Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93577
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許鉅秉zh_TW
dc.contributor.advisorJiuh-Biing Sheuen
dc.contributor.author蘇亞馬zh_TW
dc.contributor.authorSuryakant Kumaren
dc.date.accessioned2024-08-05T16:40:51Z-
dc.date.available2024-08-06-
dc.date.copyright2024-08-05-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citationAfèche, P., 2013. Incentive-compatible revenue management in queueing systems: Optimal strategic delay. Manuf Serv Oper Manag 15, 423–443.
Ahmed Khan, S., Kusi-Sarpong, S., Gupta, H., Kow Arhin, F., Nguseer Lawal, J., Mehmood Hassan, S., 2021. Critical factors of digital supply chains for organizational performance improvement. IEEE Trans Eng Manag.
Allgor, R., Cezik, T., Chen, D., 2023. Algorithm for robotic picking in amazon fulfillment centers enables humans and robots to work together effectively. INFORMS J Appl Anal 53, 266–282.
Amazon.com Inc., 2022. Look back on 10 years of Amazon robotics. https://www.aboutamazon.com/news/operations/10-years-of-amazon-robotics-how-robots-help-sort-packages-move-product-and-improve-safety (accessed 10.11.22).
Amazon.com Inc., 2021. Faster same-day delivery marks milestone by adding six new cities. https://www.aboutamazon.com/news/operations/faster-same-day-delivery-marks-milestone-by-adding-six-new-cities (accessed 10.2.22).
Amazon.com Inc., 2019. The story behind Amazon’s next generation robot. https://www.aboutamazon.com/news/innovation-at-amazon/the-story-behind-amazons-next-generation-robot (accessed 10.15.22).
Arai, T., Kato, R., Fujita, M., 2010. Assessment of operator stress induced by robot collaboration in assembly. CIRP Ann Manuf Technol 59, 5–8.
Azadeh, K., de Koster, R., Roy, D., 2019. Robotized and automated warehouse systems: review and recent developments. Transportation Science 53, 917–945.
Azadeh, K., Roy, D., de Koster, M.B.M.R., 2020. Dynamic policies for resource reallocation in a robotic mobile fulfillment system with time-varying demand. Eur J Oper Res.
Batt, R.J., Terwiesch, C., 2015. Waiting patiently: An empirical study of queue abandonment in an emergency department. Manage Sci 61, 39–59.
Battini, D., Calzavara, M., Persona, A., Sgarbossa, F., 2017. Additional effort estimation due to ergonomic conditions in order picking systems. Int J Prod Res 55, 2764–2774.
Battini, D., Glock, C.H., Grosse, E.H., Persona, A., Sgarbossa, F., 2016. Human energy expenditure in order picking storage assignment: A bi-objective method. Comput Ind Eng 94, 147–157.
Bauer, A., Wollherr, D., Buss, M., 2011. Human–robot collaboration: A survey. International Journal of Humanoid Robotics 5, 47–66.
Bolch, G., Greiner, S., Meer, H. de, Trivedi, K.S., 2008. Queueing networks and Markov Chains, 2nd edition by G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi. IIE Transactions 40, 567–568.
Boucherie, R.J., Van Dijk, N.M., 1993. A generalization of Norton’s theorem for queueing networks. Queueing Syst 13, 251–289.
Bowles, R., 2020. Warehouse robotics: Everything you need to know in 2019. https://www.logiwa.com/blog/warehouse-robotics (accessed 10.20.22).
Boysen, N., de Koster, R., Weidinger, F., 2019. Warehousing in the e-commerce era: A survey. Eur J Oper Res 277, 396–411.
Brown, A.S., 2022. How Amazon robots navigate congestion - Amazon Science. https://www.amazon.science/latest-news/how-amazon-robots-navigate-congestion (accessed 10.12.22).
Buitenhek, R., Van Houtum, G.J., Zijm, H., 2000. AMVA-based solution procedures for open queueing networks with population constraints. Ann Oper Res 93, 15–40.
Cachon, G., Terwiesch, C., 2012. Matching supply with demand: an introduction to operations management 520.
Calzavara, M., Glock, C.H., Grosse, E.H., Sgarbossa, F., 2019. An integrated storage assignment method for manual order picking warehouses considering cost, workload and posture. Int J Prod Res 57, 2392–2408.
Cammarano, A., Varriale, V., Michelino, F., Caputo, M., 2023. A framework for investigating the adoption of key technologies: Presentation of the methodology and explorative analysis of emerging practices. IEEE Trans Eng Manag. https://doi.org/10.1109/TEM.2023.3240213
Carissoli, C., Negri, L., Bassi, M., Storm, F.A., Delle Fave, A., 2023. Mental Workload and Human-Robot Interaction in Collaborative Tasks: A Scoping Review. Int J Hum Comput Interact. https://doi.org/10.1080/10447318.2023.2254639
Carlucho, I., De Paula, M., Villar, S.A., Acosta, G.G., 2017. Incremental Q-learning strategy for adaptive PID control of mobile robots. Expert Syst Appl 80, 183–199.
Casalino, A., Cividini, F., Zanchettin, A.M., Piroddi, L., Rocco, P., 2018a. Human-robot collaborative assembly: a use-case application. IFAC-PapersOnLine 51, 194–199.
Casalino, A., Messeri, C., Pozzi, M., Zanchettin, A.M., Rocco, P., Prattichizzo, D., 2018b. Operator awareness in human-robot collaboration through wearable vibrotactile feedback. IEEE Robot Autom Lett 3, 4289–4296.
Casella, G., Volpi, A., Montanari, R., Tebaldi, L., Bottani, E., 2023. Trends in order picking: a 2007–2022 review of the literature. Prod Manuf Res 11.
Cergibozan, Ç., Tasan, A.S., 2019. Order batching operations: an overview of classification, solution techniques, and future research. J Intell Manuf 30, 335–349.
Chandy, K.M., Herzog, U., Woo, L., 1975. Parametric analysis of queueing networks. IBM J Res Dev 19, 36–42.
Chang, Y., Garcia, A., Wang, Z., Sun, L., 2023. Structural estimation of partially observable Markov Decision Processes. IEEE Trans Automat Contr 68, 5135–5141.
Chen, N., Kang, W., Kang, N., Qi, Y., Hu, H., 2022. Order processing task allocation and scheduling for E-order fulfilment. Int J Prod Res 60, 4253–4267.
Cherubini, A., Giannone, F., Iocchi, L., Nardi, D., Palamara, P.F., 2010. Policy gradient learning for quadruped soccer robots. Rob Auton Syst 58, 872–878.
Chevalier, S., 2022. Global retail e-commerce market size 2014-2023. https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/ (accessed 9.26.22).
Choi, B.D., Kim, B., Chung, J., 2001. M/M/1 queue with impatient customers of higher priority. Queueing Syst 38, 49–66.
Choi, T.M., Kumar, S., Yue, X., Chan, H.L., 2022a. Disruptive technologies and operations management in the industry 4.0 era and beyond. Prod Oper Manag 31, 9–31.
Cimini, C., Lagorio, A., Pirola, F., Pinto, R., 2021. How human factors affect operators’ task evolution in Logistics 4.0. Human Factors and Ergonomics in Manufacturing & Service Industries 31, 98–117.
Colligan, T.W., Higgins, E.M., 2006. Workplace stress. J Workplace Behav Health 21, 89–97.
Cui, S., Veeraraghavan, S., 2016. Blind queues: The impact of consumer beliefs on revenues and congestion. Manage Sci 62, 3656–3672.
Day, M., 2021. Inside Amazon flagship fulfillment center where machines run the show. https://www.bloomberg.com/news/features/2021-09-21/inside-amazon-amzn-flagship-fulfillment-center-where-machines-run-the-show (accessed 11.12.22).
de Koster, R., Le-Duc, T., Roodbergen, K.J., 2007. Design and control of warehouse order picking: A literature review. Eur J Oper Res 182, 481–501.
Debo, L., Veeraraghavan, S., 2014. Equilibrium in queues under unknown service times and service value. Oper Res 62, 38–57.
Deborah, P., Leary, C., 2019. 50,000 Warehouses to use robots by 2025 as barriers to entry fall and AI innovation accelerates. https://www.businesswire.com/news/home/20190326005153/en/50000-Warehouses-Robots-2025-Barriers-Entry-Fall (accessed 9.21.22).
Do, H.T., Shunko, M., Lucas, M.T., Novak, D.C., 2018. Impact of behavioral factors on performance of multi-server queueing systems. Prod Oper Manag 27, 1553–1573.
Dubey, R., Bryde, D.J., Dwivedi, Y.K., Graham, G., Foropon, C., Papadopoulos, T., 2023. Dynamic digital capabilities and supply chain resilience: The role of government effectiveness. Int J Prod Econ 258, 108790.
Fragapane, G., de Koster, R., Sgarbossa, F., Strandhagen, J.O., 2021. Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. Eur J Oper Res 294, 405–426.
Futch, M., 2018. The dawn of the automated warehouse. https://www.mhlnews.com/technology-automation/article/22054947/the-dawn-of-the-automated-warehouse (accessed 10.13.22).
Gavirneni, S., Kulkarni, V.G., 2016. Self-selecting priority queues with burr distributed waiting costs. Prod Oper Manag 25, 979–992.
Gharehgozli, A., Zaerpour, N., 2020. Robot scheduling for pod retrieval in a robotic mobile fulfillment system. Transp Res E Logist Transp Rev 142, 102087.
Giannikas, V., Lu, W., Robertson, B., McFarlane, D., 2017. An interventionist strategy for warehouse order picking: Evidence from two case studies. Int J Prod Econ 189, 63–76.
Givi, Z.S., Jaber, M.Y., Neumann, W.P., 2015. Modelling worker reliability with learning and fatigue. Appl Math Model 39, 5186–5199.
Glock, C.H., Grosse, E.H., Abedinnia, H., Emde, S., 2019. An integrated model to improve ergonomic and economic performance in order picking by rotating pallets. Eur J Oper Res 273, 516–534.
Greene, J., 2021. Amazon monitors its warehouse staff, leading to unionization efforts. https://www.washingtonpost.com/technology/2021/12/02/amazon-workplace-monitoring-unions/ (accessed 9.24.22).
Grosse, E.H., Glock, C.H., 2015. The effect of worker learning on manual order picking processes. Int J Prod Econ 170, 882–890.
Grosse, E.H., Glock, C.H., Jaber, M.Y., Neumann, W.P., 2015. Incorporating human factors in order picking planning models: Framework and research opportunities. Int J Prod Res 53, 695–717.
Grosse, E.H., Glock, C.H., Neumann, W.P., 2017. Human factors in order picking: a content analysis of the literature. Int J Prod Res 55, 1260–1276.
Guo, P., Haviv, M., Luo, Z., Wang, Y., 2022. Optimal queue length information disclosure when service quality is uncertain. Prod Oper Manag 31, 1912–1927.
Haber, J., 2016. Amazon is redefining the supply chain. https://parcelindustry.com/article-4552-Amazon-Is-Redefining-the-Supply-Chain.html (accessed 2.20.24).
Halkos, G., Bousinakis, D., 2010. The effect of stress and satisfaction on productivity. International Journal of Productivity and Performance Management 59, 415–431.
Hanson, R., Medbo, L., Berlin, C., Hansson, J., 2018. Manual picking from flat and tilted pallet containers. Int J Ind Ergon 64, 199–212.
Hassin, R., Haviv, M., 1997. Equilibrium threshold strategies: The Case of queues with priorities. Oper Res 45, 966–973.
He, Q.C., Chen, Y.J., Righter, R., 2020. Learning with projection effects in service operations systems. Prod Oper Manag 29, 90–100.
He, Z., Aggarwal, V., Nof, S.Y., 2018. Differentiated service policy in smart warehouse automation. Int J Prod Res 56, 6956–6970.
Helm, M., Malikova, A., Kembro, J., 2023. Rooting out the root causes of order fulfilment errors: a multiple case study. Int J Prod Res. https://doi.org/10.1080/00207543.2023.2251060
Hopko, S.K., Khurana, R., Mehta, R.K., Pagilla, P.R., 2021. Effect of cognitive fatigue, operator sex, and robot assistance on task performance metrics, workload, and situation awareness in human-robot collaboration. IEEE Robot Autom Lett 6, 3049–3056.
Huang, K., Wang, K., Lee, P.K.C., Yeung, A.C.L., 2023. The impact of industry 4.0 on supply chain capability and supply chain resilience: A dynamic resource-based view. Int J Prod Econ 262, 108913.
Jaber, M.Y., Givi, Z.S., Neumann, W.P., 2013. Incorporating human fatigue and recovery into the learning–forgetting process. Appl Math Model 37, 7287–7299.
Jacob, F., Grosse, E.H., Morana, S., König, C.J., 2023. Picking with a robot colleague: A systematic literature review and evaluation of technology acceptance in human–robot collaborative warehouses. Comput Ind Eng 180, 109262.
JD.com, 2021. JD.com operates automated warehouses in Europe. https://jdcorporateblog.com/jd-com-operates-automated-warehouses-in-europe/ (accessed 8.22.22).
Jones, C., 2021. Autonomous mobile robots| Case study: Fulfillment - Saddle Creek Logistics Services. https://www.sclogistics.com/resource-center/case-studies/autonomous-mobile-robots-case-study-fulfillment/ (accessed 9.1.22).
Kaelbling, L.P., Littman, M.L., Cassandra, A.R., 1998. Planning and acting in partially observable stochastic domains. Artif Intell 101, 99–134.
Karasek, R.A., 1979. Job demands, job decision latitude, and mental strain: Implications for job redesign. Adm Sci Q 24, 285–308.
Kc, D.S., Terwiesch, C., 2009. Impact of workload on service time and patient safety: An econometric analysis of hospital operations. Manage Sci 55, 1486–1498.
Keshvarparast, A., Battini, D., Battaia, O., Pirayesh, A., 2023. Collaborative robots in manufacturing and assembly systems: literature review and future research agenda. J Intell Manuf 35, 2065–2118.
Khan, S.G., Herrmann, G., Lewis, F.L., Pipe, T., Melhuish, C., 2012. Reinforcement learning and optimal adaptive control: An overview and implementation examples. Annu Rev Control 36, 42–59.
Khoramshahi, M., Billard, A., 2019. A dynamical system approach to task-adaptation in physical human–robot interaction. Auton Robots 43, 927–946.
Kübler, P., Glock, C.H., Bauernhansl, T., 2020. A new iterative method for solving the joint dynamic storage location assignment, order batching and picker routing problem in manual picker-to-parts warehouses. Comput Ind Eng 147, 106645.
Kumar, S., Sheu, J.B., Kundu, T., 2023. Planning a parts-to-picker order picking system with consideration of the impact of perceived workload. Transp Res E Logist Transp Rev 173, 103088. https://doi.org/10.1016/J.TRE.2023.103088
Lagomarsino, M., Lorenzini, M., Balatti, P., Momi, E. De, Ajoudani, A., 2023. Pick the right co-worker: Online assessment of cognitive ergonomics in human-robot collaborative assembly. IEEE Trans Cogn Dev Syst 15, 1928–1937.
Lamballais, T., Merschformann, M., Roy, D., de Koster, M.B.M., Azadeh, K., Suhl, L., 2022. Dynamic policies for resource reallocation in a robotic mobile fulfillment system with time-varying demand. Eur J Oper Res 300, 937–952.
Lamballais, T., Roy, D., De Koster, M.B.M., 2017. Estimating performance in a robotic mobile fulfillment system. Eur J Oper Res 256, 976–990.
Larco, J.A., de Koster, R., Roodbergen, K.J., Dul, J., 2017. Managing warehouse efficiency and worker discomfort through enhanced storage assignment decisions. Int J Prod Res 55, 6407–6422.
Lauri, M., Hsu, D., Pajarinen, J., 2023. Partially observable Markov Decision Processes in robotics: A survey. IEEE Transactions on Robotics 39, 21–40.
Lecher, C., 2019. How Amazon automatically tracks and fires warehouse workers for productivity. https://www.theverge.com/2019/4/25/18516004/amazon-warehouse-fulfillment-centers-productivity-firing-terminations (accessed 10.24.22).
Lestingi, L., Zerla, D., Bersani, M.M., Rossi, M., 2023. Specification, stochastic modeling and analysis of interactive service robotic applications. Rob Auton Syst 163, 104387.
Lewis, F.L., Vrabie, D., Vamvoudakis, K.G., 2012. Reinforcement learning and feedback control: Using natural decision methods to design optimal adaptive controllers. IEEE Control Syst 32, 76–105.
Lewis, M., Sycara, K., Walker, P., 2018. The role of trust in human-robot interaction. Studies in Systems, Decision and Control 117, 135–159.
Li, J., Luo, X., Lu, X., Moriguchi, T., 2021. The double-edged effects of e-commerce cart retargeting: Does retargeting too early backfire? J Mark 85, 123–140.
Li, N., Wang, Z., 2023. Inventory control for omnichannel retailing between one warehouse and multiple stores. IEEE Trans Eng Manag. https://doi.org/10.1109/TEM.2023.3270376
Li, X., Hua, G., Huang, A., Sheu, J.-B., Cheng, T.C.E., Huang, F., 2020. Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system. Transp Res E Logist Transp Rev 144, 102158.
Li, Y., Carboni, G., Gonzalez, F., Campolo, D., Burdet, E., 2019. Differential game theory for versatile physical human–robot interaction. Nat Mach Intell 1, 36–43.
Li, Y., Ge, S.S., 2014. Human–robot collaboration based on motion intention estimation. IEEE/ASME Transactions on Mechatronics 19, 1007–1014.
Li, Y., Tee, K.P., Yan, R., Chan, W.L., Wu, Y., 2016. A framework of human-robot coordination based on game theory and policy iteration. IEEE Transactions on Robotics 32, 1408–1418.
Li, Z., Liu, J., Huang, Z., Peng, Y., Pu, H., Ding, L., 2017. Adaptive impedance control of human-robot cooperation using reinforcement learning. IEEE Transactions on Industrial Electronics 64, 8013–8022.
Li, Z., Wang, J., Liu, J., 2022. Integrative strategies for omnichannel order fulfillment with risk aversion. IEEE Trans Eng Manag. https://doi.org/10.1109/TEM.2022.3189690
List, B., 2012. Spending, decision-making & waiting. ORMS Today.
Liu, J., Zhou, Y.P., Chen, J., 2023. Customer segmentation and ex ante fairness: A queueing perspective. Prod Oper Manag.
Liu, L., Schoen, A.J., Henrichs, C., Li, J., Mutlu, B., Zhang, Y., Radwin, R.G., 2024. Human robot collaboration for enhancing work activities. Hum Factors 66, 158–179.
Liu, S., Hua, G., Cheng, T.C.E., Choi, J., 2022. Optimal pricing and quality decisions in supply chains with consumers’ anticipated regret and online celebrity retailers. IEEE Trans Eng Manag. https://doi.org/10.1109/TEM.2022.3144482
Liu, X., Huang, P., Ge, S.S., 2021. Optimized control for human-multi-robot collaborative manipulation via multi-player Q-learning. J Franklin Inst 358, 5639–5658.
Lombaert, T. De, Braekers, K., De Koster, R., Ramaekers, K., 2022. In pursuit of humanised order picking planning: methodological review, literature classification and input from practice. Int J Prod Res 1–31.
Lorenzini, M., Lagomarsino, M., Fortini, L., Gholami, S., Ajoudani, A., 2022. Ergonomic human-robot collaboration in industry: A review. Front Robot AI. https://doi.org/10.3389/FROBT.2022.813907
Loske, D., Klumpp, M., Grosse, E.H., Modica, T., Glock, C.H., 2023. Storage systems’ impact on order picking time: An empirical economic analysis of flow-rack storage systems. Int J Prod Econ 261, 108887.
Ma, B.J., Kuo, Y.-H., Jiang, Y., Huang, G.Q., 2023. RubikCell: Toward robotic cellular warehousing systems for e-commerce logistics. IEEE Trans Eng Manag 1–16.
Macdonald, W., 2003. The impact of job demands and workload on stress and fatigue. Aust Psychol 38, 102–117.
Mao, Z., Zhang, J., Sun, Y., Fang, K., Huang, D., 2024. Balancing parallel assembly lines with human-robot collaboration: problem definition, mathematical model and tabu search approach. Int J Prod Res.
Maoudj, A., Hentout, A., 2020. Optimal path planning approach based on Q-learning algorithm for mobile robots. Appl Soft Comput 97, 106796.
Matheson, E., Minto, R., Zampieri, E.G.G., Faccio, M., Rosati, G., 2019. Human–robot collaboration in manufacturing applications: A review. Robotics 2019, Vol. 8, Page 100 8, 100.
Merschformann, M., Lamballais, T., de Koster, M.B.M., Suhl, L., 2019. Decision rules for robotic mobile fulfillment systems. Operations Research Perspectives 6, 100128.
Messeri, C., Masotti, G., Zanchettin, A.M., Rocco, P., 2021. Human-robot collaboration: Optimizing stress and productivity based on game theory. IEEE Robot Autom Lett 6, 8061–8068.
Michel, R., 2016. Warehouse/DC operations survey: Ready to confront complexity. https://www.logisticsmgmt.com/article/2016_warehouse_dc_operations_survey_ready_to_confront_complexity (accessed 10.2.22).
Mirzaei, M., Zaerpour, N., de Koster, R., 2021. The impact of integrated cluster-based storage allocation on parts-to-picker warehouse performance. Transp Res E Logist Transp Rev 146, 102207.
Munzer, T., Toussaint, M., Lopes, M., 2018. Efficient behavior learning in human–robot collaboration. Auton Robots 42, 1103–1115.
Noohi, E., Zefran, M., Patton, J.L., 2016. A model for human-human collaborative object manipulation and its application to human-robot interaction. IEEE Transactions on Robotics 32, 880–896.
Nowé, A., Vrancx, P., De Hauwere, Y.-M., 2012. Game theory and multi-agent reinforcement learning, in: Wiering, M., van Otterlo, M. (Eds.), Reinforcement Learning: State-of-the-Art. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 441–470.
Panchetti, T., Pietrantoni, L., Puzzo, G., Gualtieri, L., Fraboni, F., 2023. Assessing the relationship between cognitive workload, workstation design, user acceptance and trust in collaborative robots. Applied Sciences 2023, Vol. 13, Page 1720 13, 1720.
Papakonstantinou, K.G., Shinozuka, M., 2014. Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation. Reliab Eng Syst Saf 130, 214–224.
Peternel, L., Tsagarakis, N., Caldwell, D., Ajoudani, A., 2018. Robot adaptation to human physical fatigue in human–robot co-manipulation. Auton Robots 42, 1011–1021.
Pinedo, M.L., 2012. Scheduling: Theory, Algorithms, and Systems: Fourth Edition. Springer US.
Proia, S., Carli, R., Cavone, G., Dotoli, M., 2022. Control techniques for safe, ergonomic, and efficient human-robot collaboration in the digital industry: A survey. IEEE Transactions on Automation Science and Engineering 19, 1798–1819.
Qin, H., Xiao, J., Ge, D., Xin, L., Gao, J., He, S., Hu, H., Carlsson, J.G., 2022. JD.com: Operations research algorithms drive intelligent warehouse robots to work. INFORMS Journal on Applied Analytics 52, 42–55.
Ramanathan, R., 2010. The moderating roles of risk and efficiency on the relationship between logistics performance and customer loyalty in e-commerce. Transp Res E Logist Transp Rev 46, 950–962.
Ratchford, B., Gauri, D.K., Jindal, R.P., Namin, A., 2023. Innovations in retail delivery: Current trends and future directions. J Retail 99, 547–562.
Rosales, C.R., Whipple, J.M., Blackhurst, J., 2019. The impact of distribution channel decisions and repeated stockouts on manufacturer and retailer performance. IEEE Trans Eng Manag 66, 312–324.
Roy, D., Nigam, S., de Koster, R., Adan, I., Resing, J., 2019. Robot-storage zone assignment strategies in mobile fulfillment systems. Transp Res E Logist Transp Rev 122, 119–142.
Schaufeli, W.B., Bakker, A.B., van Rhenen, W., 2009. How changes in job demands and resources predict burnout, work engagement, and sickness absenteeism. J Organ Behav 30, 893–917.
Sheridan, T.B., 2016. Human–robot interaction: Status and challenges. Hum Factors 58, 525–532.
Sheu, J.B., Choi, T.M., 2022. Can we work more safely and healthily with robot partners? A human-friendly robot–human-coordinated order fulfillment scheme. Prod Oper Manag 32, 794–812.
Shortle, J.F., Thompson, J.M., Gross, D., Harris, C.M., 2017. Fundamentals of Queueing Theory: Fifth Edition, John Wiley & Sons, Inc. wiley.
Srinivas, S., Marathe, R.R., 2020. Equilibrium in a finite capacity M/M/1 queue with unknown service rates consisting of strategic and non-strategic customers. Queueing Syst 96, 329–356.
Stolletz, R., Manitz, M., 2013. The impact of a waiting-time threshold in overflow systems with impatient customers. Omega (Westport) 41, 280–286.
Su, B., Jung, S.H., Lu, L., Wang, H., Qing, L., Xu, X., 2024. Exploring the impact of human-robot interaction on workers’ mental stress in collaborative assembly tasks. Appl Ergon 116.
Sun, K., Schlotfeldt, B., Pappas, G.J., Kumar, V., 2021. Stochastic motion planning under partial observability for mobile robots with continuous range measurements. IEEE Transactions on Robotics 37, 979–995.
Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco, J.M.A., 2010. Facilities planning, New Jersey: John Wiley & Sons. John Wiley & Sons.
van Gils, T., Ramaekers, K., Caris, A., de Koster, R.B.M., 2018. Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review. Eur J Oper Res 267, 1–15.
Vargas, V. de O., Kim, J.H., 2021. Learning-forgetting-fatigue-recovery simulation model. Lecture Notes in Networks and Systems 264, 135–142.
Villani, V., Pini, F., Leali, F., Secchi, C., 2018. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics 55, 248–266.
Virmani, N., Ravindra Salve, U., 2022. Significance of human factors and ergonomics (HFE): Mediating its role between Industry 4.0 implementation and operational excellence. IEEE Trans Eng Manag 1–14.
Wang, J., Baron, O., Scheller-Wolf, A., 2015. M/M/c queue with two priority classes. Oper Res 63, 733–749.
Wang, W., Gope, P., Cheng, Y., 2022. An AI-driven secure and intelligent robotic delivery system. IEEE Trans Eng Manag 1–16.
Wang, X.V., Kemény, Z., Váncza, J., Wang, L., 2017. Human–robot collaborative assembly in cyber-physical production: Classification framework and implementation. CIRP Annals 66, 5–8.
Wang, Y., 2020. Top international media visit JD’s Asia no. 1 warehouse. https://jdcorporateblog.com/top-international-media-visit-jds-asia-no-1-warehouse/ (accessed 9.12.22).
Wang, Z., Sheu, J.B., Teo, C.P., Xue, G., 2022a. Robot scheduling for mobile-rack warehouses: human–robot coordinated order picking systems. Prod Oper Manag 31, 98–116.
Ward, A.R., Armony, M., 2013. Blind fair routing in large-scale service systems with heterogeneous customers and servers. Oper Res 61, 228–243.
Weidinger, F., Boysen, N., Briskorn, D., 2018. Storage assignment with rack-moving mobile robots in KIVA warehouses. Transportation Science 52, 1479–1495.
Wurman, P.R., D’Andrea, R., Mountz, M., 2008. Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag.
Yadav, S., Choi, T.M., Luthra, S., Kumar, A., Garg, D., 2023. Using Internet of Things (IoT) in agri-food supply chains: A research framework for social good with network clustering analysis. IEEE Trans Eng Manag 70, 1215–1224.
Yang, L., Debo, L., Gupta, V., 2017. Trading time in a congested environment. Manage Sci 63, 2377–2395.
Young, J., 2021. Amazon Prime Day 2021: A look beyond the topline numbers. https://www.digitalcommerce360.com/2021/07/02/amazon-prime-day-2021-a-look-beyond-the-topline-numbers/ (accessed 10.24.22).
Young, L., 2024. Warehouse availability surges to highest level since the pandemic. https://www.wsj.com/articles/warehouse-availability-surges-to-highest-level-since-the-pandemic-bf1e0724 (accessed 3.7.24).
Yousefi Nejad Attari, M., Ebadi Torkayesh, A., Malmir, B., Neyshabouri Jami, E., 2021. Robust possibilistic programming for joint order batching and picker routing problem in warehouse management. Int J Prod Res 59, 4434–4452.
Yuan, R., Cezik, T., Graves, S.C., 2018. Stowage decisions in multi-zone storage systems. Int J Prod Res 56, 333–343.
Yuan, Z., Gong, Y.Y., 2017a. Bot-in-time delivery for robotic mobile fulfillment systems. IEEE Trans Eng Manag 64, 83–93.
Zhang, S., Chen, Y., Zhang, J., Jia, Y., 2020. Real-time adaptive assembly scheduling in human-multi-robot collaboration according to human capability. Proc IEEE Int Conf Robot Autom 3860–3866.
Zhong, Z., Cao, P., 2023. Balanced routing with partial information in a distributed parallel many-server queueing system. Eur J Oper Res 304, 618–633.
Žulj, I., Salewski, H., Goeke, D., Schneider, M., 2022. Order batching and batch sequencing in an AMR-assisted picker-to-parts system. Eur J Oper Res 298, 182–201.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93577-
dc.description.abstract現代電子商務供應鏈面臨不斷增加的顧客訂單挑戰。訂單量上升、勞動力限制以及快速、個性化的訂單交付需求,給倉庫帶來了巨大壓力。為應對這些挑戰,貨到人的訂單履行系統應運而生。該系統利用自主移動機器人取回物品並將其交付給人類工作者,在效率和適應性方面具有潛在的優勢。然而,要在貨到人系統中充分發揮人機協作的潛力,就需要深入了解人與機器人的協作。人為因素對貨到人系統的整體成功起著關鍵的作用。整合這些因素的周密計劃對於優化系統效率至關重要。本論文深入探討了貨到人的訂單履行系統中人為因素和訂單優先排序的具體方面,採用分析模型來指導戰略性決策。因此,本文分析在貨到人的背景下的人機協作,探討了倉庫規劃、設計和運營,以及提供相應的見解。
本文首次研究了感知工作負荷量,特別是人為因素對貨到人的訂單履行系統性能的影響。借助排隊理論,本文分析了部署機器人數量與隊列長度和系統吞吐量等指標之間的關係。此分析有助於揭示機器人的最佳部署水平,強調在設計系統時考慮人為因素的重要性。第二個目標探討了訂單優先級(例如“高級”訂單與普通訂單)在貨到人系統中的影響。利用賽局理論模型,該目標分析了接收不同訂單類型的機器人的隊列鏈接策略。研究結果可以動態管理訂單流量,最大限度地提高吞吐量,確保及時完成優先訂單,提高顧客滿意度。最後,本文研究了將壓力等額外人為因素納入貨到人的訂單揀貨系統的潛力。通過擴展以人為中心的分析,該目標旨在進一步優化在機器人輔助訂單履行環境中揀貨員的壓力和系統性能。
這項研究有助於深入地了解電子商務供應鏈背景下的人機協作。本文提供的見解可以改進訂單履行流程,提高顧客滿意度,以及創造對員工更友善的倉庫環境。
zh_TW
dc.description.abstractModern e-commerce supply chains face relentless challenges of fulfilling increasing customer orders. Rising volumes, labor constraints, and the demand for rapid, personalized order delivery place immense pressure on warehouses. To address these challenges, the parts-to-picker order fulfillment system has emerged. This system leverages autonomous mobile robots that retrieve items and deliver them to human workers, offering potential gains in efficiency and adaptability.
However, realizing the full potential of this human-robot collaboration in parts-to-picker system requires a deep understanding of the coordination between humans and robots. Human factors play a pivotal role in the overall success of a parts-to-picker system. Careful planning that integrates these factors is crucial to optimizing system efficiency. This thesis delves into specific aspects of human factors and order prioritization within parts-to-picker order fulfillment systems, employing analytical models to guide strategic decision-making. Accordingly, this thesis presents analyses of human-robot collaboration in the parts-to-picker context, exploring several objectives that offer insights for warehouse planning, design, and operation.
This thesis first investigates the impact of perceived workload, a key human factor, on the performance of parts-to-picker order fulfillment systems. Drawing on queuing theory, this objective analyzes the relationship between the number of deployed robots and metrics such as queue lengths and system throughput. This analysis aims to reveal optimal robot deployment levels and highlight the importance of designing systems with human factors in mind.
The second objective explores the implications of order prioritization (e.g., “prime” vs. regular orders) within a parts-to-picker system. Using game-theoretic models, this objective examines the queue-joining strategies of robots carrying different order types. The results can dynamically manage order flow to maximize throughput and ensure timely fulfillment of priority orders, enhancing customer satisfaction.
Finally, the thesis investigates the potential to incorporate additional human factors, such as stress, into the operational parts-to-picker model. By broadening the human-centric analysis, this objective seeks to further optimize pickers’ stress and system performance within a collaborative robot-assisted order fulfillment environment.
This work contributes to a deeper understanding of human-robot collaboration within the e-commerce supply chain context. It provides insights that can lead to enhanced order fulfillment processes, improved customer satisfaction, and the creation of more worker-friendly warehouse environments.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:40:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-05T16:40:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsDOCTORAL DISSERTATION ACCEPTANCE CERTIFICATE i
Acknowledgment ii
摘要 iii
Abstract v
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Unpredictable and Fluctuating Demand 1
1.1.2 Complexity of Individual Orders 2
1.1.3 The Need for Speed and Accuracy 2
1.1.4 Labor Intensity and Constraints 2
1.1.5 Limited Physical Capacity 3
1.2 Parts-to-Picker Systems and Human-Robot Collaboration 3
1.3 Motivation 4
1.4 Robot-Human Coordination and Industry 5.0 4
1.5 Objectives 5
1.6 Thesis Organization 5
1.6.1 Chapter 2: Literature Review 6
1.6.2 Chapter 3: Performance Analysis of Order Fulfillment Systems in Intelligent Warehouses: Considering Human Factors 6
1.6.3 Chapter 4: Strategic Planning for Efficient Order Fulfillment in Intelligent Warehouses Considering Customer Order Priority 6
1.6.4 Chapter 5: Adaptive Strategies for Human-Robot Coordinated Order Fulfillment in Intelligent Warehouses 7
1.6.5 Chapter 6: Conclusion and Future Scope 7
Chapter 2 Literature Review 8
2.1 Human Factors and Their Relevance to Intelligent Warehouse Operations 8
2.2 Customer Order Priority in Intelligent Warehouses 11
2.3 Adaptive Human-Robot Coordination in Intelligent Warehouses 15
2.4 Summary 19
Chapter 3 Performance Analysis of Order Fulfillment Systems in Intelligent Warehouses: Considering Human Factors 20
3.1 Background 20
3.2 Problem Description and Model Development 24
3.3 Solution Methodology 28
3.3.1 Analysis of SOQN-based Order-Picking Model 29
3.3.2 Analysis of Synchronization Station 32
3.4 Numerical Analysis and Results 34
3.4.1 Evaluation of the Proposed Model 34
3.4.2 Results and Discussions 36
3.4.3 Sensitivity Analysis 40
3.4.4 Comparative Study 40
3.5 Summary 42
Chapter 4 Strategic Planning for Efficient Order Fulfillment in Intelligent Warehouses Considering Customer Order Priority 44
4.1 Background 44
4.2 Model Development 49
4.2.1 Problem Description and Modeling 50
4.2.2 Equilibrium Analysis 55
4.3 Numerical Illustration 64
4.3.1 Analysis and Discussion 65
4.3.2 Performance Analysis 72
4.4 Summary 76
Chapter 5 Adaptive Strategies for Human-Robot Coordinated Order Fulfillment in Intelligent Warehouses 77
5.1 Background 77
5.2 Model Development 79
5.2.1 Problem Description 79
5.2.2 Human Stress and States Modeling 83
5.2.3 States of Robots 86
5.2.4 Robot Control Strategy 86
5.2.5 Dynamic Stochastic Modeling of System States 88
5.2.6 Non-cooperative Game for Simultaneously Optimizing Stress and Productivity 90
5.3 Equilibrium Analysis 94
5.4 Control Analysis 96
5.4.1 Initialization of System States, Control Variables and Other Inputs 97
5.4.2 Prior Predictions of System States 97
5.4.3 Correction of Prior Predictions 99
5.4.4 Estimation of Control Variables 100
5.5 Results and Discussion 101
5.6 Summary 106
Chapter 6 Conclusions and Recommendations 107
6.1 Concluding Remarks 107
6.2 Managerial Insights 108
6.2.1 Performance Analysis of Intelligent Warehouse Considering Human Factors 108
6.2.2 Strategic Considerations in Intelligent Warehouse Planning: Addressing Customer Order Prioritization 109
6.2.3 Adaptive Strategies for Human-Robot Coordination in Intelligent Warehouses 109
6.3 Research Limitations and Challenges 109
6.4 Suggestions for Future Research 110
References 112
Appendices 126
Thesis Disseminations 143
-
dc.language.isoen-
dc.subject賽局理論zh_TW
dc.subject電子商務運營zh_TW
dc.subject排隊理論zh_TW
dc.subject貨到人訂單履行zh_TW
dc.subject倉儲自動化zh_TW
dc.subject人機協作zh_TW
dc.subject以人為本的倉庫設計zh_TW
dc.subjectE-commerce operationsen
dc.subjectHuman-robot collaboration (HRC)en
dc.subjectWarehouse automationen
dc.subjectParts-to-picker order fulfillmenten
dc.subjectHuman-centric warehouse designen
dc.subjectQueueing theoryen
dc.subjectGame theoryen
dc.title機器人-人工協同整合之智慧物流系統zh_TW
dc.titleIntegration of Human-Robot Coordinated Systems into Intelligent Logisticsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳穆臻;陳振明;莊皓鈞;陳彥銘zh_TW
dc.contributor.oralexamcommitteeMu-Chen Chen;Jen-Ming Chen;Hao-Chun Chuang;Yenming J. Chenen
dc.subject.keyword人機協作,倉儲自動化,貨到人訂單履行,以人為本的倉庫設計,電子商務運營,排隊理論,賽局理論,zh_TW
dc.subject.keywordHuman-robot collaboration (HRC),Warehouse automation,Parts-to-picker order fulfillment,Human-centric warehouse design,E-commerce operations,Queueing theory,Game theory,en
dc.relation.page143-
dc.identifier.doi10.6342/NTU202402480-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-01-
dc.contributor.author-college管理學院-
dc.contributor.author-dept商學研究所-
dc.date.embargo-lift2029-07-28-
顯示於系所單位:商學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.26 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved