請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93582完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉建豪 | zh_TW |
| dc.contributor.advisor | Chien-Hao Liu | en |
| dc.contributor.author | 林鼎凱 | zh_TW |
| dc.contributor.author | Ding-Kai Lin | en |
| dc.date.accessioned | 2024-08-05T16:42:42Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | W. Passchier-Vermeer and W. F. Passchier, “Noise exposure and public health,” Environ. Health Perspect., vol. 108, no. suppl 1, pp. 123–131, Mar. 2000,
Stephen Stansfeld, Mary Haines, and Bernadette Brown, “Noise and Health in the Urban Environment,” Rev. Environ. Health, vol. 15, no. 1–2, pp. 43–82, Jan. 2000, J. P. Arenas and M. J. Crocker, “Recent Trends in Porous Sound-Absorbing Materials,” Sound & vibration vol. 44, pp. 12-18, Jul. 2010, L. Cao, Q. Fu, Y. Si, B. Ding, and J. Yu, “Porous materials for sound absorption,” Compos. Commun., vol. 10, pp. 25–35, Dec. 2018, K. Kalauni and S. J. Pawar, “A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials,” J. Porous Mater., vol. 26, no. 6, pp. 1795–1819, Dec. 2019, M. Yang and P. Sheng, “Sound Absorption Structures: From Porous Media to Acoustic Metamaterials,” Annu. Rev. Mater. Res., vol. 47, no. Volume 47, 2017, pp. 83–114, Jul. 2017, U. J. Kurze, “Noise reduction by barriers,” J. Acoust. Soc. Am., vol. 55, no. 3, pp. 504–518, Mar. 1974, P. Reiter, R. Wehr, and H. Ziegelwanger, “Simulation and measurement of noise barrier sound-reflection properties,” Appl. Acoust., vol. 123, pp. 133–142, Aug. 2017, S. J. Elliott and P. A. Nelson, “Active noise control,” IEEE Signal Process. Mag., vol. 10, no. 4, pp. 12–35, Oct. 1993, S. M. Kuo and D. R. Morgan, “Active noise control: a tutorial review,” Proc. IEEE, vol. 87, no. 6, pp. 943–973, Jun. 1999, P. Sykulski and K. Jędrzejewski, “Adaptive Active Noise Cancelling System for Headphones on Raspberry Pi Platform,” in 2020 Signal Processing Workshop (SPW), Oct. 2020, pp. 17–21. N. R. Council, D. of B. and S. S. and Education, B. on B. Sciences Cognitive, and Sensory, and C. on D. D. for I. with H. Impairments, Hearing Loss: Determining Eligibility for Social Security Benefits. National Academies Press, 2004. M. Yang and P. Sheng, “Acoustic metamaterial absorbers: The path to commercialization,” Appl. Phys. Lett., vol. 122, no. 26, p. 260504, Jun. 2023, O. Acher, J. M. L. Bernard, P. Maréchal, A. Bardaine, and F. Levassort, “Fundamental constraints on the performance of broadband ultrasonic matching structures and absorbers,” J. Acoust. Soc. Am., vol. 125, no. 4, pp. 1995–2005, Apr. 2009, K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antennas Propag., vol. 48, no. 8, pp. 1230–1234, Aug. 2000, B. Liang, B. Yuan, and J. Cheng, “Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems,” Phys. Rev. Lett., vol. 103, no. 10, p. 104301, Sep. 2009, B. Liang, X. Guo, J. Tu, D. Zhang, and J. Cheng, “An acoustic rectifier,” Nat. Mater., vol. 9, pp. 989–92, Oct. 2010, K. Song et al., “Sound Pressure Level Gain in an Acoustic Metamaterial Cavity,” Sci. Rep., vol. 4, no. 1, p. 7421, Dec. 2014, K. H. Sun, J. E. Kim, J. Kim, and K. Song, “Sound energy harvesting using a doubly coiled-up acoustic metamaterial cavity,” Smart Mater. Struct., vol. 26, no. 7, p. 075011, Jun. 2017, K. Song, S.-H. Lee, K. Kim, S. Hur, and J. Kim, “Emission Enhancement of Sound Emitters using an Acoustic Metamaterial Cavity,” Sci. Rep., vol. 4, no. 1, p. 4165, Mar. 2014, B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “Experimental Acoustic Ground Cloak in Air,” Phys. Rev. Lett., vol. 106, no. 25, p. 253901, Jun. 2011, Y. Ge, X. Liu, and G. Hu, “Design of elliptical underwater acoustic cloak with truss-latticed pentamode materials,” Theor. Appl. Mech. Lett., vol. 12, no. 4, p. 100346, May 2022, L. Ning, Y.-Z. Wang, and Y.-S. Wang, “Broadband square cloak in elastic wave metamaterial plate with active control,” J. Acoust. Soc. Am., vol. 150, no. 6, pp. 4343–4352, Dec. 2021, X. Yu, S.-K. Lau, L. Cheng, and F. Cui, “A numerical investigation on the sound insulation of ventilation windows,” Appl. Acoust., vol. 117, pp. 113–121, Feb. 2017, S.-H. Kim and S.-H. Lee, “Air transparent soundproof window,” AIP Adv., vol. 4, no. 11, p. 117123, Nov. 2014, G. Fusaro, X. Yu, J. Kang, and F. Cui, “Development of metacage for noise control and natural ventilation in a window system,” Appl. Acoust., vol. 170, p. 107510, Dec. 2020, J. Kang and M. W. Brocklesby, “Feasibility of applying micro-perforated absorbers in acoustic window systems,” Appl. Acoust., vol. 66, no. 6, pp. 669–689, Jun. 2005, H. Zhang, Y. Zhu, B. Liang, J. Yang, J. Yang, and J. Cheng, “Omnidirectional ventilated acoustic barrier,” Appl. Phys. Lett., vol. 111, no. 20, p. 203502, Nov. 2017, N. Yuya, N. Sohei, N. Tsuyoshi, and Y. Takashi, “Sound propagation in soundproofing casement windows,” Appl. Acoust., vol. 70, no. 9, pp. 1160–1167, Sep. 2009, H. Nguyen et al., “A broadband acoustic panel based on double-layer membrane-type metamaterials,” Appl. Phys. Lett., vol. 118, no. 18, p. 184101, May 2021, J. W. Jung, J. E. Kim, and J. W. Lee, “Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range,” Appl. Phys. Lett., vol. 112, no. 4, p. 041903, Jan. 2018, D.-Y. Maa, “Potential of microperforated panel absorber,” J. Acoust. Soc. Am., vol. 104, no. 5, pp. 2861–2866, Nov. 1998, X. Wang, X. Luo, B. Yang, and Z. Huang, “Ultrathin and durable open metamaterials for simultaneous ventilation and sound reduction,” Appl. Phys. Lett., vol. 115, no. 17, p. 171902, Oct. 2019, Y. Song, J. Wen, H. Tian, X. Lu, Z. Li, and L. Feng, “Vibration and sound properties of metamaterial sandwich panels with periodically attached resonators: Simulation and experiment study,” J. Sound Vib., vol. 489, p. 115644, Dec. 2020, F. Wu, Y. Xiao, D. Yu, H. Zhao, Y. Wang, and J. Wen, “Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels,” Appl. Phys. Lett., vol. 114, no. 15, p. 151901, Apr. 2019, Y. Tang et al., “Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound,” Sci. Rep., vol. 7, no. 1, p. 43340, Feb. 2017, D. C. Brooke, O. Umnova, P. Leclaire, and T. Dupont, “Acoustic metamaterial for low frequency sound absorption in linear and nonlinear regimes,” J. Sound Vib., vol. 485, p. 115585, Oct. 2020, Q. Xu, J. Qiao, J. Sun, G. Zhang, and L. Li, “A tunable massless membrane metamaterial for perfect and low-frequency sound absorption,” J. Sound Vib., vol. 493, p. 115823, Feb. 2021, J. Deng, O. Guasch, L. Maxit, and N. Gao, “A metamaterial consisting of an acoustic black hole plate with local resonators for broadband vibration reduction,” J. Sound Vib., vol. 526, p. 116803, May 2022, J. Yang, J. S. Lee, H. R. Lee, Y. J. Kang, and Y. Y. Kim, “Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission,” Appl. Phys. Lett., vol. 112, no. 9, p. 091901, Feb. 2018, A. Isozaki, H. Takahashi, H. Tamura, T. Takahata, K. Matsumoto, and I. Shimoyama, “Parallel Helmholtz resonators for a planar acoustic notch filter,” Appl. Phys. Lett., vol. 105, no. 24, p. 241907, Dec. 2014, M. Krasikova et al., “Metahouse: Noise-Insulating Chamber Based on Periodic Structures,” Adv. Mater. Technol., vol. 8, no. 1, p. 2200711, 2023, S.-J. Cho, B.-S. Kim, D.-K. Min, Y. Cho, and J. Park, “Honeycomb-shaped meta-structure for minimizing noise radiation and resistance to cooling fluid flow of home appliances,” Compos. Struct., vol. 155, pp. 1–7, Nov. 2016, X. Wu et al., “High-efficiency ventilated metamaterial absorber at low frequency,” Appl. Phys. Lett., vol. 112, no. 10, p. 103505, Mar. 2018, X.-L. Gai et al., “Acoustic properties of honeycomb like sandwich acoustic metamaterials,” Appl. Acoust., vol. 199, p. 109016, Oct. 2022, J. W. Jung, J. E. Kim, and J. W. Lee, “Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range,” Appl. Phys. Lett., vol. 112, no. 4, p. 041903, Jan. 2018, R. Ghaffarivardavagh, J. Nikolajczyk, S. Anderson, and X. Zhang, “Ultra-open acoustic metamaterial silencer based on Fano-like interference,” Phys. Rev. B, vol. 99, no. 2, p. 024302, Jan. 2019, Y. Zhu, R. Dong, D. Mao, X. Wang, and Y. Li, “Nonlocal Ventilating Metasurfaces,” Phys. Rev. Appl., vol. 19, no. 1, p. 014067, Jan. 2023, Z. Xu, B. Zheng, J. Yang, B. Liang, and J. Cheng, “Machine-Learning-Assisted Acoustic Consecutive Fano Resonances: Application to a Tunable Broadband Low-Frequency Metasilencer,” Phys. Rev. Appl., vol. 16, no. 4, p. 044020, Oct. 2021, A. Chen, Z.-X. Xu, B. Zheng, J. Yang, B. Liang, and J.-C. Cheng, “Machine learning-assisted low-frequency and broadband sound absorber with coherently coupled weak resonances,” Appl. Phys. Lett., vol. 120, no. 3, p. 033501, Jan. 2022, X. Zhu et al., “Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials,” Nat. Commun., vol. 7, no. 1, p. 11731, May 2016, M. Sun, X. Fang, D. Mao, X. Wang, and Y. Li, “Broadband Acoustic Ventilation Barriers,” Phys. Rev. Appl., vol. 13, no. 4, p. 044028, Apr. 2020, H. Q. Nguyen et al., “A Fano-based acoustic metamaterial for ultra-broadband sound barriers,” Proc. R. Soc. Math. Phys. Eng. Sci., vol. 477, no. 2248, p. 20210024, Apr. 2021, Y. Ding, E. C. Statharas, K. Yao, and M. Hong, “A broadband acoustic metamaterial with impedance matching layer of gradient index,” Appl. Phys. Lett., vol. 110, no. 24, p. 241903, Jun. 2017, X. Cai, Q. Guo, G. Hu, and J. Yang, “Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators,” Appl. Phys. Lett., vol. 105, no. 12, p. 121901, Sep. 2014, X. Xiang et al., “Ultra-open ventilated metamaterial absorbers for sound-silencing applications in environment with free air flows,” Extreme Mech. Lett., vol. 39, p. 100786, Sep. 2020, N. Jiménez, V. Romero-García, V. Pagneux, and J.-P. Groby, “Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems,” Sci. Rep., vol. 7, no. 1, p. 13595, Oct. 2017, H. Long, Y. Cheng, and X. Liu, “Asymmetric absorber with multiband and broadband for low-frequency sound,” Appl. Phys. Lett., vol. 111, no. 14, p. 143502, Oct. 2017, D.-Y. Kim, J.-G. Ih, and M. Åbom, “Virtual Herschel-Quincke tube using the multiple small resonators and acoustic metamaterials,” J. Sound Vib., vol. 466, p. 115045, Feb. 2020, M. Molerón, M. Serra-Garcia, and C. Daraio, “Visco-thermal effects in acoustic metamaterials: from total transmission to total reflection and high absorption,” New J. Phys., vol. 18, no. 3, p. 033003, Mar. 2016, S. Kumar and H. P. Lee, “Labyrinthine acoustic metastructures enabling broadband sound absorption and ventilation,” Appl. Phys. Lett., vol. 116, no. 13, p. 134103, Apr. 2020, C. Liu, H. Wang, B. Liang, jianchun cheng, and Y. Lai, “Low-frequency and broadband muffler via cascaded labyrinthine metasurfaces,” Appl. Phys. Lett., vol. 120, p. 231702, Jun. 2022, Z. Xiao, P. Gao, D. Wang, X. He, and L. Wu, “Ventilated metamaterials for broadband sound insulation and tunable transmission at low frequency,” Extreme Mech. Lett., vol. 46, p. 101348, Jul. 2021, L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. John Wiley & Sons, 2000. W. M. Leach, Introduction to electroacoustics and audio amplifier design, 3rd ed. Dubuque, Iowa: Kendall/Hunt Pub. Co, 2003. S. Anzinger, J. Manz, C. Bretthauer, U. Krumbein, and A. Dehé, “Acoustic transmission line based modelling of microscaled channels and enclosures,” J. Acoust. Soc. Am., vol. 145, no. 2, pp. 968–976, Feb. 2019, S. Zhang, “Acoustic metamaterial design and applications,” University of Illinois at Urbana-Champaign, Jan. 2010. R. A. Robinson, “An Electroacoustic Analysis of Transmission Line Loudspeakers,” Apr. 2007, F. T. Ulaby and U. Ravaioli, Fundamentals of Applied Electromagnetics. Hoboken, NJ: Pearson, 2020. D. M. Pozar, Microwave Engineering. Addison-Wesley, 1990. M. Berggren, A. Bernland, and D. Noreland, “Acoustic boundary layers as boundary conditions,” J. Comput. Phys., vol. 371, pp. 633–650, Oct. 2018, J. S. Bach and H. Bruus, “Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities,” J. Acoust. Soc. Am., vol. 144, no. 2, p. 766, Aug. 2018, C. Zwikker and C. W. Kosten, Sound Absorbing Materials, 1949, H. Tijdeman, “On the propagation of sound waves in cylindrical tubes,” J. Sound Vib., vol. 39, no. 1, pp. 1–33, Mar. 1975, M. R. Stinson, “The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape,” J. Acoust. Soc. Am., vol. 89, no. 2, Art. no. 2, Feb. 1991, J.-S. Chen et al., “Ultrathin arch-like labyrinthine acoustic metasurface for low-frequency sound absorption,” Appl. Acoust., vol. 202, p. 109142, Jan. 2023, W. B. Richards, “Propagation of sound waves in tubes of noncircular cross section.” Aug. 01, 1986. F. C. Karal, “The Analogous Acoustical Impedance for Discontinuities and Constrictions of Circular Cross Section,” J. Acoust. Soc. Am., vol. 25, no. 2, pp. 327–334, Mar. 1953, M. El-Raheb, “Acoustic propagation in rigid three-dimensional waveguides,” J. Acoust. Soc. Am., vol. 67, Jul. 1980, W. Rostafinski, “Monograph on propagation of sound waves in curved ducts.” Jan. 01, 1991. S. Félix and V. Pagneux, “Sound propagation in rigid bends: A multimodal approach,” J. Acoust. Soc. Am., vol. 110, pp. 1329–37, Oct. 2001, D. H. Keefe and A. H. Benade, “Wave propagation in strongly curved ducts,” J. Acoust. Soc. Am., vol. 74, no. 1, pp. 320–332, Jul. 1983, J.-D. Tseng, “The Characteristics of Parallel-connected Transmission Lines,” PIERS Online, vol. 1, no. 6, pp. 699–702, 2005, M. Kong, Y. Wu, Z. Zhuang, Y. Liu, and A. A. Kishk, “Compact Wideband Reflective/Absorptive Bandstop Filter With Multitransmission Zeros,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 2, pp. 482–493, Feb. 2019, R. M. Fano, “Theoretical limitations on the broadband matching of arbitrary impedances,” J. Frankl. Inst., vol. 249, no. 1, pp. 57–83, Jan. 1950, 何昇祐 , “可流通式次波長聲學結構應用於低頻抗噪入耳式耳塞,” 國立臺灣大學機械工程系位論文, pp. 1–106, Jan. 2022, K. Carillo, F. Sgard, O. Dazel, and O. Doutres, “Reduction of the occlusion effect induced by earplugs using quasi perfect broadband absorption,” Sci. Rep., vol. 12, no. 1, p. 15336, Sep. 2022, | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93582 | - |
| dc.description.abstract | 本研究以等效電路模型的方式設計低頻可透氣式消音結構,此方法無論解析解、等效電路模擬與有限元素模擬結果對應性皆十分準確,此外,相比於傳統以複數條等長螺旋流道結構組成的Fano-like 消音結構具有較為狹窄的消音頻寬限制,在本研究中以不同半徑的方式設計兩組不同長度螺旋流道使其之共振與反共振頻率相互耦合,從而能將原本限制頻寬範圍之共振頻率穿透損失提高至10 dB 以上,大幅增加消音頻寬。所設計之直徑10cm 結構在截止頻率之下在573 Hz 至2026 Hz 內擁有良好的111.8%之10 dB 比例頻寬,相較於傳統Fano 消音結構提升了近兩倍的寬頻消音性能,空氣可流通截面積比例達19.2%;對於入耳式耳塞設計,將結構微型化後之直徑7mm 之結構,在547 Hz 至1872 Hz 間擁有良好的109.6%之10 dB 比例頻寬,空氣可流通截面積比例可高達36.5%,足證明此設計很好地兼顧了消音頻寬與空氣流通表現,並且所設計之二結構尺寸結構厚度都達到次波長,直徑10cm 與7mm 結構厚度依序分別為0.09λ 與0.13λ,在低頻消音結構尺寸上具有很大的優勢,並相比於多數文獻設計結構在相同的結構厚度之下,擁有著極為寬頻的特點並在空氣流通表現方面也維持良好平衡,在此之上更具有能夠因應不同應用下的調變靈活性優勢。 | zh_TW |
| dc.description.abstract | This study designs a low-frequency ventilated silencing structure using an equivalentcircuit model. The accuracy of this method is validated through analytical solutions, equivalent circuit simulations, and finite element simulations. Compared to conventional Fano-like silencing structures, which are composed of multiple identical-length spiral channels and have narrow silencing bandwidth limitations, this study employs spiral channels of varying radii to design two sets of different-length channels. This configuration couples their resonance and anti-resonance frequencies, thereby increasing the transmission loss at the originally bandwidth-limited resonance frequencies to above 10 dB, resulting in an unprecedentedly broad silencing bandwidth. The designed structure with a diameter of 10 cm exhibits an excellent 10 dB fractional bandwidth of 111.8%, ranging from 573 Hz to 2026 Hz, below the cutoff frequency. This represents nearly twice the broadband silencing performance compared to conventional Fano silencing structures. Additionally, the structure features an air ventilation area ratio of 19.2%. For in-ear earplug applications, the miniaturized structure with a diameter of 7 mm demonstrates a 10 dB fractional bandwidth of 109.6%, covering the range of 547 Hz to 1872 Hz, with an air ventilation area ratio of up to 36.5%. This evidence confirms that the design effectively balances silencing bandwidth and air ventilation performance. Moreover, the thickness of both designed structures is subwavelength, with the 10 cm and 7 mm diameter structures having thicknesses of 0.09 and 0.13 wavelengths, respectively. This offers a significant advantage in the dimensions of low-frequency silencing structures. Compared to most literature designs with similar structural thicknesses, this design exhibits an exceptionally wide bandwidth advantage while maintaining good air ventilation performance. Furthermore, it provides the flexibility to adapt to different application requirements. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:42:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:42:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 目次 iv 圖次 vi 表次 x 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 章節介紹 13 第二章 理論 15 2.1 基本聲學理論 15 2.2 阻抗管平面波傳 17 2.3 等效電路模型 19 2.3.1 聲學傳輸線損耗 20 2.3.2 不連續電感 21 第三章 結構參數設計 25 3.1 等效電路模型 25 3.1.1 雙流道結構系統 25 3.1.2 多流道結構系統 35 3.2 等效電路模擬 37 3.3 幾何參數設計 43 第四章 有限元素模擬 47 4.1 比例頻寬 47 4.2 有限元素模擬 48 4.2.1 直徑10 cm結構 49 4.2.2 直徑7 mm結構 58 第五章 結果與討論 61 5.1 結果與分析 61 5.2 比較與討論 63 5.2.1 與文獻比較 63 5.2.2 與Helmholtz共振式設計比較 65 第六章 結論與未來展望 69 6.1 結論 69 6.2 未來展望 69 參考文獻 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 入耳式耳塞 | zh_TW |
| dc.subject | Fano 共振 | zh_TW |
| dc.subject | 透氣式消音結構 | zh_TW |
| dc.subject | 低頻降噪 | zh_TW |
| dc.subject | 等效電路 | zh_TW |
| dc.subject | 模態耦合理論 | zh_TW |
| dc.subject | Coupled mode theory | en |
| dc.subject | In-ear earplugs | en |
| dc.subject | Fano resonance | en |
| dc.subject | Ventilated silencing sturcture | en |
| dc.subject | Low frequency silencing | en |
| dc.subject | Equivalent circuit | en |
| dc.title | 應用Fano與Helmholtz共振設計空氣可流通之耳塞 | zh_TW |
| dc.title | Applications of Fano resonances and Helmholtz resonators for developing ventilated earplugs | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周元昉;陳蓉珊 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Fang Chou;Jung-San Chen | en |
| dc.subject.keyword | 入耳式耳塞,Fano 共振,透氣式消音結構,低頻降噪,等效電路,模態耦合理論, | zh_TW |
| dc.subject.keyword | In-ear earplugs,Fano resonance,Ventilated silencing sturcture,Low frequency silencing,Equivalent circuit,Coupled mode theory, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202402534 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 6.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
