請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93554完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | zh_TW |
| dc.contributor.advisor | Sih-Li Chen | en |
| dc.contributor.author | 張王胤 | zh_TW |
| dc.contributor.author | Wang-Yin Chang | en |
| dc.date.accessioned | 2024-08-05T16:32:52Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | [1] Pardo, P., & Mondot, M. (2018). Experimental Evaluation of R410A, R407C and R134a Alternative Refrigerants in Residential Heat Pumps. 17th International Refrigeration and Air Conditioning Conference at Purdue, 2498, 1–10.
[2] Chen, W. (2008). A comparative study on the performance and environmental characteristics of R410A and R22 residential air conditioners, Applied Thermal Engineering, Vol. 28, Issue 1, pp. 1-7 [3] Messenio, A. (2012), R744-R717 Cascade Refrigeration System: Performance Evaluation compared with a HFC Two-Stage System, Energy Procedia, Vol. 14, pp. 56-65, [4] ASHARE. (2019). Designation and Safety Classification of Refrigerants. https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20addenda/34_2019_f_20191213.pdf [5] Nasa. (n.d.). Watching the Ozone Hole Before and After the Montreal Protocol. NASA Earth Observatory. https://earthobservatory.nasa.gov/images/79198/watching-the-ozone-hole-before-and-after-the-montreal-protocol [6] HEATH, E. A. (2017). INTRODUCTORY NOTE TO AMENDMENT TO THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER (KIGALI AMENDMENT). International Legal Materials, 56(1), 193–205. [7] Warburg, E. (1881). Magnetische untersuchungen. Annalen der Physik, 249(5), 141-164. [8] De Oliveira, N. A., & von RANKE, P. J. (2010). Theoretical aspects of the magnetocaloric effect. Physics Reports, Vol.489(4-5), pp.89-159 [9] Szymczak, R., Kolano, R., Kolano-Burian, A., Dyakonov, V., & Szymczak, H. (2010). Giant magnetocaloric effect in manganites. Acta Physica Polonica A, 117(1), 203-206. [10] Gschneidner Jr., K. A. et al (2005) Rep. Prog. Phys. Vol.68 1479 [11] Cui, J., Wu, Y., Muehlbauer, J., Hwang, Y., Radermacher, R., Fackler, S., Wuttig, M., Takeuchi, I. (2012). Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett., Vol. 101 (7) [12] Liu, Y., Scott, J. F., Dkhil, B. (2016). Direct and indirect measurements on electrocaloric effect: Recent developments and perspectives. Appl. Phys. Rev. Vol. 3 (3). pp. 1 [13] Jia, Y., Ju, Y. S. (2012) A solid-state refrigerator based on the electrocaloric effect. Appl. Phys. Lett. Vol. 100 (24). pp.3 [14] Tuttle, B. A., & Payne, D. A. (1981). The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics. Ferroelectrics.Vol. 37(1), pp.603–606. [15] Webster, J.G., Kutnjak, Z., Rožič, B. and Pirc, R. (2015). Electrocaloric Effect: Theory, Measurements, and Applications. In Wiley Encyclopedia of Electrical and Electronics Engineering, J.G. Webster (Ed.). [16] Gschneidner Jr., K.A., Pecharsky, V.K., Tsokol, A.O. (2005). Recent developments in magnetocaloric materials, Rep. Prog. Phys. Vol. 68 (6) 1479. [17] Cirillo, L., A.Greco, Masselli, C. (2022). Cooling through barocaloric effect: A review of the state of the art up to 2022, Thermal Science and Engineering Progress, Vol. 33, 101380. [18] Mañosa, L., González-Alonso, D., Planes, A., Bonnot, E., Barrio, M., Tamarit, J. L., Aksoy, S. & Acet, M. (2010). Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat. Mater. 9, 478–481. [19] Suheyla Yuce, Maria Barrio, Baris Emre, Enric Stern-Taulats, Antoni Planes, Josep-Lluís Tamarit, Yaroslav Mudryk, Karl A. Gschneidner, Vitalij K. Pecharsky, Lluís Mañosa. (2012) Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Appl. Phys. Lett.. 101 (7): 071906. [20] Bom, N. M. et al. (2018). Giant barocaloric effects in natural rubber: a relevant step toward solid-state cooling. ACS Macro Lett. Vol. 7, 31–36 [21] Beyer, J., & Mulder, J. H. (1994). Recent developments in high temperature shape memory alloys. MRS Online Proceedings Library (OPL), 360, 443. [22] Ölander, A. (1932). An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society. Vol. 54(10), 3819-3833. [23] Jani, J. M., Leary, M., Subic, A. , Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities, Materials & Design (1980-2015). Vol. 56, pp.1078-1113, [24] 張晉宇, "碩士論文:富Ni TiNi形狀記憶合金線材之超彈性與彈熱效應性能研究," 國立臺灣大學, 2022. [25] Stöckel, D. (1995). The shape memory effect-phenomenon, alloys and applications. Proceedings: Shape Memory Alloys for Power Systems EPRI. Vol.1, pp.1-13. [26] Sehitoglu, H., Hamilton, R., Maier, H. J., & Chumlyakov, Y. (2004, June). Hysteresis in NiTi alloys. In Journal de Physique IV (Proceedings) (Vol. 115, pp. 3-10). EDP sciences. [27] 吳政典, "碩士論文:時效處理對 Ti49Ni41Cu10 形狀記憶合金塊材之超彈性與彈熱效應 研究," 國立臺灣大學, 2021. [28] Benafan, O. N. R. D., Noebe, R. D., Padula Ii, S. A., Garg, A., Clausen, B., Vogel, S., & Vaidyanathan, R. (2013). Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy. International Journal of Plasticity, Vol. 51, 103-121 p.104. [29] Otsuka, K., Wayman, C. M. “ Shape Memory Materials,”Cambridge Univ. Press, pp.37-38.,1998. [30] Kirsch, S. M., Welsch, F., Michaelis, N., Schmidt, M., Wieczorek, A., Frenzel, J., ... & Seelecke, S. (2018). NiTi‐Based Elastocaloric Cooling on the Macroscale: From Basic Concepts to Realization. Energy Technology, Vol. 6(8), pp.1567-1587. [31] 王碩, "碩士論文:以彈熱材料作為固態冷媒之空調機研究 研究," 國立臺灣大學, 2023. [32] Fatchurrohman, N., & Chia, S. T. (2017, October). Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach. In IOP conference series: materials science and engineering (Vol. 257, No. 1, p. 012060). IOP Publishing. [33] Versteeg, H. K., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics (Second Edition). Pearson Education Limited. [34] Cirillo, L., Greco, A., & Masselli, C. (2023). A numerical comparison among different solutions for the design of a rotary elastocaloric prototype. Applied Thermal Engineering, 228, 120487. [35] Welsch, F., Kirsch, S. M., Michaelis, N., Mandolino, M., Schütze, A., Seelecke, S., ... & Rizzello, G. (2020, September). System simulation of an elastocaloric heating and cooling device based on SMA. In Smart Materials, Adaptive Structures and Intelligent Systems (Vol. 84027, p. V001T03A005). American Society of Mechanical Engineers. [36] Wayman, C. M. (1995)。科儀新知第十六卷六期”淺談形狀記憶合金” (李芝媛、吳錫侃譯)。台灣儀器科技研究中心。(原著出版於1993年) [37] Churchill, S. W., & Bernstein, M. (1977). A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. [38] Launder, B. E., & Spalding, D. B. (1983). The numerical computation of turbulent flows. In Numerical prediction of flow, heat transfer, turbulence and combustion (pp. 96-116). Pergamon. [39] Menter, F. (1993, July). Zonal two equation kw turbulence models for aerodynamic flows. In 23rd fluid dynamics, plasmadynamics, and lasers conference (p. 2906). [40] Florian R. Menter (2009): Review of the shear-stress transport turbulence model experience from an industrial perspective, International Journal of Computational Fluid Dynamics, 23:4, 305-316 [41] Patankar, S. (2018). Numerical heat transfer and fluid flow. CRC press. [42] Jang, D. S., Jetli, R., & Acharya, S. (1986). COMPARISON OF THE PISO, SIMPLER, AND SIMPLEC ALGORITHMS FOR THE TREATMENT OF THE PRESSURE-VELOCITY COUPLING IN STEADY FLOW PROBLEMS. Numerical Heat Transfer, 10(3), 209–228. https://doi.org/10.1080/10407788608913517 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93554 | - |
| dc.description.abstract | 本研究探討以彈熱材料作為固態冷媒的空調機系統,聚焦於其熱傳理論分析與數值模擬。研究首先從 Clausius-Clapeyron 方程式出發,推導出彈熱材料的理論絕熱溫度變化方程式。依據凸輪配置和應變率,建立了負載段、熱端維持段、卸載段和冷端維持段的溫度變化方程式,為彈熱空調系統提供理論基礎。
在數值模擬方面,本研究採用計算流體動力學(CFD)方法,使用 FLUENT 軟體進行彈熱空調的模擬。為解決冷熱端混風問題,創新性地提出了風牆設計,並引入x_1、x_2、x_3與x_4等參數來量化分析混風情況。研究探討了不同入口流速(1 m/s、3 m/s、5 m/s)、風牆壓力和材料組數(24組、48組、96組)對空調性能的影響。 研究結果表明,低入口流速(1 m/s)和較多的材料組數(96組)能夠顯著提升空調的溫度變化效果,在此最佳條件下,冷端入出口溫差達到 1.57 K,熱端入出口溫差達到 1.63 K。並且結果顯示增加材料組數不僅提高了溫度變化效果,還增加了出口溫度的穩定性。 本研究通過理論分析和數值模擬,為彈熱材料在空調系統中的應用提供了重要參考。研究結果不僅展示了彈熱空調系統的潛力,也為未來系統優化提供了方向。風牆設計的創新應用解決了關鍵的混風問題,為實際應用奠定了基礎。未來研究可以進一步探索材料選擇、系統結構優化以及多台串聯等方向,以進一步提升彈熱空調的性能和實用性。 | zh_TW |
| dc.description.abstract | This study investigates an air conditioning system using elastocaloric materials as solid-state refrigerants, focusing on heat transfer theoretical analysis and numerical simulation. The research begins by deriving the theoretical adiabatic temperature change equation for elastocaloric materials from the Clausius-Clapeyron equation. Based on cam configuration and strain rate, temperature change equations for the loading, hot-end holding, unloading, and cold-end holding stages were established, providing a theoretical foundation for the elastocaloric air conditioning system.
For numerical simulation, this study employs Computational Fluid Dynamics (CFD) methods using FLUENT software to simulate the elastocaloric air conditioner. To address the mixing flow problem between hot and cold ends, an innovative air-cutter design was proposed, introducing parameters x_1, x_2, x_3 and x_4 to quantitatively analyze flow mixing. The study examined the effects of different inlet velocities (1 m/s, 3 m/s, 5 m/s), air-cutter pressures, and material group numbers (24, 48, 96 groups) on air conditioning performance. The research findings indicate that the lower inlet velocity and higher number of used material significantly enhance the temperature change effect of the air conditioner. Under optimal conditions, the cold-end inlet-outlet temperature difference reaches 1.57 K, and the hot-end inlet-outlet temperature difference reaches 1.63 K. The results also show that increasing the number of material does not only increase the temperature change of the air conditioner, but also the stability of the outlet temperature. This study provides important references for the application of elastocaloric materials in air conditioning systems through theoretical analysis and numerical simulation. The results demonstrate the potential of elastocaloric air conditioning systems and provide directions for future system optimization. The innovative application of the air-cutter design addresses the critical mixing flow problem, laying a foundation for practical applications. Future research can further explore material selection, system structure optimization, and multi-unit series connection to further enhance the performance and practicality of elastocaloric air conditioning. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:32:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:32:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目 次 v 圖 次 viii 表 次 xi 符號說明 xiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 磁熱效應(Magnetocaloric Effect) 4 2.2 電卡效應 (Electrocaloric Effect) 5 2.3 壓熱效應 (Barocaloric Effect) 5 2.4 形狀記憶合金(Shape Memory Alloy, SMA) 6 2.4.1 超彈性 (Superelasticity, SE or Pseudoelasticity, PE) 10 2.4.2 彈熱效應(Elastocaloric Effect) 11 2.5 彈熱空調 12 2.5.1 布雷登循環 (Brayton Cycle) 13 2.6 彈熱空調數值模擬回顧 13 第三章 研究方法與理論分析 15 3.1 彈熱空調凸輪配置 15 3.2 彈熱材料理論絕熱溫度變化 18 3.3 負載段彈熱材料溫度變化方程式 21 3.3.1 熱對流係數計算 23 3.4 熱端維持段彈熱材料溫度變化方程式 24 3.5 卸載段彈熱材料溫度變化方程式 25 3.6 冷端維持段彈熱材料溫度變化方程式 25 3.7 彈熱材料強制對流模擬 25 3.8 模擬簡化驗證 30 3.9 凸輪配置與匯入軟體的數學函數 32 3.9.1 物理模型中的溫度變化方程式 34 3.9.2 第一組材料(起始位置於角度0度) 36 3.10 理論入出口溫度變化 39 3.10.1 熱端入出口溫度變化 39 3.10.2 冷端入出口溫度變化 40 3.11 數值方法 42 3.11.1 統御方程式(Governing Equations) 42 3.11.2 有限體積法與交錯網格 43 3.11.3 紊流模型概述(Turbulent Model) 44 3.11.4 k-ε模型 46 3.11.5 "k-ω" 模型 47 3.11.6 SST "k-ω" 模型 48 3.12 數值演算法 50 3.12.1 SIMPLE演算法 50 3.12.2 SIMPLEC 演算法 53 3.12.3 FLUENT使用之演算法整理 53 第四章 彈熱空調數值模擬結果 55 4.1 入口角度與流量比 55 4.2 三維入口速度5m/s、24組材料之彈熱空調數值模擬結果 59 4.2.1 模擬簡化 61 4.2.2 邊界條件 61 4.2.3 模擬網格 62 4.2.4 網格獨立分析 63 4.2.5 彈熱材料溫度模擬方法 63 4.2.6 模擬結果 64 4.3 入口速度5m/s之彈熱空調風牆分析 68 4.4 彈熱空調增加850 Pa風牆後冷熱端出口溫度結果 73 4.5 入口速度為1m/s與3m/s之彈熱空調風牆壓力分析 74 4.6 入口速度1m/s、風牆壓力50Pa與24組材料之彈熱空調模擬 76 4.7 入口速度3m/s、風牆壓力350Pa與24組材料之彈熱空調模擬 77 4.8 48組材料之彈熱空調模擬 78 4.8.1 入口速度1m/s、風牆壓力50Pa 78 4.8.2 入口速度3m/s、風牆壓力350Pa 80 4.8.3 入口速度5m/s、風牆壓力850Pa 81 4.9 96組材料之彈熱空調模擬 82 4.9.1 入口速度1m/s、風牆壓力50Pa 82 4.9.2 入口速度3m/s、風牆壓力350Pa 83 4.9.3 入口速度5m/s、風牆壓力850Pa 84 4.10 所有研究結果比較 85 第五章 結論與建議 90 5.1 結論 90 5.2 優化建議方向 91 參考文獻 93 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 彈熱空調 | zh_TW |
| dc.subject | 固態冷媒 | zh_TW |
| dc.subject | 混風分析 | zh_TW |
| dc.subject | 理論分析 | zh_TW |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | Numerical Simulation | en |
| dc.subject | Theoretical Analysis | en |
| dc.subject | Mixing Flow Analysis | en |
| dc.subject | Elastocaloric Air Conditioning | en |
| dc.subject | Solid-State Refrigerant | en |
| dc.title | 以彈熱材料作為固態冷媒之空調機熱傳理論分析與數值模擬研究 | zh_TW |
| dc.title | Theoretical Heat Transfer Modeling and Numerical Simulation Study of Air Conditioning System Using Elastocaloric Material as a Solid-State Refrigerant | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳志軒;梁俊德 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Hsuan Chen;Jun-De Liang | en |
| dc.subject.keyword | 固態冷媒,彈熱空調,數值模擬,理論分析,混風分析, | zh_TW |
| dc.subject.keyword | Solid-State Refrigerant,Elastocaloric Air Conditioning,Numerical Simulation,Theoretical Analysis,Mixing Flow Analysis, | en |
| dc.relation.page | 96 | - |
| dc.identifier.doi | 10.6342/NTU202402591 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 6.93 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
