請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93571完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林郁真 | zh_TW |
| dc.contributor.advisor | Angela Yu-Chen Lin | en |
| dc.contributor.author | 陳怡如 | zh_TW |
| dc.contributor.author | Yi-Ju Chen | en |
| dc.date.accessioned | 2024-08-05T16:38:42Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-28 | - |
| dc.identifier.citation | (1) Kissa, E. Fluorinated surfactants and repellents; CRC Press, 2001.
(2) Buck, R. C.; Franklin, J.; Berger, U.; Conder, J. M.; Cousins, I. T.; de Voogt, P.; Jensen, A. A.; Kannan, K.; Mabury, S. A.; van Leeuwen, S. P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 2011, 7 (4), 513-541. DOI: 10.1002/ieam.258 From NLM. (3) Olsen, G. W.; Mair, D. C.; Lange, C. C.; Harrington, L. M.; Church, T. R.; Goldberg, C. L.; Herron, R. M.; Hanna, H.; Nobiletti, J. B.; Rios, J. A.; et al. Per- and polyfluoroalkyl substances (PFAS) in American Red Cross adult blood donors, 2000–2015. Environmental Research 2017, 157, 87-95. DOI: https://doi.org/10.1016/j.envres.2017.05.013. (4) OECD. Reconciling Terminology of the Universe of Per-and Polyfluoroalkyl Substances: Recommendations and Practical Guidance, OECD Series on Risk Management, No. 61. OECD Publishing Paris: 2021. Wang, Z.; Buser, A. M.; Cousins, I. T.; Demattio, S.; Drost, W.; Johansson, O.; Ohno, K.; Patlewicz, G.; Richard, A. M.; Walker, G. W.; et al. A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environmental Science & Technology 2021, 55 (23), 15575-15578. DOI: 10.1021/acs.est.1c06896. (5) PFOS and PFOA Conversion to Short-Chain PFAS-Containing Materials Used in Semiconductor Manufacturing, Semiconductor PFAS Consortium Photolithography Working Group. 2023. (6) Semiconductor Industry Association, S. PFAS-Containing Surfactants Used in Semiconductor Manufacturing. Semiconductor PFAS consortium photolithography working group, ; 2023. (7) Glüge, J.; Scheringer, M.; Cousins, I. T.; DeWitt, J. C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C. A.; Trier, X.; Wang, Z. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts 2020, 22 (12), 2345-2373. DOI: 10.1039/d0em00291g From NLM. (8) Norden. SPIN – Substances in preparations in Nordic countries, http://www.spin2000.net/spinmyphp/,. published 2020, accessed April 8, 2020. (9) Butenhoff, J. L.; Olsen, G. W.; Pfahles-Hutchens, A. The applicability of biomonitoring data for perfluorooctanesulfonate to the environmental public health continuum. Environ Health Perspect 2006, 114 (11), 1776-1782. DOI: 10.1289/ehp.9060 From NLM. (10) PFOA Stewardship Program Baseline Year Summary Report. U.S. EPA. (11) US EPA. TSCA Section 8(a)(7) Reporting and Recordkeeping Requirements for Perfluoroalkyl and Polyfluoroalkyl Substances https://reurl.cc/A44b03, 2023. (12) Nielsen, C. J. Potential PFBS and PFHxS Precursors - literature study and theoretical assessment of abiotic degradation pathways leading to PFBS and PFHxS. University of Oslo, 2017. (13) Lin, A. Y.; Panchangam, S. C.; Lo, C. C. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environ Pollut 2009, 157 (4), 1365-1372. DOI: 10.1016/j.envpol.2008.11.033 From NLM. (14) Lin, A. Y.; Panchangam, S. C.; Tsai, Y. T.; Yu, T. H. Occurrence of perfluorinated compounds in the aquatic environment as found in science park effluent, river water, rainwater, sediments, and biotissues. Environ Monit Assess 2014, 186 (5), 3265-3275. DOI: 10.1007/s10661-014-3617-9 From NLM. (15) Wang, Z.; Cousins, I. T.; Scheringer, M.; Hungerbühler, K. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ Int 2013, 60, 242-248. DOI: 10.1016/j.envint.2013.08.021 From NLM. (16) Wang, Z.; Cousins, I. T.; Scheringer, M.; Hungerbuehler, K. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: status quo, ongoing challenges and possible solutions. Environ Int 2015, 75, 172-179. DOI: 10.1016/j.envint.2014.11.013 From NLM. (17) Krulikowski, L. J. a. S. Taiwan—The Silicon Island. Commission, U. S. I. T., Ed.; February 2024. (18) TSIA 2022年第四季暨2022全年台灣IC產業營運成果出爐. Taiwan Semiconductor Industry Association: February, 2023. . (19) Background on Semiconductor Manufacturing and PFAS, Semiconductor PFAS Consortium. 2023. (20) PFAS-Containing Photo-Acid Generators Used in Semiconductor Manufacturing, Semiconductor PFAS consortium photolithography working group, the Semiconductor Industry Association (SIA). 2023. (21) PFAS-Containing Materials Used in Semiconductor Manufacturing Assembly Test Packaging and Substrate Processes, Semiconductor PFAS Consortium Assembly, Test, Packaging and Substrates Working Group. 2023. (22) Semiconductor Industry Association, S. PFAS-Containing Wet Chemistries Used in Semiconductor Manufacturing, Semiconductor PFAS Consortium Wet Chemicals Working Group. 2023. (23) POPRC. Report on the assessment of alternatives to perfluorooctane sulfonic acid (PFOS), its salts and perfluorooctane sulfonyl fluoride (PFOSF); UNEP/POPS/POPRC.14/INF/13; 2019. (24) “Joint Statement of the 21st Meeting of World Semiconductor Council." World Semiconductor Council 21st Meeting. Kyoto. 2017. (25) Mueller, R.; Yingling, V. History and use of per-and polyfluoroalkyl substances (PFAS). Interstate Technology & Regulatory Council 2017. (26) Jacob, P.; Barzen-Hanson, K. A.; Helbling, D. E. Target and Nontarget Analysis of Per- and Polyfluoralkyl Substances in Wastewater from Electronics Fabrication Facilities. Environmental Science & Technology 2021, 55 (4), 2346-2356. DOI: 10.1021/acs.est.0c06690. (27) Jacob, P.; Helbling, D. E. Rapid and Simultaneous Quantification of Short- and Ultrashort-Chain Perfluoroalkyl Substances in Water and Wastewater. ACS ES&T Water 2023, 3 (1), 118-128. DOI: 10.1021/acsestwater.2c00446. (28) (OECD), O. f. E. C.-O. a. D. OECD Environment, Health and Safety Publications Series on Emission Scenario Documents No. 9: Emission Scenario Document on Photoresist Use in Semiconductor Manufacturing. https://one.oecd.org/document/env/jm/mono(2004)14/rev1/en/pdf. . 2010. . (29) Nason, S. L.; Koelmel, J.; Zuverza-Mena, N.; Stanley, C.; Tamez, C.; Bowden, J. A.; Godri Pollitt, K. J. Software Comparison for Nontargeted Analysis of PFAS in AFFF-Contaminated Soil. J Am Soc Mass Spectrom 2021, 32 (4), 840-846. DOI: 10.1021/jasms.0c00261 From NLM. (30) Jeong, Y.; Da Silva, K. M.; Iturrospe, E.; Fuiji, Y.; Boogaerts, T.; van Nuijs, A. L. N.; Koelmel, J.; Covaci, A. Occurrence and contamination profile of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in Belgian wastewater using target, suspect and non-target screening approaches. Journal of Hazardous Materials 2022, 437, 129378. DOI: https://doi.org/10.1016/j.jhazmat.2022.129378. (31) Liu, Y.; Pereira, A. D. S.; Martin, J. W. Discovery of C5–C17 Poly- and Perfluoroalkyl Substances in Water by In-Line SPE-HPLC-Orbitrap with In-Source Fragmentation Flagging. Analytical Chemistry 2015, 87 (8), 4260-4268. DOI: 10.1021/acs.analchem.5b00039. (32) Hensema, T. J.; Berendsen, B. J. A.; van Leeuwen, S. P. J. Non-targeted identification of per- and polyfluoroalkyl substances at trace level in surface water using fragment ion flagging. Chemosphere 2021, 265, 128599. DOI: 10.1016/j.chemosphere.2020.128599 From NLM. (33) Zweigle, J.; Bugsel, B.; Zwiener, C. FindPFΔS: Non-Target Screening for PFAS─Comprehensive Data Mining for MS(2) Fragment Mass Differences. Anal Chem 2022, 94 (30), 10788-10796. DOI: 10.1021/acs.analchem.2c01521 From NLM. (34) Wang, Y.; Yu, N.; Zhu, X.; Guo, H.; Jiang, J.; Wang, X.; Shi, W.; Wu, J.; Yu, H.; Wei, S. Suspect and Nontarget Screening of Per- and Polyfluoroalkyl Substances in Wastewater from a Fluorochemical Manufacturing Park. Environ Sci Technol 2018, 52 (19), 11007-11016. DOI: 10.1021/acs.est.8b03030 From NLM. (35) Liu, T.; Hu, L. X.; Han, Y.; Dong, L. L.; Wang, Y. Q.; Zhao, J. H.; Liu, Y. S.; Zhao, J. L.; Ying, G. G. Non-target and target screening of per- and polyfluoroalkyl substances in landfill leachate and impact on groundwater in Guangzhou, China. Sci Total Environ 2022, 844, 157021. DOI: 10.1016/j.scitotenv.2022.157021 From NLM. (36) Wang, X.; Yu, N.; Qian, Y.; Shi, W.; Zhang, X.; Geng, J.; Yu, H.; Wei, S. Non-target and suspect screening of per- and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants. Water Res 2020, 183, 115989. DOI: 10.1016/j.watres.2020.115989 From NLM. (37) Munoz, G.; Michaud, A. M.; Liu, M.; Vo Duy, S.; Montenach, D.; Resseguier, C.; Watteau, F.; Sappin-Didier, V.; Feder, F.; Morvan, T.; et al. Target and Nontarget Screening of PFAS in Biosolids, Composts, and Other Organic Waste Products for Land Application in France. Environ Sci Technol 2022, 56 (10), 6056-6068. DOI: 10.1021/acs.est.1c03697 From NLM. (38) Zhang, W.; Pang, S.; Lin, Z.; Mishra, S.; Bhatt, P.; Chen, S. Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. Environmental Pollution 2021, 272, 115908. DOI: https://doi.org/10.1016/j.envpol.2020.115908. (39) Zhang, L.; Lee, L. S.; Niu, J.; Liu, J. Kinetic analysis of aerobic biotransformation pathways of a perfluorooctane sulfonate (PFOS) precursor in distinctly different soils. Environ Pollut 2017, 229, 159-167. DOI: 10.1016/j.envpol.2017.05.074 From NLM. (40) ECHA 27023/5/1. https://echa.europa.eu/registration-dossier/-/registered-dossier/27023/5/1. (41) Mejia Avendaño, S.; Liu, J. Production of PFOS from aerobic soil biotransformation of two perfluoroalkyl sulfonamide derivatives. Chemosphere 2015, 119, 1084-1090. DOI: https://doi.org/10.1016/j.chemosphere.2014.09.059. (42) UNEP, D. SC-9/12. Listing of Perfluorooctanoic Acid (PFOA), its Salts and PFOA-Related Compounds. 2019; UNEP-POPS-COP.9-SC-9-12 Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants, Geneva, Switzerland (2019). (43) Posner, S.; Roos, S.; Poulsen, P. B.; Jörundsdottir, H. Ó.; Gunnlaugsdóttir, H.; Trier, D. X.; Jensen, A. A.; Katsogiannis, A. A.; Herzke, D.; Bonefeld-Jörgensen, E. C.; et al. Per and polyfluorinated substances in the Nordic Countries: Use, occurence and toxicology; Nordic Council of Ministers, 2013. (44) Cheremisinoff, N. P. Perfluorinated chemicals (PFCs): contaminants of concern; John Wiley & Sons, 2016. (45) Guidance on best available techniques and best environmental practices for the use of perfluorooctane sulfonic acid (PFOS) and related chemicals listed under the Stockholm Convention. UNEP: March 2017. (46) Renner, R. The long and the short of perfluorinated replacements. Environ Sci Technol 2006, 40 (1), 12-13. DOI: 10.1021/es062612a From NLM. (47) EPA and 3M ANNOUNCE PHASE OUT OF PFOS. May, 2000. (48) Loi, E. I. H.; Yeung, L. W. Y.; Mabury, S. A.; Lam, P. K. S. Detections of Commercial Fluorosurfactants in Hong Kong Marine Environment and Human Blood: A Pilot Study. Environmental Science & Technology 2013, 47 (9), 4677-4685. DOI: 10.1021/es303805k. (49) Poulsen, P. B.; Gram, L. K.; Jensen, A. A.; Rasmussen, A. A.; Ravn, C.; Møller, P.; Jørgensen, C.; Løkkegaard, K. Substitution of PFOS for use in non-decorative hard chrome plating; Environmental Protection Agency Washington, 2011. (50) REACH - Registration, Evaluation, Authorisation and Restriction of Chemicals Regulation. 2013. (51) Lucci, P.; Pacetti, D.; Núñez, O.; Frega, N. G. Current trends in sample treatment techniques for environmental and food analysis. Chromatography: The Most Versatile Method of Chemical Analysis. InTech 2012, 127-164. (52) Arsenault, J. C. Beginner's Guide to SPE: Solid-Phase Extraction; Waters Corporation, 2012. (53) Baduel, C.; Mueller, J. F.; Rotander, A.; Corfield, J.; Gomez-Ramos, M. J. Discovery of novel per- and polyfluoroalkyl substances (PFASs) at a fire fighting training ground and preliminary investigation of their fate and mobility. Chemosphere 2017, 185, 1030-1038. DOI: 10.1016/j.chemosphere.2017.06.096 From NLM. (54) Schymanski, E. L.; Singer, H. P.; Slobodnik, J.; Ipolyi, I. M.; Oswald, P.; Krauss, M.; Schulze, T.; Haglund, P.; Letzel, T.; Grosse, S.; et al. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem 2015, 407 (21), 6237-6255. DOI: 10.1007/s00216-015-8681-7 From NLM. (55) Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 2014, 48 (4), 2097-2098. DOI: 10.1021/es5002105 From NLM. (56) Charbonnet, J. A.; McDonough, C. A.; Xiao, F.; Schwichtenberg, T.; Cao, D.; Kaserzon, S.; Thomas, K. V.; Dewapriya, P.; Place, B. J.; Schymanski, E. L.; et al. Communicating Confidence of Per- and Polyfluoroalkyl Substance Identification via High-Resolution Mass Spectrometry. Environ Sci Technol Lett 2022, 9 (6), 473-481. DOI: 10.1021/acs.estlett.2c00206 From NLM. (57) Newton, S.; McMahen, R.; Stoeckel, J. A.; Chislock, M.; Lindstrom, A.; Strynar, M. Novel Polyfluorinated Compounds Identified Using High Resolution Mass Spectrometry Downstream of Manufacturing Facilities near Decatur, Alabama. Environ Sci Technol 2017, 51 (3), 1544-1552. DOI: 10.1021/acs.est.6b05330 From NLM. (58) McCord, J.; Strynar, M. Identification of Per- and Polyfluoroalkyl Substances in the Cape Fear River by High Resolution Mass Spectrometry and Nontargeted Screening. Environ Sci Technol 2019, 53 (9), 4717-4727. DOI: 10.1021/acs.est.8b06017 From NLM. (59) Parent, M.; Savu, P.; Flynn, R. Fluorinated surfactants for buffered acid etch solutions. US20040089840, 2004. (60) Savu, P.; Lamanna, W.; Parent, M. Fluorinated sulfonamide surfactants for aqueous cleaning solutions. US20050197273, 2005. (61) Chu, S.; Letcher, R. J.; McGoldrick, D. J.; Backus, S. M. A New Fluorinated Surfactant Contaminant in Biota: Perfluorobutane Sulfonamide in Several Fish Species. Environ Sci Technol 2016, 50 (2), 669-675. DOI: 10.1021/acs.est.5b05058 From NLM. (62) Maldonado, V. Y.; Schwichtenberg, T.; Schmokel, C.; Witt, S. E.; Field, J. A. Electrochemical Transformations of Perfluoroalkyl Acid (PFAA) Precursors and PFAAs in Landfill Leachates. ACS ES&T Water 2022, 2 (4), 624-634. DOI: 10.1021/acsestwater.1c00479. (63) Hogue, C. 3M admits to unlawful release of PFAS. C&EN Global Enterprise 2019, 97 (26), 16-16. DOI: 10.1021/cen-09726-polcon1. (64) Barrett, A. New 3M FBSA Scandal in Belgium. Bioplastics News, 2021. (65) Pickard, H. M.; Haque, F.; Sunderland, E. M. Bioaccumulation of Perfluoroalkyl Sulfonamides (FASA). Environmental Science & Technology Letters 2024. DOI: 10.1021/acs.estlett.4c00143. (66) Zhao, M.; Yao, Y.; Dong, X.; Baqar, M.; Fang, B.; Chen, H.; Sun, H. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances (PFAS) in Soils from an Oil Refinery in Southwestern China: A Combined Approach with TOP Assay. Environmental Science & Technology 2023, 57 (48), 20194-20205. DOI: 10.1021/acs.est.3c05859. (67) Fang, B.; Zhang, Y.; Chen, H.; Qiao, B.; Yu, H.; Zhao, M.; Gao, M.; Li, X.; Yao, Y.; Zhu, L.; et al. Stability and Biotransformation of 6:2 Fluorotelomer Sulfonic Acid, Sulfonamide Amine Oxide, and Sulfonamide Alkylbetaine in Aerobic Sludge. Environmental Science & Technology 2024. DOI: 10.1021/acs.est.3c05506. (68) Barrett, A. 3M Dumping me-FBSA and me-FBSE in Belgian Rivers. Bioplastics News, 2021. (69) Tennessee Riverkeeper Inc v. 3M Company (5:16-cv-01029). District Court, N.D. Alabama: 2021; Vol. Retrived Oct.2, 2023 from https://fingfx.thomsonreuters.com/gfx/legaldocs/lbvgnowzwpq/Riverkeeper%20Settlement%20Agreement%2010-19-21%20(002)-compressed.pdf?utm_source=Sailthru&utm_medium=email&utm_campaign=Outgoing%20Paul%20Hastings%20chair%20says%20top-down%20law%20firm%20culture%20waning&utm_term=DailyDocket-MailingList%20v2. (70) Rogers, C. O.; Lockwood, K. S.; Nguyen, Q. L.; Labbe, N. J. Diol isomer revealed as a source of methyl ketene from propionic acid unimolecular decomposition. International Journal of Chemical Kinetics 2021, 53 (12), 1272-1284. (71) Allred, B. M.; Lang, J. R.; Barlaz, M. A.; Field, J. A. Orthogonal zirconium diol/C18 liquid chromatography–tandem mass spectrometry analysis of poly and perfluoroalkyl substances in landfill leachate. Journal of Chromatography A 2014, 1359, 202-211. DOI: https://doi.org/10.1016/j.chroma.2014.07.056. (72) ECHA 27023/6/2/1. https://echa.europa.eu/registration-dossier/-/registered-dossier/27023/6/2/1. (73) Chen, Y.-J.; Wang, R.-D.; Shih, Y.-L.; Chin, H.-Y.; Lin, A. Y.-C. Emerging Perfluorobutane Sulfonamido Derivatives as a New Trend of Surfactants Used in the Semiconductor Industry. Environmental Science & Technology 2024, 58 (3), 1648-1658. DOI: 10.1021/acs.est.3c04435. (74) Neuwald, I. J.; Hübner, D.; Wiegand, H. L.; Valkov, V.; Borchers, U.; Nödler, K.; Scheurer, M.; Hale, S. E.; Arp, H. P. H.; Zahn, D. Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environmental Science & Technology 2022, 56 (10), 6380-6390. DOI: 10.1021/acs.est.1c07949. (75) Zhang, W.; Zhang, Y.; Taniyasu, S.; Yeung, L. W.; Lam, P. K.; Wang, J.; Li, X.; Yamashita, N.; Dai, J. Distribution and fate of perfluoroalkyl substances in municipal wastewater treatment plants in economically developed areas of China. Environ Pollut 2013, 176, 10-17. DOI: 10.1016/j.envpol.2012.12.019 From NLM. (76) Blackwell, J. M.; Rachmady, W.; Kearns, G. J.; Morrison, D. J. High K dielectric growth on metal triflate or trifluoroacetate terminated III-V semiconductor surfaces. US7763317B2, 2010. (77) Mulin, L.; Katz, D.; Riddell, N.; Plumb, R.; Burgess, J.; Jogsten, I. Reduction of LC/MS In-Source Fragmentation of HFPO-DA (GenX) Through Mobile Phase Additive Selection: Experiments to Increase [MH]-Formation. In DioXin 2018: 38th International Symposium on Halogenated Persistent Organic Pollutants, 2018; Society of Environmental Toxicology and Chemistry Krakow, Poland. Zweigle, J.; Bugsel, B.; Zwiener, C. FindPFΔS: Non-Target Screening for PFAS─Comprehensive Data Mining for MS2 Fragment Mass Differences. Analytical Chemistry 2022, 94 (30), 10788-10796. DOI: 10.1021/acs.analchem.2c01521. (78) Hatakeyama, J.; Ohashi, M. Resist Composition and Patterning Process. US20200073237, 2020. (79) Akiyama, Y.; Noya, G.; Kuramoto, K.; Takano, Y. Surface antireflection film forming composition and pattern forming method using the same. JP2009145658A, 2009. (80) Schulze, S.; Zahn, D.; Montes, R.; Rodil, R.; Quintana, J. B.; Knepper, T. P.; Reemtsma, T.; Berger, U. Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Research 2019, 153, 80-90. DOI: https://doi.org/10.1016/j.watres.2019.01.008. (81) Brunn, H.; Arnold, G.; Körner, W.; Rippen, G.; Steinhäuser, K. G.; Valentin, I. PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environmental Sciences Europe 2023, 35 (1), 20. DOI: 10.1186/s12302-023-00721-8. (82) ECHA: substance info card—trifluoromethanesulphonic acid. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.014.625. (83) Lee, C.-T. Development and advanced characterization of novel chemically amplified resists for next generation lithography; Georgia Institute of Technology, 2008. Christopher, K. O.; Florian, K.; Jingyuan, D. Review of essential use of fluorochemicals in lithographic patterning and semiconductor processing. Journal of Micro/Nanopatterning, Materials, and Metrology 2022, 21 (1), 010901. DOI: 10.1117/1.JMM.21.1.010901. (84) Lange, C. C. Anaerobic biotransformation of N-methyl perfluorobutanesulfonamido ethanol and N-ethyl perfluorooctanesulfonamido ethanol. Environmental Toxicology and Chemistry 2018, 37 (3), 768-779. DOI: https://doi.org/10.1002/etc.4014. (85) Paul, A. G.; Jones, K. C.; Sweetman, A. J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environmental science & technology 2009, 43 (2), 386-392. (86) Benskin, J. P.; De Silva, A. O.; Martin, J. W. Isomer profiling of perfluorinated substances as a tool for source tracking: a review of early findings and future applications. Reviews of Environmental Contamination and Toxicology Volume 208: Perfluorinated alkylated substances 2010, 111-160. (87) Londhe, K.; Lee, C.-S.; McDonough, C. A.; Venkatesan, A. K. The Need for Testing Isomer Profiles of Perfluoroalkyl Substances to Evaluate Treatment Processes. Environmental Science & Technology 2022, 56 (22), 15207-15219. DOI: 10.1021/acs.est.2c05518. (88) Loewen, M.; Halldorson, T.; Wang, F.; Tomy, G. Fluorotelomer Carboxylic Acids and PFOS in Rainwater from an Urban Center in Canada. Environmental Science & Technology 2005, 39 (9), 2944-2951. DOI: 10.1021/es048635b. (89) Jin, B.; Liu, H.; Che, S.; Gao, J.; Yu, Y.; Liu, J.; Men, Y. Substantial defluorination of polychlorofluorocarboxylic acids triggered by anaerobic microbial hydrolytic dechlorination. Nat Water 2023, 1 (5), 451-461. DOI: 10.1038/s44221-023-00077-6 From NLM. (90) Yang, J.-S.; Lai, W. W.-P.; Lin, A. Y.-C. New insight into PFOS transformation pathways and the associated competitive inhibition with other perfluoroalkyl acids via photoelectrochemical processes using GOTiO2 film photoelectrodes. Water Research 2021, 207, 117805. DOI: https://doi.org/10.1016/j.watres.2021.117805. (91) Jin, B.; Zhu, Y.; Zhao, W.; Liu, Z.; Che, S.; Chen, K.; Lin, Y.-H.; Liu, J.; Men, Y. Aerobic Biotransformation and Defluorination of Fluoroalkylether Substances (ether PFAS): Substrate Specificity, Pathways, and Applications. Environmental Science & Technology Letters 2023, 10 (9), 755-761. DOI: 10.1021/acs.estlett.3c00411. (92) Arvaniti, O. S.; Stasinakis, A. S. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci Total Environ 2015, 524-525, 81-92. DOI: 10.1016/j.scitotenv.2015.04.023 From NLM. (93) Zhao, S.; Ma, X.; Fang, S.; Zhu, L. Behaviors of N-ethyl perfluorooctane sulfonamide ethanol (N-EtFOSE) in a soil-earthworm system: Transformation and bioaccumulation. Science of The Total Environment 2016, 554-555, 186-191. DOI: https://doi.org/10.1016/j.scitotenv.2016.02.180. (94) Chu, S.; Letcher, R. J. In vitro metabolic formation of perfluoroalkyl sulfonamides from copolymer surfactants of pre- and post-2002 scotchgard fabric protector products. Environ Sci Technol 2014, 48 (11), 6184-6191. DOI: 10.1021/es500169x From NLM. (95) Yoon, C.; Kim, S.; Park, D.; Choi, Y.; Jo, J.; Lee, K. Chemical Use and Associated Health Concerns in the Semiconductor Manufacturing Industry. Safety and Health at Work 2020, 11 (4), 500-508. DOI: https://doi.org/10.1016/j.shaw.2020.04.005 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93571 | - |
| dc.description.abstract | 全氟與多氟烷基物質(Per- and polyfluoroalkyl substances, PFAS)是含有CF2或CF3結構的人造物質,化合物種類多達上萬種,因其穩定性和特殊的物理化學性質,廣泛應用於工業和民生用品。然而,多數PFAS具有持久性、生物累積性和毒性,斯德哥爾摩公約已將全氟辛烷磺酸(Perfluorooctane sulfonate, PFOS)等長鏈PFAS列為持久性有機污染物並禁止使用,工業現已轉向使用新型PFAS替代長鏈PFAS。本研究旨在使用液相層析高解析質譜儀開發無需使用標準品的新型非目標物鑑定方法,用以辨識新興PFAS及其環境降解產物,藉由掌握PFAS獨特的質譜碎片資訊,我們建立了質譜碎片掃描和中性丟失掃描模式,首次運用[SO2NC2H4O]–碎片掃描具磺醯胺乙醇結構的PFAS及中性損失CH2CO2掃描具磺醯胺乙酸結構的PFAS。配製一個品管樣品具有11類亞種共39種PFAS的混合標準品,運用本次開發出來的非目標物鑑定方法,可成功鑑定出混合標準品樣品中36種PFAS,鑑別率達92%。由於半導體產業表示PFAS對於製程的良率至關重要,雖然宣稱已停用PFOS,但其替代物質的資訊仍然有限。我們透過開發之新型鑑定方法,調查了半導體業廢水和其污水處理廠放流水,從採集5家半導體廠的10個廢水樣品中,我們成功鑑定了83種PFAS,涵蓋12類亞群,其中有30種是首次被鑑定之結構,在這些半導體廢水中的主要PFAS化合物是全氟丁烷磺醯胺衍生物,包括全氟丁烷磺醯胺乙醇(Perfluorobutane sulfonamidoethanol, FBSE)、全氟丁烷磺醯胺(Perfluorobutane sulfonamdie, FBSA)和全氟丁烷磺醯胺二乙醇(Perfluorobutane sulfonamido diethanol, FBSEE diol),其最高廢水濃度分別為482 μg/L、141 μg/L與83.5 μg/L。此外,在樣品中還篩測出三種超短鏈全氟烷基酸(Perfluoroalkyl acids, PFAAs),濃度介於0.004 μg/L到 19.9 μg/L之間。半導體業廢水經三個污水處理廠處理後,發現全氟丁烷磺醯胺乙酸(Perfluorobutane sulfonamido acetic acid, FBSAA)系列在放流水濃度顯著提高(65%-82%),顯示生物處理將FBSE轉化為FBSAA。本研究亦對FBSEE diol的中間代謝物進行辨識,藉由實驗室的模擬試驗反應,提出了一種新的FBSEE diol代謝途徑。綜整半導體廢水與放流水中PFAS種類與濃度,全氟丁烷磺醯胺衍生物占90% (1934 μg/L),而過去常獲得關注的全氟烷基酸類僅占10%(205 μg/L),表明新興全氟丁烷磺醯胺衍生物可能成為半導體行業的新趨勢與替代品,並通過污水處理廠之生物降解機制轉化成FBSAA而排入環境。 | zh_TW |
| dc.description.abstract | Per- and polyfluoroalkyl substances (PFAS) are synthetic compounds with at least one perfluorinated methyl (–CF3) or methylene group (–CF2–), comprising over ten thousand types. Their stability and unique properties make them widely used in industrial and consumer products. However, many PFAS are persistent, bioaccumulative, and toxic. The Stockholm Convention has banned long-chain PFAS like perfluorooctane sulfonate (PFOS) as persistent organic pollutants, prompting industries to adopt new PFAS alternatives. This study aimed to develop a novel nontarget approach to identify emerging PFAS and their environmental degradation products by liquid chromatography coupled to high-resolution mass spectrometry. A distinct fragment- based approach has been established to identify the hydrophobic and hydrophilic features of acidic and neutral fluorosurfactants through fragments and neutral losses, including those outside the homologous series. This method introduces the sulfonamido ethanol fragment [SO2NC2H4O]– and the neutral loss of CH2CO2 as novel indicator. In a mixture of PFAS standards, 92% (36 out of 39 compounds across 11 classes) were detectable using the fragment-based nontarget procedure. This demonstrates the method's effectiveness in identifying the hydrophobic and hydrophilic properties of various fluorosurfactants. The semiconductor industry has claimed that PFOS has been eliminated from semiconductor production; however, information about the use of alternative compounds remains limited. Ten sewage samples from 5 semiconductor plants were analyzed with target and nontarget analysis. Among the 83 identified PFAS spanning 12 subclasses, 30 were identified for the first time. The dominant identified PFAS compounds were C4 sulfonamido derivatives, including perfluorobutane sulfonamido ethanol (FBSE), perfluorobutane sulfonamide (FBSA), and perfluorobutane sulfonamido diethanol (FBSEE diol), with maximum concentrations of 482 μg/L, 141 μg/L, and 83.5 μg/L in sewage, respectively. Subsequently, three ultrashort chain perfluoroalkyl acids (PFAAs) were identified in samples, ranging from 0.004 to 19.9 μg/L. Three effluent samples from the associated industrial wastewater treatment plants (WWTPs) were further analyzed. This finding, that the C4 sulfonamido acetic acid series constitutes a significant portion (65%−82%) of effluents from WWTP3 and WWTP4, emphasizes the conversion of fluorinated alcohols to fluorinated acids during aerobic treatment. The identification of the intermediate metabolites of FBSEE diol, further supported by our laboratory batch studies, prompts the proposal of a novel metabolic pathway for FBSEE diol. The total amount of perfluorobutane sulfonamido derivatives reached 1934 μg/L (90%), while that of PFAAs, which have typically received attention, was only 205 μg/L (10%). This suggests that perfluorobutane sulfonamido derivatives are emerging as a new trend in fluorosurfactants used in the semiconductor industry, serving as PFAS precursors and contributing to the release of their metabolites into the environment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:38:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:38:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 III
中文摘要 IV ABSTRACT VI CONTENT IX List of Figures XIII List of Tables XVII List of Abbreviations and Symbols XX 1. Introduction 1 1.1. Background 1 1.2. Hypothesis 12 1.3. Objectives 12 1.4. Dissertation overview 13 2. Literature Review 15 2.1. Alternatives to Long-chain PFAS 15 2.2. Surface Treatment of Textile, Leather and Carpets 17 2.3. Food Packaging 19 2.4. Metal (chromium) Plating 21 2.5. Semiconductor industry 22 2.5.1. PFAS Used in Photoresists 24 2.5.1.1. Photo-acid generator (PAG) in Photoresists 25 2.5.1.2. Photosensitizer in Photoresists 27 2.5.1.3. Surfactants in Photoresists 27 2.5.2. Anti-reflective Coatings (ARCs) 27 2.5.3. Developer Rinse Solution 28 2.5.4. Etching Agent for Semiconductor 28 2.6. Pretreatment for Concentration of Environmental Samples 31 2.7. Detection and Discovery of PFAS and Their Alternative 35 2.7.1. Nontarget Screening of PFAS and Their Alternative 39 2.7.1.1. Homologous Series and Mass Defect Analysis 39 2.7.1.2. Fragment-Based Screening 41 2.7.2. Knowledge Gap for Current Nontarget Approach of PFAS 43 3. Experimental Section 45 3.1. Sample Collection 45 3.2. Materials 49 3.3. Target Analysis 54 3.3.1. Pretreatment 54 3.3.2. Instrumental Setup 54 3.3.3. Quantitation of Target Analysis 58 3.3.4. QA/QC of Target Analysis 59 3.4. Nontarget Analysis 60 3.4.1. Pretreatment 60 3.4.2. Instrumental Setup 61 3.4.3. Workflow of Nontarget Analysis 64 3.4.4. Quantification of CL-1 identified PFAS 72 3.4.5. Semi-quantification of tentatively identified PFAS 73 3.4.6. QA/QC of Nontarget Analysis 75 3.4.6.1. Verification of Solid Phase Extraction 75 3.4.6.2. Verification of Nylon Filtration 77 3.4.6.3. Verification of Workflow of Nontarget Analysis 77 3.5. Degradation Experiment of FBSEE Diol in Activated Sludge and Its Pretreatment 80 4. Results and discussion 82 4.1. Target Analysis 82 4.2. Nontarget analysis 93 4.2.1. Novel approach 93 4.2.2. Terminology 103 4.2.3. Concentrations of Nontarget PFAS 149 4.2.3.1. Calibration of CL1-identified PFAS 149 4.2.3.2. Semi-quantitative Process 150 4.2.3.3. Quantitation/ Semi-quantitation 151 4.2.4. QA/QC Sample of Nontarget Analysis 159 4.2.4.1. Verification of Recovery of SPE 159 4.2.4.2. Verification of Filtration Loss During SPE 163 4.2.4.3. Verification of Nontarget Analysis Efficiency 165 4.3. The Composition of PFAS in the Semiconductor Plants and WWTP Effluents 173 4.4. Byproducts from Chemical Formulation 175 4.5. Transformation Products and Reaction Products 179 4.5.1. Aldehyde and Hydration Products from Oxidation of FBSE 179 4.5.2. Aerobic Transformation Pathway of FBSEE diol 182 4.5.3. Reaction products 187 5. Conclusions, Experimental Implication, and Suggestions 191 5.1. Conclusions 191 5.2. Environmental implications 193 5.3. Suggestions 195 6. References 197 7. Appendix 206 | - |
| dc.language.iso | en | - |
| dc.subject | 全氟與多氟烷基物質 | zh_TW |
| dc.subject | 半導體業 | zh_TW |
| dc.subject | 全氟丁烷磺醯胺 | zh_TW |
| dc.subject | 全氟丁烷磺醯胺乙醇 | zh_TW |
| dc.subject | 全氟丁烷磺醯胺乙酸 | zh_TW |
| dc.subject | 降解產物 | zh_TW |
| dc.subject | 前驅物 | zh_TW |
| dc.subject | Precursors | en |
| dc.subject | Per- and polyfluoroalkyl substances (PFAS) | en |
| dc.subject | Metabolites | en |
| dc.subject | Semiconductor industry | en |
| dc.subject | Perfluorobutane sulfonamide | en |
| dc.subject | Perfluorobutane sulfonamido ethanol | en |
| dc.subject | Perfluorobutane sulfonamido acetic acid | en |
| dc.title | 環境中新穎全氟化合物的探測與發現 – 以半導體業廢水為例 | zh_TW |
| dc.title | Detection and Discovery of Novel Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in the Environment – A Case Study of Semiconductor Wastewater | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林逸彬;侯嘉洪;駱尚廉;何國榮;陳家揚;于昌平 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Pin Lin;Chia-Hung Hou;Shang-Ling Lo;Guor-Rong Her;Chia-Yang Chen;Chang-Ping Yu | en |
| dc.subject.keyword | 全氟與多氟烷基物質,半導體業,全氟丁烷磺醯胺,全氟丁烷磺醯胺乙醇,全氟丁烷磺醯胺乙酸,降解產物,前驅物, | zh_TW |
| dc.subject.keyword | Per- and polyfluoroalkyl substances (PFAS),Semiconductor industry,Perfluorobutane sulfonamide,Perfluorobutane sulfonamido ethanol,Perfluorobutane sulfonamido acetic acid,Metabolites,Precursors, | en |
| dc.relation.page | 212 | - |
| dc.identifier.doi | 10.6342/NTU202402180 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 16.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
