請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93586完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭斯彥 | zh_TW |
| dc.contributor.advisor | Sy-Yen Kuo | en |
| dc.contributor.author | 陳柏瑜 | zh_TW |
| dc.contributor.author | Po-Yu Chen | en |
| dc.date.accessioned | 2024-08-05T16:44:02Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-19 | - |
| dc.identifier.citation | [1] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detection and description: a survey. Data Mining and Knowledge Discovery, 29(3):626–688, May 2015.
[2] L. Hu, N. Guan, and L. Zou. Triangle counting on gpu using fine-grained task distribution. In 2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW), pages 225–232, 2019. [3] L. Hu, L. Zou, and Y. Liu. Accelerating triangle counting on gpu. In Proceedings of the 2021 International Conference on Management of Data, SIGMOD ’21, page 736–748, New York, NY, USA, 2021. Association for Computing Machinery. [4] Y. Hu, H. Liu, and H. H. Huang. Tricore: Parallel triangle counting on gpus. In SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, pages 171–182, 2018. [5] J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data, June 2014. [6] NVIDIA. Cuda toolkit. https://developer.nvidia.com/cuda-toolkit. Accessed: 2024-06-13. [7] S. Pandey, Z. Wang, S. Zhong, C. Tian, B. Zheng, X. Li, L. Li, A. Hoisie, C. Ding, D. Li, and H. Liu. Trust: Triangle counting reloaded on gpus. IEEE Transactions on Parallel and Distributed Systems, 32(11):2646–2660, 2021. [8] A. Prat-Pérez, D. Dominguez-Sal, and J.-L. Larriba-Pey. High quality, scalable and parallel community detection for large real graphs. In Proceedings of the 23rd International Conference on World Wide Web, WWW ’14, page 225–236, New York, NY, USA, 2014. Association for Computing Machinery. [9] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra, P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner. Static graph challenge: Subgraph isomorphism. In 2017 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6, 2017. [10] S. Samsi, J. Kepner, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra, A. Reuther, S. Smith, W. Song, D. Staheli, and P. Monticciolo. Graphchallenge.org triangle counting performance. In 2020 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, Sept. 2020. [11] C. E. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Faloutsos. Spectral counting of triangles via element-wise sparsification and triangle-based link recommendation. Social Network Analysis and Mining, 1(2):75–81, Apr 2011. [12] J. Wang and J. Cheng. Truss decomposition in massive networks, 2012. [13] L. Zeng, K. Yang, H. Cai, J. Zhou, R. Zhao, and X. Chen. Htc: Hybrid vertex-parallel and edge-parallel triangle counting. In 2022 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93586 | - |
| dc.description.abstract | 三角形計數 (Triangle Counting) 是圖分析領域中的基本問題,在許多應用中扮 演重要角色,包含社交網路分析,異常行為偵測等等。快速執行三角形計數很重 要,近期許多研究使用具有強大平行處理能力的圖形處理器 (GPU) 加速三角形計 數演算法。然後由於圖資料結構的不規則性,如何設計高效平行化三角形計數演 算法是一個巨大挑戰。本研究針對前人所提出的三角形計數演算法進行深入分析, 觀察到了其雖然在理論上可以將工作量平均分配給各執行緒,達到很高的執行效 率,但實際在圖形處理器上卻遇到性能低落問題。我們根據這些觀察,從圖形處 理器硬體特性的角度出發,提出一個不同的方法,改善了原先的問題,並且在多 個真實世界的圖形資料集上都取得了很好的效果。 | zh_TW |
| dc.description.abstract | Triangle counting is one of the most fundamental problems in the field of graph analysis and plays a pivotal role in various applications such as social network analysis and anomaly detection. Efficient execution of triangle counting is crucial, and recently many studies have leveraged the formidable parallel processing capabilities of Graphics Process- ing Units (GPUs) to accelerate triangle counting algorithms. However, due to the inherent irregularity of graph data structures, designing an effective parallel triangle counting algorithm poses a significant challenge. In this study, we conduct an in-depth analysis of a previously proposed triangle counting algorithm. We observe that, although theoretically, it can distribute the workload evenly among threads to achieve high efficiency, it encounters performance issues when implemented on GPUs. Based on these observations and considering the hardware characteristics of GPUs, we propose an alternative method that addresses the original issues. Our method has demonstrated excellent performance on various real-world graph datasets. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:44:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:44:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract iv Contents vi List of Figures viii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Background 4 2.1 Graph Processing Unit 4 2.1.1 GPU Architecture 4 2.1.2 Compute Unified Device Architecture (CUDA) 6 2.1.3 Thread divergence 7 2.1.4 Memory Coalescing 8 2.1.5 Load Balance 9 2.2 Compressed Sparse Row Format 10 2.3 Triangle Counting 11 Chapter 3 Related Works 13 3.1 Triangle Counting Algorithms 13 3.2 Hu's Fine-grained Task Distribution Strategy 16 Chapter 4 Methodology 19 4.1 Performance Analysis of Hh's Method 19 4.1.1 Thread Divergence 19 4.1.2 Uncoalesced Memory Access 20 4.2 Proposed Method 21 Chapter 5 Evaluation 25 5.1 Experimental Setup 25 5.2 Experimental Results 27 Chapter 6 Conclusion 32 References 34 | - |
| dc.language.iso | en | - |
| dc.subject | 三角形計數 | zh_TW |
| dc.subject | 圖形處理器 | zh_TW |
| dc.subject | 圖論演算法 | zh_TW |
| dc.subject | 平行計算 | zh_TW |
| dc.subject | 統一計算架構 | zh_TW |
| dc.subject | CUDA | en |
| dc.subject | graph algorithms | en |
| dc.subject | parallel computing | en |
| dc.subject | triangle counting | en |
| dc.subject | GPU | en |
| dc.title | 圖形處理器上的平行化快速三角形計數之策略 | zh_TW |
| dc.title | Strategy of Fast Parallel Triangle Counting on GPU | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 雷欽隆;袁世一;林宗男;呂學坤 | zh_TW |
| dc.contributor.oralexamcommittee | Chin-Laung Lei;Shih-yi Yuan;Tsung-Nan Lin;Shyue-Kung Lu | en |
| dc.subject.keyword | 圖形處理器,三角形計數,平行計算,圖論演算法,統一計算架構, | zh_TW |
| dc.subject.keyword | GPU,triangle counting,parallel computing,graph algorithms,CUDA, | en |
| dc.relation.page | 35 | - |
| dc.identifier.doi | 10.6342/NTU202400887 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-19 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
