請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93575
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾惠斌 | zh_TW |
dc.contributor.advisor | Hui-Ping Tserng | en |
dc.contributor.author | 巫承翰 | zh_TW |
dc.contributor.author | Cheng-Han Wu | en |
dc.date.accessioned | 2024-08-05T16:40:08Z | - |
dc.date.available | 2024-08-06 | - |
dc.date.copyright | 2024-08-05 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-30 | - |
dc.identifier.citation | [1] 勞動部. 109 年報. Report, 勞動部, 2020.
[2] 陳維政. 應用穿戴裝置即時生理感測系統發展營建個人化工作負荷管理. PhD thesis, 國立台灣大學, July 2022. [3] Semtech. What are lora and lorawan? Report, Semtech. [4] 黃秀珍. 以營建業勞工儲備心率為基礎之機器學習分類模式與個人化安全管理之研究. Master’s thesis, 國立台灣大學, June 2023. [5] Wesam Salah Alaloul, Muhammad Ali Musarat, Muhammad Babar Ali Rabbani, Qaiser Iqbal, Ahsen Maqsoom, and Waqas Farooq. Construction sector contribution to economic stability: Malaysian gdp distribution. Sustainability, 13(9), 2021. [6] 勞動部職業安全衛生署. 統計資料 112. Report, 勞動部職業安全衛生署, 2023. [7] Ivan W.H. Fung, C.M. Tam, Karen C.F. Tung, and Ada S.K. Man. Safety cultural divergences among management, supervisory and worker groups in hong kong con struction industry. International Journal of Project Management, 23(7):504–512, 2005. [8] Danso Humphrey. Construction workers’ satisfaction with work provision requirement dimensions in ghana’s construction industry. International Journal of Engineering and Technology, 2:1613 – 1619, 2012. [9] Rafiq M. Choudhry and Dongping Fang. Why operatives engage in unsafe work behavior: Investigating factors on construction sites. Safety Science, 46:566–584, 2008. [10] Seokho Chi shchi, Sangwon Han, and Dae Young Kim. Relationship between unsafe working conditions and workers'behavior and impact of working conditions on injury severity in u.s. construction industry. Journal of Construction Engineering and Management, 139(7), 2012. [11] Jaafar Mohd Hafiidz, Arifin Kadir, Aiyub Kadaruddin, Razman Muhammad, M.I. Syakir, and Samsurijan Mohamad. Occupational safety and health (osh) management in construction industry: A review. International journal of occupational safety and ergonomics, 24(4):1–29, 2017. [12] Emad Abukhashabah, Ahmed Summan, and Mansour Balkhyour. Occupational accidents and injuries in construction industry in jeddah city. Saudi Journal of Biological Sciences, 27(8):1993–1998, 2020. [13] Bożena Hoła, Tomasz Nowobilski, Iwona Szer, and Jacek Szer. Identification of factors affecting the accident rate in the construction industry. Procedia Engineering, 208:35–42, 2017. [14] F. Rodrigues, A. Coutinho, and C. Cardoso. Correlation of causal factors that influ ence construction safety performance: A model. Work, 51(4):721–730, 2015. [15] U.K. Health and Safety Executive. Human factors: Fatigue. Report, U.K. Health and Safety Executive, 2022. [16] 鄭慶武and林楨中.行為安全活動介入營造業勞工行為改變之初探. 工業安全衛生, 327:25–40, 2016. [17] Muhammad Shafique and Muhammad Rafiq. An overview of construction occu pational accidents in hong kong: A recent trend and future perspectives. Applied Sciences, 9(10):2069, 2019. [18] Mariusz Szóstak. Analysis of occupational accidents in the construction industry with regards to selected time parameters. Open Engineering, 9(1):312–320, 2019. [19] S.S. Timofeeva, D.V. Ulrikh, and N.V. Tsvetkun. Professional risks in construction industry. Procedia Engineering, 206:911–917, 2017. [20] Dong Koo Kim and Sunyoung Park. An analysis of the effects of occupational ac cidents on corporate management performance. Safety Science, 138, 2021. [21] Low Sui Pheng and Quek Tai Chuan. Environmental factors and work performance of project managers in the construction industry. International Journal of Project Management, 24(1):24–37, 2006. [22] M. Abrey and J.J. Smallwood. The effects of unsatisfactory working conditions on productivity in the construction industry. Procedia Engineering, 85:3–9, 2014. [23] Neeraj Yadav, Neda Sadeghi, and Julian Kang. On-body placement of wear able safety promotion devices based on wireless communication for construction workers-on-foot: State-of-the-art review. Sensors, 22(9), 2022. [24] J. Karvonen and T. Vuorimaa. Heart rate and exercise intensity during sports activ ities. practical application. Sports Med, 5:303–311, 1988. [25] B. R. Londeree and M. L. Moeschberger. Effect of age and other factors on maximal heart rate. Research Quarterly for Exercise and Sport, 53(4):297–304, 1982. [26] Robert A. Robergs and Roberto Landwehr. The surprising history of the ’hrmax=220-age’ equation. Journal of Exercise Physiology Online, 5(2):1–10, 2002. [27] ANDREW S JACKSON. Estimating maximum heart rate from age: Is it a linear relationship? Medicine & Science in Sports & Exercise, 39(5):821, 2007. [28] K. Fox, J. Borer, and A. Camm et al. Resting heart rate in cardiovascular disease. Journal of the American College of Cardiology, 50(9):823–830, 2007. [29] D. Nanchen. Resting heart rate: what is normal? Heart, 104:1048–1049, 2018. [30] 陳錕鎰. 以 PPG 心率手環及心率變異數分析評估隧道工程勞工精神負荷. Master’s thesis, 國立台灣大學, July 2020. [31] Y. Tran, N. Wijesuriya, M. Tarvainen, P. Karjalainen, and A. Craig. The rela tionship between spectral changes in heart rate variability and fatigue. Journal of Psychophysiology, 23(3):143–151, 2009. [32] F.W. Hsu and C.J.Lin et al. Effects of elevation change on mental stress in high voltage. Applied Ergonomics, 56:101–107, 2016. [33] 曾偉菱. 心理壓力及自律神經活性與血壓高低程度之相關性. Master’s thesis, 國立陽明大學, 2009. [34] Shigeru Saito, Kyoko Tanobe, Makiko Yamada, and Fumio Nishihara. Relationship between arterial oxygen saturation and heart rate variability at high altitudes. The American Journal of Emergency Medicine, 23:8–12, 2005. [35] Scott Reule and Paul E. Drawz. Heart rate and blood pressure: Any possible implica tions for management of hypertension? Current Hypertension Reports, 14:478–484, 2013. [36] 蔡俊宇. 台灣營建勞工作業時工作耗能之調查研究-以泥作粉刷及防水修護作業為例. Master’s thesis, 朝陽科技大學, 2010. [37] O. Åstrand and K. Rodahl. Textbook of Work Physiology: Physiological Bases of Exercise. Human Kinetics, 2003. [38] Tariq S. Abdelhamid and John G. Everett. Physiological demands during construc tion work. Journal of Construction Engineering and Management, 128:427–437, 2002. [39] 衛沛文. 勞工代謝基本資料之先驅研究. 行政院勞工委員會勞工安全衛生研究所, 1998. [40] A. Alvanchi, S. Lee, and S. AbouRizk. Dynamics of working hours in construction. Journal ofconstruction engineering and management, 138(1):66–77, 2012. [41] S. Hwang and S. Lee. Wristband-type wearable health devices to measure construc tion workers’ physical demands. Automation in Construction, 83:330–340, 2017. [42] Ibukun Awolusi, Eric Marks, and Matthew Hallowell. Wearable technology for per sonalized construction safety monitoring and trending: Review of applicable de vices. Automation in Construction, 85(1):96–106, 2018. [43] Byungjoo Choi, Sungjoo Hwang, and SangHyun Lee. What drives construction workers’ acceptance of wearable technologies in the workplace?: Indoor localization and wearable health devices for occupational safety and health. Automation in Construction, 84:31–41, 2017. [44] Z. Sedighi Maman, M. A. Alamdar Yazdi, L. A Cavuoto, and F. M Megahed. A data-driven approach to modeling physical fatigue in the workplace using wearable sensors. Applied Ergonomics, 65:515–529, 2017. [45] Shancang Li, Li Da Xu, and Shanshan Zhao. The internet of things: a survey. Information Systems Frontiers, 17:243–259, 2015. [46] Aloÿs Augustin, Jiazi Yi, Thomas Clausen, and William Mark Townsley. A study of lora: Long range & low power networks for the internet of things. Sensors, 16(9):1466, 2016. [47] S. Devalal and A. Karthikeyan. Lora technology - an overview. Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pages 284–290, 2018. [48] Martin Bor, John Vidler, and Utz Roedig. Lora for the internet of things. EWSN, pages 361–366, 2016. [49] Jetmir Haxhibeqiri, Eli De Poorter, Ingrid Moerman, and Jeroen Hoebeke. A survey of lorawan for iot: From technology to application. Sensors, 18(11):3995, 2018. [50] Mehmet Ali Ertürk, Muhammed Ali Aydın, Muhammet Talha Büyükakkaşlar, and Hayrettin Evirgen. A survey on lorawan architecture, protocol and technologies. Future Internet, 11(10):216, 2019. [51] René Brandborg Sørensen, Dong Min Kim, Jimmy Jessen Nielsen, and Petar Popovski. Analysis of latency and mac-layer performance for class a lorawan. IEEE Wireless Communications Letters, 6:566–569, 2017. [52] M. M. Bundele and R. Banerjee. An svm classifier for fatigue-detection using skin conductance for use in the bits-lifeguard wearable computing system. International Conference on Emerging Trends in Engineering & Technology, pages 934–939, 2009. [53] Jianfeng Hu and Jianliang Min. Automated detection of driver fatigue based on eeg signals using gradient boosting decision tree model. Cognitive Neurodynamics, 12:431–440, 2018. [54] S. Dey, S. A. Chowdhury, S. Sultana, M. A. Hossain, M. Dey, and S. K. Das. Real time driver fatigue detection based on facial behaviour along with machine learn ing approaches. IEEE International Conference on Signal Processing, Information, Communication & Systems, pages 135–140, 2019. [55] X. Fan, B. C. Yin, and Y. F. Sun. Yawning detection for monitoring driver fatigue. International Conference on Machine Learning and Cybernetics, pages 664–668, 2007. [56] H. Wang, L. B. Zhou, and Y. Ying. A novel approach for real time eye state detection in fatigue awareness system. Conference on Robotics, Automation and Mechatronics, pages 528–532, 2010. [57] Rohit Hooda, Vedant Joshi, and Manan Shah. A comprehensive review of ap proaches to detect fatigue using machine learning techniques. Chronic Diseases and Translational Medicine, 8:26–35, 2022. [58] Devansh Shah, Samir Patel, and Santosh Kumar Bharti. Heart disease prediction using machine learning techniques. SN Computer Science, 1, 2020. [59] V. Sharma, S. Yadav, and M. Gupta. Heart disease prediction using machine learning techniques. International Conference on Advances in Computing, Communication Control and Networking, pages 177–181, 2020. [60] S. Mohan, C. Thirumalai, and G. Srivastava. Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, 7:81542–81554, 2019. [61] M. Oyeleye, T. Chen, S. Titarenko, and G. Antoniou. A predictive analysis of heart rates using machine learning techniques. International Journal of Environmental Research and Public Health, 19(4), 2022. [62] U Srinivasulu Reddy, Aditya Vivek Thota, and A Dharun. Machine learning tech niques for stress prediction in working employees. IEEE International Conference on Computational Intelligence and Computing Research, pages 1–4, 2018. [63] R. K. Nath, H. Thapliyal, A. Caban-Holt, and S. P. Mohanty. Machine learning based solutions for real-time stress monitoring. IEEE Consumer Electronics Magazineh, 9(5):34–41, 2020. [64] Lina Madaniyazi, Yong Zhou, Shanshan Li, and Yuming Guo. Outdoor temperature, heart rate and blood pressure in chinese adults: Effect modification by individual characteristics. Sci Rep, 15(6):21003, 2016. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93575 | - |
dc.description.abstract | 由於營建產業相對於其他行業的工作環境更為艱苦,存在較高的不確定性和風險因素,導致職業安全事故的發生率及死亡千人率遠高於其他行業。而造成工安事故有多種原因,包括人員、機具、工法及氣候等,其中異常的疲勞和過大的心理壓力是主要原因之一,因此除了探討工安意外的性質及工作環境的危險因子外,工人活動的實際生理狀況也是一個需要被關注的重點。此外,營建業的管理人員時常在龐大的工作負荷下到自身不熟悉的施工現場執行工作,這將提高職業災害發生的機率,由此可見若能預防工作疲勞所引發的不安全行為將有機會降低營建產業的職災發生率,為營建業人員增添一份保障。
過往研究雖有利用機器學習技術來預測疲勞及心臟病罹患機率等結果,但鮮少直接針對營建業管理人員的工作疲勞進行預測,亦或是用來建置模型的數據過於集中於某些特定人員,以致資料集不夠豐富,訓練之模型泛用性低。此外,隨著科技進步,生理感測裝置及傳輸技術突破以往的限制,使得本研究能夠以更輕便的裝置、更即時的傳輸技術來蒐集與應用高質量的生理資料。不僅如此,過往研究只能對疲勞狀況或生理指標做出預測的結果且相關的延伸內容只停留於理論階段,無法將其實際運用於現地的安全管理當中並預防風險發生,更重要的是營建業身為相對危險的產業卻沒有一個整體性的疲勞管理系統來確保相關人員的工作安全,使得職安人員不易從容地做到有效的負荷管理。 鑒於上述所言,本研究將使用生理感測手環搭配LoRa傳輸技術來蒐集營建業管理人員的心率資料,之後將使用資料進行工作疲勞預測並提出表現較佳之模型,除此之外將會設計個人的安全監測系統以觀察人員當前的生理狀態,最後將上述提及的兩部分交互應用以構築出一個綜合性的疲勞管理框架,如此使得職安人員得以遠端且即時對營建業之管理人員進行工作負荷管理,有效識別潛在的風險並提早針對可能的疲勞或壓力狀況採取適當的措施,避免其因身體疲勞或超出過往生理狀況而發生工作危害。 | zh_TW |
dc.description.abstract | Due to the tough working environment in the construction industry compared to other industries, there is a higher level of uncertainty and risk factors, leading to a significantly higher incidence of occupational safety accidents and a higher mortality rate than in other industries. There are many causes of occupational accidents, including personnel, machinery, construction methods, and weather conditions. Among these, abnormal fatigue and excessive psychological stress are one of the main reasons. Therefore, in addition to exploring the essence of occupational accidents and hazardous factors in the working environment, the actual physiological condition of workers is also a critical focus. Furthermore, management personnel in the construction industry often work on unfamiliar sites under heavy workloads, which increases the probability of occupational accidents. It is evident that prevention of unsafe behaviors caused by work fatigue could reduce the accident rate in the construction industry, providing extra protection for the workers.
Although previous studies have used machine learning techniques to predict fatigue and the likelihood of heart disease, few have directly targeted the work fatigue of construction industry managers, or the data used to train models has been overly concentrated on specific individuals, resulting in a data set that is not diverse enough and models with low versatility. Additionally, advancements in technology have overcome previous limitations in physiological sensing devices and transmission technologies, allowing this study to collect and use high-quality physiological data with lighter devices and more immediate transmission technologies. Moreover, previous studies were only able to make predictions about fatigue status or physical signs and their related extended content remained at a theoretical stage, which could not be practically applied in on-site safety management and prevent risks. More importantly, the construction industry, being a relatively hazardous sector, lacked a comprehensive safety management system to ensure the work safety of relevant personnel, making it difficult for occupational safety personnel to manage workloads effectively. Given the above, this study will use physiological sensing wristbands combined with LoRa transmission technology to collect heart rate data from management personnel in the construction industry. The data will then be used to predict work fatigue and propose a better-performing model. In addition, a personal safety monitoring system will be designed to ensure the current physiological state of the personnel. Finally, the aforementioned two components will be interactively applied to formulate a comprehensive safety management framework. This will enable occupational safety personnel to remotely manage the workload of construction industry managers, effectively identify potential risks, and take immediate measures against possible fatigue or stress conditions to prevent work-related accidents due to physical fatigue or conditions exceeding previous physical states. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:40:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-05T16:40:08Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 iii 摘要 v Abstract vii 目次 x 圖次 xiii 表次 xv 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 論文架構 5 第二章 文獻回顧 6 2.1 生理指標與體能負荷 6 2.2 穿戴式裝置與傳輸技術 9 2.3 機器學習預測模型 12 2.4 個人化安全區間 14 2.5 小結 15 第三章 研究方法 16 3.1 研究架構 16 3.2 資料蒐集 17 3.2.1 設備及實驗場域介紹 17 3.2.2 資料蒐集流程 20 3.2.3 資料處理 22 3.3 機器學習預測模型 23 3.3.1 模型使用之資料集 23 3.3.2 模型採用之特徵參數 24 3.3.3 機器學習模型建置及架構 28 3.4 個人安全監測 37 3.4.1 S 曲線之擬合 37 3.4.2 安全區間建置 39 3.4.3 安全監測方法 44 3.5 交互應用與分析 47 3.6 小結 47 第四章 研究結果 48 4.1 機器學習預測模型 48 4.1.1 資料及參數統計之結果 48 4.1.2 模型性能結果與其比較 51 4.1.3 現地疲勞等級預測結果 53 4.2 個人化安全區間 57 4.2.1 S 曲線擬合成果 57 4.2.2 個人安全區間建置結果 60 4.2.3 現地監測結果 61 4.3 交叉比對 65 4.4 小結 66 第五章 結論與未來展望 67 5.1 結論 67 5.2 研究限制 68 5.3 未來展望 70 參考文獻 72 | - |
dc.language.iso | zh_TW | - |
dc.title | 營建業管理人員工作疲勞監測系統之研究 | zh_TW |
dc.title | Fatigue Monitoring System for Construction Industry Managers | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 曾仁杰;詹瀅潔;林偲妘 | zh_TW |
dc.contributor.oralexamcommittee | Ren-Jie Dzeng;Ying-Chieh Chan;Szu-Yun Lin | en |
dc.subject.keyword | 心率手環,機器學習,疲勞監測,S 曲線, | zh_TW |
dc.subject.keyword | Smartwatch,Machine learning,,Fatigue monitoring,S curve, | en |
dc.relation.page | 79 | - |
dc.identifier.doi | 10.6342/NTU202402371 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-01 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 7.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。