Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9359
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊宏(Chun-Hung Lin),方俊民(Jim-Min Fang)
dc.contributor.authorYing-Chu Chenen
dc.contributor.author陳盈曲zh_TW
dc.date.accessioned2021-05-20T20:19:03Z-
dc.date.available2012-06-30
dc.date.available2021-05-20T20:19:03Z-
dc.date.copyright2009-06-30
dc.date.issued2009
dc.date.submitted2009-06-19
dc.identifier.citation1.Wong, C. H. Carbohydrate-based drug discovery, 1st Ed.;
Wiley-VCH: Weinheim, 2003.
2.Dube, D. H.; Bertozzi, C. R., Glycans in cancer and
inflammation- potential for therapeutics and diagnostics.
Nat. Rev. Drug Discov. 2005, 6, 477-488.
3.Varki, A., Biological roles of oligosaccharides: All of
the theories are correct. Glycobiology 1993, 3, 97-130.
4.Lowe, J. B.; Varki, A. Essentials of Glycobiology;
Roberts and Company: La Jolla, 1999.
5.Compain, P.; Martin, O. R., Carbohydrate mimetics-based
glycosyltransferase inhibitors. Bioorg. Med. Chem. 2001,
9, 3077-3092.
6.Kapitonov, D.; Yu, R. K., Conserved domains of
glycosyltransferases. Glycobiology 1999, 9, 961-978.
7.Springer, T. A.; Lasky, L. A., Sticky sugars for
selectins. Nature 1991, 349, 196-197.
8.Pang, P. C.; Tissot, B.; Drobnis, E. Z.; Sutovsky, P.;
Morris, H. R.; Clark, G. F.; Dell, A., Expression of
bisecting type and Lewis x/Lewis y terminated N-glycans
on human sperm. J. Biol. Chem. 2007, 282, 36593-36602.
9.Javaud, C.; Dupuy, F.; Maftah, A.; Julien, R.; Petit, J.
M., The fucosyltransferase gene family: An amazing
summary of the underlying mechanisms of gene evolution.
Genetica 2003, 118, 157-170.
10.Paschinger, K.; Staudacher, E.; Stemmer, U.; Fabinil,
G.; and Wilson, B. H., Fucosyltransferase substrate
specificity and the order of fucosylation in
invertebrates. Glycobiology 2005, 15, 463-474.
11.Lowe, J. B.; Stoolman, L. M.; Nair, R. R.; Larsen, R.
D.; Berhend, T. L.; Marks, R. M., ELAM-1-dpendent cell
adhesion to vascular endothelium determined by a
tranfected human fucosyltransferase cDNA. Cell 1990, 63,
475-484.
12.Murray, B. W.; Wittmann, V.; Burkart, M. D.; Hung, S.
C.; Wong, C. H., Mechanism of human alpha-1,3-
fucosyltransferase V:glycosidic cleavage occurs prior to
nucleophilic attack. Biochemistry 1997, 36, 823-831.
13.Kelley, L. A.; MacCallum, R. M.; Sternberg, J. E.,
Enhanced genome annotation using structural profiles in
the program 3D-PSSM. J. Mol. Biol. 2000, 299, 499-520.
14.Izawa, M.; Kumamoto, K.; Mitsuoka, C.; Kanamori, A.;
Ohmori, K.; Ishida, H.; Nakamura, S.; Kazumi, K. M.;
Sasaki, K.; Nishi, T.; Kannagi, R., Expression of sialyl
6-sulfo Lewis x is inversely correlated with conventional
sialyl Lewis x expression in human colorectal cancer.
Cancer Res. 2000, 60, 1410-1416.
15.Taniguchi, N.; Honke, K.; Fukuda, M. Handbook of
glycosyltransferases and related genes; Springer: Tokyo,
New York, 2002.
16.Vries, T.; Knegtel, M. A.; Holmes, E. H.; Macher, B. A.,
Fucosyltransferase: Structure/function studies.
Glycobiology 2001, 11, 119-128.
17.Lowe, J. B.; Kukowska, J. F.; Nair, R. P.; Larsen, R.
D.; Marks, R. M.; Macher B. A.; Kelly, R. J.; Ernst, L.
K., Molecular cloning of a human fucosyltransferase gene
that determines expression of the Lewis x and VIM-2
epitopes but not ELAM-1-dependent cell Adhesion. J. Biol.
Chem. 1991, 266, 17467-17477.
18.Natsuka, S.; Gersten, K. M.; Zenita, K.; Kannagi, R.;
Lowe, J. B., Molecular cloning of a cDNA encoding a novel
human leukocyte alpha-1,3-fucosyltransferase capable of
synthesizing the sialyl Lewis x determinant. J. Biol.
Chem. 1994, 269, 16789-16794.
19.Kaneko, M.; Kudo, T.; Iwasaki, H.; Ikehara, Y.;
Nishihara, S.; Nakagawa, S.; Sasaki K.; Shiina, T.;
Inoko, H.; Saitou, N.; Narimatsu, H., alpha-1,3-
Fucoslytransferase IX (FucT IX) is very highly conserved
between human and mouse; molecular cloning,
characterization and tissue distribution of human FucT
IX. FEBS letters 1999, 452, 237-242.
20.Breton, C.; Oriol, R.; Imberty, A., Conserved structural
features in eukaryotic and prokaryotic
fucosyltransferases. Glycobiology 1998, 8, 87-94.
21.Oriol, R.; Mollicone, R.; Cailleau, A.; Balanzino, L.;
Breton, C., Divergent evolution of fucosyltranferase
genes from vertebrates, invertebrates, and bacteria.
Glycobiology 1999, 9, 323-334.
22.Ma, B.; Wang, G.; Palcic, M. M.; Hazes, B.; Taylor, D.
E., C-terminal amino acids of Helicobacter pylori alpha-11,3/4-fucosyltranferases determine type I and type II transfer. J. Biol. Chem. 2003, 278, 21893-21900.
23. Ge, Z.; Chan, W. C.; Palcic, M. M.; Taylor, D. E., Cloning and heterologous expression of an alpha-1,3-fucosyltransferase gene from the gastric pathogen Helicobacter pylori. J. Biol. Chem. 1997, 272, 21357-21363.
24. Wakaechuk, W. W.; Cunningham, A.; Watson, D. C.; Young N. M., Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitides. Protein Engineering 1998, 11, 295-302.
25. Martin, S. L.; Edbrooke, M. R.; Hodgman, T. C.; Eijnden, D. H.; Bird, M. I., Lewis x biosynthesis in Helicobacter pylori. J. Biol. Chem. 1997, 272, 21349-21356.
26. Wang, G.; Boulton, P. G.; Chan, W. C.; Palcic, M. M.; Taylor, D. E., Novel Helicobacter pylori alpha-1,2-fucosyltranferase, a key enzyme in the synthesis of Lewis antigens. Microbiology 1999, 145, 3245-3253.
27. Christina, N.; Skoglund, A.; Moran, A. P.; Annuk, H.; Engstrand, L.; Normark, S., An enzymatic ruler modulates Lewis antigen glycosylation of Helicobacter pylori LPS during persistent infection. Proc. Natl. Acad. Sci. USA 2006, 103, 2863-2868.
28. Miyoshi, E.; Moriwaki, K.; Nakagawa, T., Biological function of fucosylation in cancer biology. J. Biochem. 2008, 143, 725–729.
29. Giannis, A., The sialyl Lewis x group and its analogus as ligands for selectins: Chemoenzymatic syntheses ans biological functions. Angew. Chem. Int. Ed. Engl. 1994, 33, 178-180.
30. Lewincohn, D. M.; Bargatze, R. F.; Butcher, E. C., Leukocyte-endothelial cell recognition: Evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes. J. Immunol. 1987, 138, 4313-4321.
31. Larsen, E.; Celi, A.; Gilbert, G. E.; Furie, B. C.; Erban, J. K.; Bonfanti, P.; Wagner, D. D.; Furie, B., PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocyter. Cell 1989, 59, 305-312.
32. Geng, J. G.; Bevilacqua, M. P.; Moore, K. L.; Mclntyre, T. M.; Prescott, S. M.; Kim, J. M.; Bliss, G. A.; Zimmerman, G. A.; MaEver, R. P., Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 1990, 343, 757-760.
33. Bevilaqua, M. P.; Pober, J. S.; Mendrick, D. L.; Cotran, R. S.; Gimbrone, M. A., Identification of an inducible endothelial-leukocyte adhesion molecule. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 9238-9242.
34. Hallmann, R.; Jutila, M. A.; Smith, C. W.; Anderson, D. C.; Kishimoto, T. K.; Butcher, E. C., The peripheral lymph node homing receptor, LECAM-1, is involved in CD18-independent adhesion of human neutrophils to endothelium. Biochem. Biophys. Res. Commun. 1991, 174, 236-243.
35. Spertini, O.; Luscinskas, F. W.; Kansas, G. S.; Munro, J. M.; Griffin, J. D.; Gimbrone, M. A.; Tedder, T. F., Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J. Immunol. 1991, 147, 2565-2573.
36. Ley, K.; Gaehtgens, P.; Fennie, C.; Singer, M. S.; Lasky, L. A.; Rosen, S. D., Lectin-like cell adhesion molecule 1 mediates leukocyte rolling in mesenteric venules in vivo. Blood 1991, 77, 2553-2555.
37. Simanek, E. E.; MaGarvey, G. J.; Jablonowski, J. A.; Wong, C. H., Selectin- carbohydrate interactions: From natural ligands to designed mimics. Chem. Rev. 1998, 98, 833-862.
38. Springer, T. A., Adhesion receptors of the immune system. Nature 1990, 346, 425-434.
39. Sun, H. Y.; Lin, S. W.; Ko, T. P.; Pan, J. F.; Liu, C. L.; Lin, C. N.; Wang, H. J.; Lin, C. H., Structure and mechanism of Helicobacter pylori fucosyltransferase. J. Biol. Chem. 2007, 282, 9973-9982.
40. Unligil, U. M.; Rini, J. M., Glycosyltransferase structure and mechanism. Curr. Opi. Struc. Biol. 2000, 10, 510-517.
41. Murray, B. W.; Wittmann, V.; Burkartm, M. D. ; Hung, S. C.; Wong, C. H., Mechanism of human alpha-1,3-fucosyltranferase V: Glycosidic cleavage occurs prior to nucleophilic attack. Biochemistry 1997, 36, 823-831.
42. Gosselin, S.; Palcic, M. M., Acceptor hydroxyl group mapping for human milk alpha-1,3 and alpha-1,3/4-fucosyltrnaferase. Bioorg. Med. Chem. 1996, 4, 2023-2028.
43. Hindsgaul, O.; Kaur, K. J.; Srivastava, G.; Magdalena, B. T.; Crawley, S. C.; Heerze, L. D.; Palcic, M. M., Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltranferase. J. Biol. Chem. 1991, 266, 17858-17862.
44. Wong, C. H.; Dumas, D. P.; Ichikawa, Y.; Koseki, K.; Danishefsky, S. J.; Weston, B. W.; Lowe, J. B., Specificity, inhibition, and synthetic utility of a recombinant human alpha-1,3-fucosyltranferase. J. Am. Chem. Soc. 1992, 114, 7321-7322.
45. Burkart, M. D.; Vincent, S. P.; Duffels, A.; Murray, B. W.; Ley, S. V.; Wong, C. H., Chemo-enzymatic synthesis of fluorinated sugar nucleotide: Useful mechanistic probes for glycosyltransferase. Bioorg. Med. Chem. 2000, 8, 1937-1946.
46. Carchon, G.; Chretien, F.; Delannoy, P.; Verbert, A.; Chapleur, Y., Synthesis of a non-charged analogue of guanosylsiphosphofucose. Tetrahedron Lett. 2001, 42, 8821-8824.
47. Wang, Y. F.; Dumas, D. P.; Wong, C. H., Chemo-enzymatic synthesis of five-membered azasugars as inhibitors of fucosidase and fucosyltransferase: An issue regarding the stereochemistry discrimination at transition states. Tetrahedron Lett. 1993, 34, 403-406.
48. Ichikawa, Y.; Lin, Y. C.; Dumas, D. P.; Shen, G. J.; Eduardo, G. J.; Williams, M. A.; Bayer, R.; Ketcham, C.; Walker, L. E., Chemical-enzymatic synthesis and conformational analysis of sialyl Lewis x and derivatives. J. Am. Chem. Soc. 1992, 114, 9283-9298.
49. Schuster, M.; Blechert, S., Inhibition of fucosyltransferase V by a GDP-azasugar. Bioorg. Med. Chem. Lett. 2001, 11, 1809-1811.
50. Qiao, L.; Murray, B. W.; Shimazaki, M.; Schultz, J.; Wong, C. H., Synergistic inhibition of human alpha-1,3-fucosyltranferase V. J. Am. Chem. Soc. 1996, 118, 7653-7662.
51. Mitchell, M. L.; Lee, L.V.; Wong, C. H., Synthesis and evaluation of six-membered GDP-iminicyclitol. Tetrahedron Lett. 2002, 43, 5691-5693.
52. Mitchell, M. L.; Tian, F.; Lee, L. V.; Wong, C. H., Synthesis and evaluation of transition-state analogue inhibitors of alpha-1,3-fucosyltransferase. Angew. Chem. Int. Ed. 2002, 41, 3041-3044.
53. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596-2599.
54. Waldscheck, B.; Streiff, M.; Notz, W.; Kinzy, W.; Schmidt, R. R., alpha-1,3-Galactosyltranferase inhibition based on a new type of disubstrate analogus. Angew. Chem. Int. Ed. Engl. 2001, 40, 4007-4011.
55. Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M., Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. Chem. Rev. 2002, 102, 515-554.
56. Zhao, Y.; Thorson, J. S., A methodological comparison: The advantage of phosphorimidates in expanding the sugar nucleotide repertoire. J. Org. Chem. 1998, 63, 7568-7572.
57. Caravano, A.; Dominique, M. L.; Brondello, J. M.; Vencent, S. P.; Sinay, P., Synthesis and inhibition properties of conformational probes for the mutase-catalyzed UDP-galactopyranose/furanose interconversion. Chem. Eur. J. 2003, 9, 5888-5898.
58. Wittmann, V.; Wong, C. H., 1H-tetrazole as catalyst in phosphomorpholidate coupling reactions: Efficient synthesis of GDP-fucose, GDP-mannose, and GDP-galactose. J. Org. Chem. 1997, 62, 2144-2147.
59. Pastuszak, I.; Ketchum, C.; Hermanson, G.; Sjoberg, E. J.; Drake, R.; Elbein, A. D., GDP-L-fucose pyrophosphorylase. J. Biol. Chem. 1998, 273, 30165-30174.
60. Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S., A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 2007, 28, 1145–1152.
61. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W.; Belew, R. K.; Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1999, 19, 1939–1662.
62. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M., A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983, 4, 187-217.
63. http://www. accelrys.com
64. Lee, H. H.; Palmer, B. D.; Baguley, B. C.; Chin, M.; McFadyen, W. D.; Wickham, G.;Deborah, T. P.; Wakelin, P. G.; Denny, W. A., DNA-directed alkylating agents 5-acridinecarboxamide derivatives of (1,2-diaminoethane)dichloroplatinum (II). J. Med. Chem. 1992, 35, 2983-2987.
65. Wei, W. H.; Tomohiro, T.; Kodaka, M.; Okuno, H., Selective synthesis and kinetic measurement of 1:1 and 2:2 cylic compounds containing 1,4,7,10-tetraazacyclododecane and azobenzene units. J. Org. Chem. 2000, 65, 8979-8987.
66. Moffatt, J. G.; Khorana, H. G., Nucleoside polyphosphates: The synthesis and some reactions of nucleoside-5’-phosphoromorpholidates and related compounds. Improved methods for the preparation of nucleoside-5’-polyphosphates. J. Am. Soc. Chem. 1961, 83, 649-658.
67. Dei, S.; Bellucci, C.; Buccioni, M.; Ferraroni, M.; Gualtieri, F.; Guandalini, L.; Manetti, D.; Matucci, R.; Romanelli, M. N.; Scapecchi, S.; Teodori, E., Synthesis and cholinergic affinity of diastereomeric and enantiomeric isomers of 1-methyl-2-(2-methyl-1,3-dioxolan-4-yl)-pyrrolidine, 1-methyl-2-(-methyl-1,3-oxa- thiolan-5-yl)pyrrolidine and of their iodomethylates. Bioorg. Med. Chem. 2003, 11, 3153-3164.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9359-
dc.description.abstract生物體中岩藻醣轉移酶常催化最後一個轉醣步驟,而形成如Lewis y與sialyl Lewis x含有岩藻醣的寡醣。由於這些寡醣的重要生理活性 (諸如與癌細胞轉移及細菌感染的關聯性),使得這類酵素常被視為藥物開發的目標。此篇碩士論文即針對岩藻醣轉移酶抑制劑的設計、合成及其應用作探討。
根據先前所報導的X-ray晶體結構及其反應機轉,在抑制劑的設計上有三項特點。二磷酸鳥苷 (guanosine diphosphate) 在與岩藻醣轉移酶間的作用力上,扮演重要的角色;酵素反應的過渡態 (transition state)具有正電荷的特徵;醣受體結合部位附近之疏水區域。針對這些特點,設計出具有比咯啶 (pyrrolidine)、吡咯烷(piperidine)、嘧唑 (imidazole) 的二磷酸鳥苷衍生物為細菌及人類岩藻醣轉移酶抑制劑,並探討其分子結構與活性間的關係。
除此之外,本實驗室先前合成一系列具有二磷酸鳥苷的岩藻醣抑制劑,以篩選三唑環上不同衍生基團對生物活性的影響,將此結果中效果最好的衍生基團連結到比咯啶環抑制劑YCC-7 (化合物61)。此化合物對胃幽門桿菌的岩藻醣轉移酶抑制效果最好,IC50及Ki值分別為44.1 micromolar及29.5 micromolar,我們進一步以電腦模擬計算解釋抑制劑YCC-7與該酵素間的作用力。
zh_TW
dc.description.abstractα-Fucosyltransferases (FucTs) usually catalyze the final steps in the biosynthesis of fucose-containing oligosaccharides. Owing to the related biological significance (such as tumor metastasis and bacterial infection), these enzymes are considered as the targets for therapeutic intervention. This thesis is mainly focused on the design, synthesis and evaluation of FucT inhibitors. On the basis of the reported x-ray crystal structures and mechanistic studies, the molecules were designed to include guanosine diphosphate (GDP) that offers major binding affinity, a negative-containing group to mimic the positive-charge character of the transition state, and a hydrophobic group to acquire additional affinity. Several GDP-conjugated pyrrolidines, piperidines and imidazoles were prepared and evaluated as the inhibitors against the FucTs from Helicobacter pylori and human. The structure and activity relationship was also discussed.
Furthermore, a series of GDP- and triazole-containing compounds were also developed as FucT inhibitors previously. Because 2’-(phenylsulfonyl-methyl)benzyl group was found to be the best hydrophobic group attached to the triazole, the same group was hens coupled with GDP-pyrrolidine to give YCC-7 (61). YCC-7 was found to be a potent inhibitor against H. pylori alpha-1,3-FucT. The corresponding IC50 abd Ki values are 44.1 and 29.5 micromolar, respectively. Computational modeling was further empoyled for the explanation at molecular basis.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:19:03Z (GMT). No. of bitstreams: 1
ntu-98-R95223089-1.pdf: 33808996 bytes, checksum: 59ba804779e8ecbc7752be3587012395 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要…………………………………………………………… I
英文摘要…………………………………………………………… II
目錄………………………………………………………………… IV
表目錄……………………………………………………………… VI
圖目錄……………………………………………………………… VII
流程目錄…………………………………………………………… IX
簡稱用語對照表…………………………………………………… X

第一章 緒論………………………………………………… 1
1. 岩藻醣轉移酶 (Fucosyltransferase; FucT)的介紹… 2
1.1人類岩藻醣轉移酶的介紹……………………………… 4
1.2幽門螺旋桿菌岩藻醣轉移酶的介紹…………………… 5
2. 岩藻醣轉移酶的功能……………………………………… 6
3. 岩藻醣轉移酶的催化機制………………………………… 8
4. 岩藻醣轉移酶抑制劑的文獻回顧………………………… 10
4.1醣受體類似物 (acceptor substrate analogues) … 11
4.2醣予體類似物 (donor substrate analogues) …… 11
4.3過渡狀態類似物 (transition-state analogues) … 12
4.4變旋異構中心上之立體化學對抑制效果的影響力…… 14
5. 岩藻醣轉移酶抑制劑之設計原則………………………… 16
A. 岩藻醣轉移過程之電性特徵及構型………………… 16
B. 二磷酸鳥苷部分的保留及衍生之疏水區域………… 16
C. 醣苷鍵之修飾………………………………………… 17
6. 研究目標………………………………………………… 17

第二章 結果與討論………………………………………… 20
1.目標產物的逆合成………………………………………… 20
2.以路徑一合成岩藻醣轉移酶之抑制物…………………… 21
3.岩藻醣轉移酶抑制物29 (YCC-1) 及32 (YCC-3) 之合成 22
4.岩藻醣轉移酶抑制物37 (YCC-2) 及38 (YCC-4) 之合成 28
5.岩藻醣轉移酶抑制物51 (YCC-5) 之合成………………… 30
6.岩藻醣轉移酶抑制物56 (YCC-6) 之合成………………… 30
7.生物活性測試……………………………………………… 31
7.1放射線標定法………………………………………… 31
7.2生物活性測試結果……………………………………… 31
8. 疏水基團之衍生…………………………………………… 35

第三章 實驗部分…………………………………………… 40
1. General Method…………………………………………… 40
2. General Procedure for fucosyltransferase activity
assay …………………………………………………… 41
3. Computational modeling……………………………… 42
4. Synthetic Procedures and Spectral Data…………… 43

第四章 參考文獻……………………………………………… 76
附錄光譜…………………………………………………………… 87
dc.language.isozh-TW
dc.title以結構與反應機轉設計岩藻醣轉移酶之抑制劑zh_TW
dc.titleDevelopment of α-Fucosyltransferase Inhibitors by Structure- and Mechanism-Based Designen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.advisor-orcid,方俊民(jmfang@ntu.edu.tw)
dc.contributor.oralexamcommittee楊文彬(Wen-Bin Yang),鄭偉杰(Wei-Chieh Cheng)
dc.subject.keyword岩藻醣轉移&#37238,幽門螺旋桿菌,二磷酸鳥&#33527,抑制劑,zh_TW
dc.subject.keywordfucosyltransferase,Helicobacter pylori,GDP inhibitor,en
dc.relation.page87
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-06-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf33.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved