Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93560
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃倬英zh_TW
dc.contributor.advisorCho-Ying Huangen
dc.contributor.author劉彥均zh_TW
dc.contributor.authorYang-Jyun Liouen
dc.date.accessioned2024-08-05T16:34:59Z-
dc.date.available2024-08-06-
dc.date.copyright2024-08-05-
dc.date.issued2024-
dc.date.submitted2024-07-26-
dc.identifier.citation中文文獻
Change, P. (2012)。蓮華池試驗林梅雨降雨型態變遷與植生變分析。JOURNAL OF GEOGRAPHICAL SCIENCE,66,第67-86頁。
康家韶 (2008)。棲蘭山區亞熱帶雲霧林台灣扁柏冠層養分之動態。國立臺灣大學森林環境暨資源學系碩士論文,100頁。
劉俊毅 (2008)。棲蘭山區臺灣扁柏老熟林及次生林枯落物養分動態。國立臺灣大學森林環境暨資源學系碩士論文,68頁。
英文文獻
Anosh Fatima, Nosheen Nazir, and Muhammad Gufran Khan. 2017. “Data Cleaning In Data Warehouse: A Survey of Data Pre-Processing Techniques and Tools.” International Journal of Information Technology and Computer Science 9 (3): 50–61.
Ben Naceur, Mostefa, Mohamed Akil, Rachida Saouli, and Rostom Kachouri. 2020. “Fully Automatic Brain Tumor Segmentation with Deep Learning-Based Selective Attention Using Overlapping Patches and Multi-Class Weighted Cross-Entropy.”Medical Image Analysis 63 (July):101692.
Bhattacharyya, Siddhartha. 2011. “A Brief Survey of Color Image Preprocessing and Segmentation Techniques.” Journal of Pattern Recognition Research 6 (1): 120–29.
Chu, Xu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. “Data Cleaning: Overview and Emerging Challenges.” In Proceedings of the 2016 International Conference on Management of Data, 2201–6. San Francisco California USA: ACM.
Erwin. 2020. “Improving Retinal Image Quality Using the Contrast Stretching, Histogram Equalization, and CLAHE Methods with Median Filters.” International Journal of Image, Graphics and Signal Processing 12 (2): 30–41.
Finér, Leena, Mizue Ohashi, Kyotaro Noguchi, and Yasuhiro Hirano. 2011. “Factors Causing Variation in Fine Root Biomass in Forest Ecosystems.” Forest Ecology and Management 261 (2): 265–77.
Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998). Multiscale vessel enhancement filtering. In Medical Image Computing and Computer-Assisted Intervention—MICCAI’98: First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings 1 (pp. 130-137). Springer Berlin Heidelberg.
Galdran, Adrian. 2022. “State-of-the-Art Retinal Vessel Segmentation with Minimalistic Models.” Scientific Reports.
Guyon, Isabelle, and André Elisseeff. 2006. “An Introduction to Feature Extraction.” In Feature Extraction, edited by Isabelle Guyon, Masoud Nikravesh, Steve Gunn, and Lotfi A. Zadeh, 207:1–25. Studies in Fuzziness and Soft Computing. Berlin, Heidelberg: Springer Berlin Heidelberg.
Islam, Muhammad, Kaleem Nawaz Khan, and Muhammad Salman Khan. 2021. “Evaluation of Preprocessing Techniques for U-Net Based Automated Liver Segmentation.” In 2021 International Conference on Artificial Intelligence (ICAI), 187–92. Islamabad, Pakistan: IEEE.
Jackson, R. B., H. A. Mooney, and E.-D. Schulze. 1997. “A Global Budget for Fine Root Biomass, Surface Area, and Nutrient Contents.” Proceedings of the National Academy of Sciences 94 (14): 7362–66.
Liu, Sheng, Huanran Ye, Kun Jin, and Haohao Cheng. 2021. “CT-UNet: Context-Transfer-UNet for Building Segmentation in Remote Sensing Images.” Neural Processing Letters 53 (6): 4257–77.
Long, Jonathan, Evan Shelhamer, and Trevor Darrell. 2015. “Fully Convolutional Networks for Semantic Segmentation.” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431–40.
Lu, X. C. (2017). Indirect Quantification Methods of Fine Root Temporal Dynamics in a Near Tropical Humid Mountainous Region. Master's Thesis, National Taiwan University, 1–45.
Meijering, E., Jacob, M., Sarria, J. C., Steiner, P., Hirling, H., & Unser, E. M. (2004). Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A: the journal of the International Society for Analytical Cytology, 58(2), 167-176.
Mendonca, A. M., & Campilho, A. (2006). Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE transactions on medical imaging, 25(9), 1200-1213.
McCormack, M. Luke, Ian A. Dickie, David M. Eissenstat, Timothy J. Fahey, Christopher W. Fernandez, Dali Guo, Heljä-Sisko Helmisaari, et al. 2015. “Redefining Fine Roots Improves Understanding of Below-Ground Contributions to Terrestrial Biosphere Processes.”New Phytologist 207 (3): 505–18.
Narisetti, Narendra, Michael Henke, Christiane Seiler, Rongli Shi, Astrid Junker, Thomas Altmann, and Evgeny Gladilin. 2019. “Semi-Automated Root Image Analysis (saRIA).” Scientific Reports 9 (1): 19674.
Ozturk, Ozan, Batuhan Sarıtürk, and Dursun Zafer Seker. 2020. “Comparison of Fully Convolutional Networks (FCN) and U-Net for Road Segmentation from High Resolution Imageries.” International Journal of Environment and Geoinformatics 7 (3): 272–79.
Peters, Bo, Gesche Blume-Werry, Alexander Gillert, Sarah Schwieger, Uwe Freiherr Von Lukas, and Juergen Kreyling. 2023. “As Good as Human Experts in Detecting Plant Roots in Minirhizotron Images but Efficient and Reproducible: The Convolutional Neural Network ‘RootDetector.’” Scientific Reports 13 (1): 1399.
Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, 234–41. Springer.
Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., ... & Kikinis, R. (1998). Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical image analysis, 2(2), 143-168.
Shorten, Connor. 2019. “A Survey on Image Data Augmentation for Deep Learning.”
Smith, Abraham George, Eusun Han, Jens Petersen, Niels Alvin Faircloth Olsen, Christian Giese, Miriam Athmann, Dorte Bodin Dresbøll,and Kristian Thorup-Kristensen. 2022. “RootPainter: Deep Learning Segmentation of Biological Images with Corrective Annotation.” New Phytologist.
Smith, Abraham George, Jens Petersen, Raghavendra Selvan, and Camilla Ruø Rasmussen. 2020. “Segmentation of Roots in Soil with U-Net.” Plant Methods 16 (1): 13.
Solomon, Susan, Gian-Kasper Plattner, Reto Knutti, and Pierre Friedlingstein. 2009. “Irreversible Climate Change Due to Carbon Dioxide Emissions.” Proceedings of the National Academy of Sciences 106 (6): 1704–9.
Sowmiya, M, Rekha B Banu, A Dhaksana, and A Priyadharshini. 2021. “An Integrated Vessel Segmentation and Machine Learning Approach for Abnormal Vasculature Detection in Retinal Images.” In 2021 IEEE Madras Section Conference (MASCON), 1–7. Chennai, India: IEEE.
Tjoa, Elbert Alfredo, I Putu Yowan Nugraha Suparta, Rita Magdalena, and Nor Kumalasari Cp. 2022. “The Use of CLAHE for Improving an Accuracy of CNN Architecture for Detecting Pneumonia.” Edited by D. Roy and G. Fragulis. SHS Web of Conferences 139:03026.
Wang, Tao, Mina Rostamza, Zhihang Song, Liangju Wang, G. McNickle, Anjali S. Iyer-Pascuzzi, Zhengjun Qiu, and Jian Jin. 2019. “SegRoot: A High Throughput Segmentation Method for Root Image Analysis.” Computers and Electronics in Agriculture 162 (July):845–54.
White, Andrew, Melvin G. R. Cannell, and Andrew D. Friend. 2000. “CO 2 Stabilization, Climate Change and the Terrestrial Carbon Sink.” Global Change Biology 6 (7): 817–33.
Yu, Guohao, Alina Zare, Hudanyun Sheng, Roser Matamala, Joel Reyes-Cabrera, Felix B. Fritschi, and Thomas E. Juenger. 2020. “Root Identification in Minirhizotron Imagery with Multiple Instance Learning.” Machine Vision and Applications 31:1–13.
Zhang, Zhengxin, Qingjie Liu, and Yunhong Wang. 2018. “Road Extraction by Deep Residual U-Net.” IEEE Geoscience and Remote Sensing Letters 15 (5): 749–53.
Zhao, Fengjun, Yanrong Chen, Yuqing Hou, and Xiaowei He. 2019. “Segmentation of Blood Vessels Using Rule-Based and Machine-Learning-Based Methods: A Review.”Multimedia Systems 25 (2): 109–18.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93560-
dc.description.abstract全球氣候變化對熱帶森林具有特別深遠的影響,導致碳匯估算出現顯著變化。細根是這一循環當中迅速消長的指標,其容易受到即將到來不穩定擾動的影響,因此對其進行量化作業至關重要。以往的研究參與了植物根系的量化工作,但幾乎都是在受控制的環境當下進行的。同樣地,迅速的根系分析也很難建立,因為根系隱藏在不透明的土壤中,難以直接觀察和進行長期監測。目前,微根管技術在成本、安裝操作便捷性和收集野外細根動態變化的能力之間取得了平衡。
本研究強調了我們改進的U-Net—FRS-Net,在微根管圖像中細根分割的創新性。實驗樣區選擇以台灣的棲蘭、福山及蓮華池三個亞熱帶森林地區做為代表。我們的修改包括額外的遺忘層塊應用和影像的預處理步驟,旨在提高根系分割任務中的精度和F1分數。我們將FRS-Net與兩種前人研究已提出的方法進行比較:SegRoot,一種具有可控網絡深度和寬度的深度學習架構,以及另一種工具—saRIA,一種採用自適應閾值和形態處理的方法。結果表明,FRS-Net在F1及IoU分數方面,在些許特定的資料集中,皆較優於其他方法。此外,我們的方法在整體平均精度方面達到了最高,有效地減少了假陽性,同時保持了高的真陽性率。
zh_TW
dc.description.abstractGlobal climate change has especially profound effects on tropical forests, leading to significant variations in carbon sink estimation. Fine roots, a rapid turnover index in this cycle, are easily affected by upcoming unstable disturbances, and it’s crucial to create quantification with them. Previous research has taken part in quantifying plant roots while almost all were deployed in stable environments. Similarly, rapid root system analysis is complex to build because the root system is hidden in non-transparent soil, which makes it challenging to observe directly in long-term monitoring. Currently, the minirhizotrons method balances cost, ease of deployment, and the ability to collect the dynamic variations of the natural fine root.
This study underscores the novelty of our modified U-Net, FRS-Net, in fine root segmentation from minirhizotrons images. For the selection of experimental sites, we chose regions of Chi-Lan, Fu-Shan, and Lien-Hua-Chih as representatives of Taiwan‘s subtropical forests. Our modifications, including additional layers and specialized preprocessing steps, are designed to enhance the precision and F1 score in root segmentation tasks. We compared FRS-Net with two established methods: SegRoot, a deep learning-based architecture with controllable network depth and width, and saRIA, which employs adaptive thresholding and morphological operations. The results demonstrate that FRS-Net surpasses other methods in terms of F1 & IoU score in some certain datasets. Moreover, our method achieves the highest overall precision, effectively reducing false positives while maintaining high true positive rates.
The integration of FRS-Net, along with SegRoot and saRIA, has made further advancements in the segmentation of fine roots in subtropical forests. These combined techniques will facilitate more detailed and reliable research in ecological and botanical studies. The findings suggest that leveraging advanced neural network architectures with tailored modifications can significantly improve the analysis of fine root systems. Additionally, the framework for segmenting fine roots in subtropical forests offers new perspectives on carbon sink quantification.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:34:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-05T16:34:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Table of Contents v
List of Figures vii
List of Tables ix
Chapter 1 : Introduction 1
Chapter 2 : Literature Review 4
2.1 Image Processing 4
2.2 Image Management 5
2.3 Ridge-like Algorithms and Supervised Machine Learning 6
2.4 Deep Learning and Roots Detection Methods 7
Chapter 3 : Methods 12
3.1 Work Flow 12
3.2 Study Sites and Data Acquisition 13
3.3 Datasets Preparation 15
3.3.1 Data Cleaning 15
3.3.2 Data Pre-Processing 16
3.4 Proposed FRS-Net Architecture 20
3.5 Hyperparameters Setting and Assessment Index 22
Chapter 4 : Results 26
4.1 Performance Assessment 26
4.1.1 FRS-Net 28
4.1.2 SegRoot 29
4.1.3 saRIA 30
4.1.4 Integration of Three Methods 31
4.2 Methods Comparison 31
Chapter 5 : Discussion 34
5.1 CL Datasets 34
5.2 FS Datasets 35
5.3 LHC Dataset 36
5.4 The Integration Method 37
Chapter 6 : Conclusions 38
References 40
Appendix 45
-
dc.language.isoen-
dc.subject細根zh_TW
dc.subject微根管技術zh_TW
dc.subject影像分割zh_TW
dc.subject深度學習zh_TW
dc.subjectU-Netzh_TW
dc.subjectImage segmentationen
dc.subjectFine rootsen
dc.subjectU-Neten
dc.subjectDeep learningen
dc.subjectMinirhizotronsen
dc.title運用深度學習語意分割技術量化臺灣亞熱帶森林細根影像zh_TW
dc.titleUsing deep learning semantic segmentation to quantify fine root of subtropical forests in Taiwanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee丁建均;鄭智馨zh_TW
dc.contributor.oralexamcommitteeJian-Jiun Ding;Chih-Hsin Chengen
dc.subject.keyword細根,微根管技術,影像分割,深度學習,U-Net,zh_TW
dc.subject.keywordFine roots,Minirhizotrons,Image segmentation,Deep learning,U-Net,en
dc.relation.page53-
dc.identifier.doi10.6342/NTU202401967-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-29-
dc.contributor.author-college理學院-
dc.contributor.author-dept地理環境資源學系-
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.21 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved