, L. Light‐Controlled Ion Transport through Biomimetic DNA‐Based Channels. Angewandte Chemie International Edition 2016, 55, 15637-15641.
(53) Gao, M.; Tsai, P. C.; Su, Y. S.; Peng, P. H.; Yeh, L. H. Single mesopores with high surface charges as ultrahigh performance osmotic power generators. Small 2020, 16, 2006013.
(54) Apel, P. Track etching technique in membrane technology. Radiation Measurements 2001, 34, 559-566.
(55) Zhang, Y.; Chen, X.; Wang, C.; Roozbahani, G. M.; Chang, H.-C.; Guan, X. Chemically functionalized conical PET nanopore for protein detection at the single-molecule level. Biosensors and Bioelectronics 2020, 165, 112289.
(56) Apel, P. Y.; Korchev, Y. E.; Siwy, Z.; Spohr, R.; Yoshida, M. Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2001, 184, 337-346.
(57) Yoo, Y.; Lai, Z.; Jeong, H.-K. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous and Mesoporous Materials 2009, 123, 100-106.
(58) Liu, Y.; Zeng, G.; Pan, Y.; Lai, Z. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties. Journal of Membrane Science 2011, 379, 46-51.
(59) Laucirica, G.; Toimil-Molares, M. E.; Trautmann, C.; Marmisollé, W.; Azzaroni, O. Nanofluidic osmotic power generators–advanced nanoporous membranes and nanochannels for blue energy harvesting. Chemical Science 2021, 12, 12874-12910.
(60) Kim, D.-K.; Duan, C.; Chen, Y.-F.; Majumdar, A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluidics and Nanofluidics 2010, 9, 1215-1224.
(61) Chen, Z.; Wang, X.; Noh, H.; Ayoub, G.; Peterson, G. W.; Buru, C. T.; Islamoglu, T.; Farha, O. K. Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal–organic frameworks for toxic chemical removal. CrystEngComm 2019, 21, 2409-2415.
(62) Zhang, L.; Jiang, K.; Yang, L.; Li, L.; Hu, E.; Yang, L.; Shao, K.; Xing, H.; Cui, Y.; Yang, Y. Benchmark C2H2/CO2 Separation in an Ultra‐Microporous Metal–Organic Framework via Copper (I)‐Alkynyl Chemistry. Angewandte Chemie International Edition 2021, 60, 15995-16002.
(63) Lu, J.; Zhang, H.; Hu, X.; Qian, B.; Hou, J.; Han, L.; Zhu, Y.; Sun, C.; Jiang, L.; Wang, H. Ultraselective monovalent metal ion conduction in a three-dimensional sub-1 nm nanofluidic device constructed by metal–organic frameworks. ACS Nano 2020, 15, 1240-1249.
(64) Pei, L.; Zhao, X.; Liu, B.; Li, Z.; Wei, Y. Rationally tailoring pore and surface properties of metal–organic frameworks for boosting adsorption of Dy3+. ACS Applied Materials & Interfaces 2021, 13, 46763-46771.
(65) Ai, Y.; Zhang, M.; Joo, S. W.; Cheney, M. A.; Qian, S. Effects of electroosmotic flow on ionic current rectification in conical nanopores. The Journal of Physical Chemistry C 2010, 114, 3883-3890.
(66) Lin, C.-Y.; Yeh, L.-H.; Siwy, Z. S. Voltage-induced modulation of ionic concentrations and ion current rectification in mesopores with highly charged pore walls. The Journal of Physical Chemistry Letters 2018, 9, 393-398.
(67) Nightingale Jr, E. Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry 1959, 63, 1381-1387.
(68) Zhang, H.; Hou, J.; Hu, Y.; Wang, P.; Ou, R.; Jiang, L.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Science Advances 2018, 4, eaaq0066.
(69) Li, R.; Lu, B.; Xie, Z.; Zhai, J. The Confinement Effect of Angstrom‐Sized Pores in Asymmetrical Membrane Constructed by Zeolitic Imidazolate Frameworks: Partially Dehydrated Ion Transport Performance. Small 2019, 15, 1904866.
(70) Lu, J.; Zhang, H.; Hou, J.; Li, X.; Hu, X.; Hu, Y.; Easton, C. D.; Li, Q.; Sun, C.; Thornton, A. W. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nature materials 2020, 19, 767-774.
(71) Lu, J.; Zhang, H.; Hu, X.; Qian, B.; Hou, J.; Han, L.; Zhu, Y.; Sun, C.; Jiang, L.; Wang, H. Ultraselective Monovalent Metal Ion Conduction in a Three-Dimensional Sub-1 nm Nanofluidic Device Constructed by Metal–Organic Frameworks. ACS Nano 2021, 15, 1240-1249.
(72) Cao, L.; Guo, W.; Wang, Y.; Jiang, L. Concentration-gradient-dependent ion current rectification in charged conical nanopores. Langmuir 2012, 28, 2194-2199.
(73) Yazda, K.; Bleau, K.; Zhang, Y.; Capaldi, X.; St-Denis, T.; Grutter, P.; Reisner, W. W. High osmotic power generation via nanopore arrays in hybrid hexagonal boron nitride/silicon nitride membranes. Nano Letters 2021, 21, 4152-4159.
(74) Siwy, Z.; Gu, Y.; Spohr, H.; Baur, D.; Wolf-Reber, A.; Spohr, R.; Apel, P.; Korchev, Y. Rectification and voltage gating of ion currents in a nanofabricated pore. Europhysics Letters 2002, 60, 349.
(75) Wu, Y.; Xin, W.; Kong, X.-Y.; Chen, J.; Qian, Y.; Sun, Y.; Zhao, X.; Chen, W.; Jiang, L.; Wen, L. Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Materials Horizons 2020, 7, 2702-2709.
(76) Chen, J.; Xin, W.; Chen, W.; Zhao, X.; Qian, Y.; Kong, X.-Y.; Jiang, L.; Wen, L. Biomimetic nanocomposite membranes with ultrahigh ion selectivity for osmotic power conversion. ACS Central Science 2021, 7, 1486-1492.
(77) Zhao, X.; Lu, C.; Yang, L.; Chen, W.; Xin, W.; Kong, X.-Y.; Fu, Q.; Wen, L.; Qiao, G.; Jiang, L. Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. Nano Energy 2021, 81, 105657.
(78) Zhu, C.; Liu, P.; Niu, B.; Liu, Y.; Xin, W.; Chen, W.; Kong, X.-Y.; Zhang, Z.; Jiang, L.; Wen, L. Metallic two-dimensional MoS2 composites as high-performance osmotic energy conversion membranes. Journal of the American Chemical Society 2021, 143, 1932-1940.
(79) Chang, C.-W.; Chu, C.-W.; Su, Y.-S.; Yeh, L.-H. Space charge enhanced ion transport in heterogeneous polyelectrolyte/alumina nanochannel membranes for high-performance osmotic energy conversion. Journal of Materials Chemistry A 2022, 10, 2867-2875.
(80) Hao, J.; Bao, B.; Zhou, J.; Cui, Y.; Chen, X.; Zhou, J.; Zhou, Y.; Jiang, L. A Euryhaline‐Fish‐Inspired Salinity Self‐Adaptive Nanofluidic Diode Leads to High‐Performance Blue Energy Harvesters. Advanced Materials 2022, 34, 2203109.
(81) Zhu, Q.; Li, Y.; Qian, Q.; Zuo, P.; Guiver, M. D.; Yang, Z.; Xu, T. A sulfonated ultramicroporous membrane with selective ion transport enables osmotic energy extraction from multiform salt solutions with exceptional efficiency. Energy & Environmental Science 2022, 15, 4148-4156.
(82) Gao, M.; Zheng, M.-J.; EL-Mahdy, A. F.; Chang, C.-W.; Su, Y.-C.; Hung, W.-H.; Kuo, S.-W.; Yeh, L.-H. A bioinspired ionic diode membrane based on sub-2 nm covalent organic framework channels for ultrahigh osmotic energy generation. Nano Energy 2023, 105, 108007.
(83) Ling, H.; Xin, W.; Qian, Y.; He, X.; Yang, L.; Chen, W.; Wu, Y.; Du, H.; Liu, Y.; Kong, X. Y. Heterogeneous Electrospinning Nanofiber Membranes with pH‐regulated Ion Gating for Tunable Osmotic Power Harvesting. Angewandte Chemie International Edition 2023, 62, e202212120.
(84) Wang, J.; Wang, L.; Shao, N.; He, M.; Shang, P.; Cui, Z.; Liu, S.; Jiang, N.; Wang, X.; Wang, L. Heterogeneous Two-dimensional lamellar Ti3C2Tx membrane for osmotic power harvesting. Chemical Engineering Journal 2023, 452, 139531.
(85) Guo, Y.; Sun, X.; Ding, S.; Lu, J.; Wang, H.; Zhu, Y.; Jiang, L. Charge-Gradient Sulfonated Poly (ether ether ketone) Membrane with Enhanced Ion Selectivity for Osmotic Energy Conversion. ACS Nano 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93604-
dc.description.abstract在受到酸鹼值、溫度和光線等外部因素影響的生命過程中,細胞膜中的生物性離子通道在調節離子傳輸方面發揮著至關重要的作用。這些離子通道影響著許多種細胞功能,包括細胞的信號傳導、維持細胞穩定代謝以及細胞內外的物質交換。此外,這些離子通道具有良好的離子選擇性、離子通透性以及離子整流性。而上述這些性質對於生物感測技術、離子分離和能源轉換等多個領域具有顯著的優勢。值得注意的是,光作為一種無所不在的自然能源,在再生能源領域具有極大的發展潛力。近幾年來,科學家們致力於利用各種光響應分子,比如二芳基乙烯、偶氮苯和羥基芘磺酸等,來開發具光響應的仿生性裝置,以期待能在滲透能源領域開創出新的應用前景。在此研究中,我們團隊將UiO-66-(COOH)2的金屬有機框架材料(MOF)填入圓錐形孔道,接著再改質具光響應效果之羥基芘磺酸分子(Pyranine),以此來建構出具光響應的仿生性的離子裝置(Py-MOFMC)。由於UiO-66-(COOH)2 帶有強烈的負表面電荷以及次奈米尺度的孔洞大小(~0.65nm),讓Py-MOFMC 表現出對單價陽離子優異的離子選擇性(Na+/Mg2+的選擇性約為56.7,在照射UV 光後可更進一步提升至70.5),也證實Py-MOFMC 可以作為一種高效率之離子篩選裝置。此外,以此為基礎所製作出的多孔Py-MOFMC裝置在滲透能源發電方面顯示出令人驚豔的功率輸出。500 倍的濃差下,在pH 7的環境中,Py-MOFMC 就可產生20.1 W/m2 的滲透能功率輸出,當pH 值提升至11 時,其功率輸出也可以隨之上升至35.8 W/m2,最後,再進行UV光照的測試後,滲透能功率輸出提升至66.3 W/m2,而這已經遠高於許多已開發出的多孔滲透能源裝置。透過鑑定以及測量,我們成功將MOF材料以及光響應分子結合,開發出具高功率的仿生性裝置,為未來的離子分離技術和滲透能量轉換提供一種全新的研究靈感。zh_TW
dc.description.abstractBiological ion channels in cell membranes play a crucial role in processes influenced by external factors such as pH value, temperature, and light. These protein ion channels on cell membranes influence various cellular functions, including cell signaling, maintaining cellular metabolic stability, and the exchange of substances inside and outside the cell. Furthermore, these ion channels exhibit remarkable ion selectivity, permeability, and ion rectification, which provide significant advantages in biosensing, ion separation, and energy conversion. As an omnipresent natural energy source, in recent years, scientists have been dedicated to developing light-responsive artificial ion channel devices by using various light-responsive molecules like diarylethene, azobenzene, and pyranine, aiming to pioneer new applications in the field of osmotic energy. Herein, our team constructed a light-responsive biomimetic ionic device (Py-MOFMC) by embedding UiO-66-(COOH)2 metal-organic framework (MOF) in conical mesochannel (with a tip diameter ~400-500 nm), followed by modification with the light-responsive molecule pyranine. Notably, the negatively charged surface and subnanoscale pore size (~0.65 nm) of UiO-66-(COOH)2 contributed to remarkable selectivity for monovalent cations (with Na+/Mg2+ selectivity ratio of ~56.7, increasing to 70.5 after UV light exposure), indicating its potential as a highly efficient ion filtration device. In addition, the multi-pore Py-MOFMC device also shows excellent power performance. With a salinity gradient of 500-fold and a neutral environment, Py-MOFMC could generate up to 20.1 W/m2 and significantly increase it to 35.8 W/m2 at pH 11. After UV light irradiation, the output could boost to 66.3 W/m2, surpassing many other developed porousosmotic energy devices. Through a series of conceptual validations and studies, we successfully combined MOF materials with light-responsive molecules to develop highi-performance biomimetic devices. This work has opened up new research directions for future ion separation technologies and osmotic energy conversion.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:13:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-06T16:13:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Content
謝辭 i
摘要 ii
Abstract iii
Table of Content v
List of Figures viii
List of Tables xii
1. Introduction 1
1.1. Osmotic energy conversion 1
1.2. Bioinspiration 3
1.3. Electrical double layer (EDL) 4
1.4. Ion selectivity 7
1.5. Ionic current rectification (ICR) 9
1.6. Metal-organic frameworks (MOFs) 12
1.7. Polyethylene terephthalate (PET) membrane 15
1.8. Light-responsive molecule 16
2. Literature Review 17
3. Objective 21
4. Experimental 23
4.1. Chemicals and materials 23
4.2. Equipment 25
4.3. Synthesis of UiO-66-(COOH)2 26
4.4. Fabrication of single pore conical PET mesochannel (PETMC) 28
4.5. Fabrication of MOF-filled mesochannel (MOFMC) 30
4.6. Fabrication of Pyranine-modified MOF-filled mesochannel (Py-MOFMC) 32
4.7. Material characterization 34
4.7.1. X-ray diffractometer (XRD) 34
4.7.2. Field-emission scanning electron microscope (FE-SEM) 34
4.7.3. Energy-dispersive X-ray spectrometer (EDS) 35
4.7.4. Specific surface area and pore size distribution 36
4.7.5. Zeta potential analyzer 36
4.7.6. Contact angle 36
4.7.7. Dynamic light scattering (DLS) particle size analyzer 37
4.8. Electrical measurement 38
4.8.1. Ionic transport measurement 38
4.8.2. Osmotic energy measurement 39
5. Results and Discussion 43
5.1. Characterization of UiO-66-(COOH)2 seeds 43
5.2. Characterization of PETMC 47
5.3. Characterization of Py-MOFMC 49
5.4. Ion transport property 51
5.4.1. Reversibility test 51
5.4.2. Ion current rectification 52
5.4.3. Ion selectivity ratio of PETMC and Py-MOFMC 55
5.5. Osmotic power performance of the Py-MOFMC device 63
5.5.1. Salt type effect 66
5.5.2. Concentration gradient effect 68
5.5.3. pH value effect 70
5.5.4. Light intensity effect 72
5.6. Stability test of Py-MOFMC device 75
6. Conclusion 76
7. Future Prospect 77
References 78
-
dc.language.isoen-
dc.subject金屬有機框架zh_TW
dc.subject陽離子選擇性傳輸zh_TW
dc.subject滲透能zh_TW
dc.subject光響應zh_TW
dc.subject仿生性離子孔道zh_TW
dc.subjectMetal-organic frameworken
dc.subjectBiomimetic ionic channelen
dc.subjectCationselective transporten
dc.subjectOsmotic poweren
dc.subjectLight responsiveen
dc.title應用光響應分子和具超高陽離子選擇性及奈米結構之金屬有機框架材料於高效滲透能發電裝置zh_TW
dc.titleEnhanced Osmotic Power Harvesting Demonstrated by Embedding Light-Responsive MOF Crystals: From Fundamental to Applicationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee葉禮賢;陳俊維zh_TW
dc.contributor.oralexamcommitteeLi-Hsien Yeh;Chun-Wei Chenen
dc.subject.keyword金屬有機框架,光響應,滲透能,陽離子選擇性傳輸,仿生性離子孔道,zh_TW
dc.subject.keywordMetal-organic framework,Light responsive,Osmotic power,Cationselective transport,Biomimetic ionic channel,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202401527-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2029-07-12-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.72 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved