請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93542完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳安宇 | zh_TW |
| dc.contributor.advisor | An-Yeu Wu | en |
| dc.contributor.author | 蔡文喬 | zh_TW |
| dc.contributor.author | Wen-Chiao Tsai | en |
| dc.date.accessioned | 2024-08-05T16:27:27Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | [1] Q. Wu, S. Zhang, B. Zheng, C. You and R. Zhang, “Intelligent reflecting surface-aided wireless communications: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313-3351, May 2021.
[2] Ö. Özdogan, E. Björnson and E. G. Larsson, “Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling,” IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 581–585, May 2020. [3] M. Di Renzo et al., “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, Nov. 2020. [4] S. Gong et al., “Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 4, pp. 2283–2314, Jun. 2020. [5] P. Wang, J. Fang, X. Yuan, Z. Chen, and H. Li, “Intelligent reflecting surface-assisted millimeter wave communications: Joint active and passive precoding design,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 14960–14973, Dec. 2020. [6] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019. [7] A. Bereyhi, S. Asaad, C. Ouyang, R. R. M ̈uller, R. F. Schaefer, and H. V. Poor, “Channel hardening of IRS-aided multi-antenna systems: How should IRSs scale?” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2321–2335, Aug. 2023. [8] T. L. Jensen and E. De Carvalho, “An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020, pp. 5000–5004. [9] B. Zheng and R. Zhang, “Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization,” IEEE Wireless Commun. Lett., vol. 9, no. 4, pp. 518–522, Apr. 2020. [10] P. Wang, J. Fang, H. Duan, and H. Li, “Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems,” IEEE Signal Process. Lett., vol. 27, pp. 905–909, May 2020. [11] K. Ardah, S. Gherekhloo, A. L. de Almeida, and M. Haardt, “TRICE: A channel estimation framework for RIS-aided millimeter-wave MIMO systems,” IEEE Signal Process. Lett., vol. 28, pp. 513–517, Feb. 2021. [12] X. Wei, D. Shen, and L. Dai, “Channel estimation for RIS assisted wireless communications—Part II: An improved solution based on double-structured sparsity,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1403–1407, May 2021. [13] Z.-Q. He and X. Yuan, “Cascaded channel estimation for large intelligent metasurface assisted massive MIMO,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 210–214, Feb. 2019. [14] H. Liu, X. Yuan, and Y.-J. A. Zhang, “Matrix-calibration-based cascaded channel estimation for reconfigurable intelligent surface assisted multiuser MIMO,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2621–2636, Nov. 2020. [15] J. Chen, Y.-C. Liang, H. V. Cheng, and W. Yu, “Channel estimation for reconfigurable intelligent surface aided multi-user mmWave MIMO systems,” IEEE Trans. Wireless Commun., vol. 22, no. 10, pp. 6853–6869, Oct. 2023. [16] J. He, H. Wymeersch, and M. Juntti, “Channel estimation for RIS-aided mmWave MIMO systems via atomic norm minimization,” IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 5786–5797, Sep. 2021. [17] S. Liu, Z. Gao, J. Zhang, M. D. Renzo, and M.-S. Alouini, “Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces,” IEEE Trans. Veh. Technol., vol. 69, no. 8, pp. 9223–9228, Aug. 2020. [18] C. Huang, R. Mo and C. Yuen, “Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1839–1850, Nov. 2020. [19] N. K. Kundu and M. R. McKay, “Channel estimation for reconfigurable intelligent surface aided MISO communications: From LMMSE to deep learning solutions,” IEEE Open J. Commun. Soc., vol. 2, pp. 471–487, Mar. 2021. [20] C. Liu, X. Liu, D. W. K. Ng, and J. Yuan, “Deep residual learning for channel estimation in intelligent reflecting surface-assisted multi-user communications,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 898–912, Feb. 2022. [21] S. Gao, P. Dong, Z. Pan, and G. Y. Li, “Deep multi-stage CSI acquisition for reconfigurable intelligent surface aided MIMO systems,” IEEE Commun. Lett., vol. 25, no. 6, pp. 2024–2028, Jun. 2021. [22] Y. Wang, H. Lu, and H. Sun, “Channel estimation in IRS-enhanced mmWave system with super-resolution network,” IEEE Commun. Lett., vol. 25, no. 8, pp. 2599–2603, Aug. 2021. [23] M. Khani, M. Alizadeh, J. Hoydis, and P. Fleming, “Adaptive neural signal detection for massive MIMO,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5635–5648, Aug. 2020. [24] A. Balatsoukas-Stimming, O. Castañeda, S. Jacobsson, G. Durisi, and C. Studer, “Neural-network optimized 1-bit precoding for massive MU-MIMO,” in Proc. 2019 IEEE 20th Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC), July 2019, pp. 1–5. [25] B. Dai, R. Liu, and Z. Yan, “New min-sum decoders based on deep learning for polar codes,” in IEEE International Workshop on Signal Processing Systems (SiPS), Oct. 2018, pp. 252–257. [26] Y. Jiang, S. Kannan, H. Kim, S. Oh, H. Asnani, and P. Viswanath, “DEEPTURBO: Deep turbo decoder,” in Proc. IEEE 20th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), 2019, pp. 1–5. [27] M. Borgerding and P. Schniter, “Onsager-corrected deep learning for sparse linear inverse problems,” in Proc. IEEE Global Conf. Signal Inf. Process., Dec. 2016, pp. 227–231. [28] Q.-U.-A. Nadeem, H. Alwazani, A. Kammoun, A. Chaaban, M. Debbah, and M.-S. Alouini, “Intelligent reflecting surface-assisted multi-user MISO communication: Channel estimation and beamforming design,” IEEE Open J. Commun. Soc., vol. 1, pp. 661–680, 2020. [29] D. Mishra and H. Johansson, “Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019, pp. 4659–4663. [30] J. A.Tropp and A.C.Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007. [31] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Nat. Acad. Sci. USA, vol. 106, no. 45, pp. 18914–18919, Nov. 2009. [32] A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for communications systems: A survey and some new directions,” in Proc. IEEE Int. Workshop Signal Process. Syst. (SiPS), Oct. 2019, pp. 266–271. [33] N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, “Model-based deep learning,” Proceedings of the IEEE, vol. 111, no. 5, pp. 465-499, May 2023. [34] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing,” IEEE Signal Process. Mag., vol. 38, no. 2, pp. 18–44, Mar. 2021. [35] M. Un, M. Shao, W. Ma, and P. C. Ching, “Deep MIMO detection using ADMM unfolding,” in Proc. IEEE Data Sci. Workshop, 2019, pp. 333–337. [36] E. Nachmani, E. Marciano, L. Lugosch, W. Gross, D. Burshtein and Y. Be'ery, “Deep Learning Methods for Improved Decoding of Linear Codes,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 119-131, Feb. 2018. [37] C.-F. Teng, C.-H. D. Wu, A. K.-S. Ho, and A.-Y. A. Wu, “Low-complexity recurrent neural network-based polar decoder with weight quantization mechanism,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), May 2019, pp. 1413-1417. [38] A. A. M. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Sel. Areas Commun., vol. 5, no. 2, pp. 128–137, Feb. 1987. [39] K. Chang, S. I. Kwak, and Y. J. Yoon, “Equivalent circuit modeling of active frequency selective surfaces,” in Proc. IEEE Radio Wireless Symp., Jan. 2008, pp. 663–666. [40] W.-C. Tsai, C.-W. Chen, C.-F. Teng and A.-Y. Wu, “Low-complexity compressive channel estimation for IRS-aided mmWave systems with hypernetwork-assisted LAMP network,” IEEE Commun. Lett., vol. 26, no. 8, pp. 1883-1887, Aug. 2022. [41] X. Yu, D. Xu, and R. Schober, “MISO wireless communication systems via intelligent reflecting surfaces,” in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC), 2019, pp. 735–740. [42] J. Johnston and X. Wang, “Model-based neural networks for massive and sporadic connectivity,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021, pp. 964–969. [43] T. Jiang, H. V. Cheng, and W. Yu, “Learning to reflect and to beamform for intelligent reflecting surface with implicit channel estimation,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 1931–1945, Jul. 2021. [44] T. Jiang, H. V. Cheng, and W. Yu, “Learning to beamform for intelligent reflecting surface with implicit channel estimate,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Taipei, Taiwan, Dec. 2020, pp. 1–6. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93542 | - |
| dc.description.abstract | 為了滿足第五代(Fifth Generation, 5G)無線通信系統的性能要求,人們已經開發了各種相關技術,如大規模多輸入多輸出(Massive Multiple-Input Multiple-Output, Massive MIMO)和毫米波(Millimeter-Wave, mmWave)通訊。然而,實現這些技術需要增加能源消耗和硬體成本,這可能不是未來第六代(Sixth Generation, 6G)無線網路的可擴展解決方案。近年來,智慧反射面板(Intelligent Reflecting Surface, IRS)已經成為具發展前景的技術,能夠以低成本高效益的方式增強頻譜效率和能源效率。透過智能地調控低成本的反射元件,IRS可以將入射信號反射到指定的方向,以提高通道容量和可靠性。然而,由於大量低成本的被動反射元件,並不具備信號感知和信號處理能力,因此通道狀態資訊(Channel State Information, CSI)的獲取需要大量的訓練負擔(Training Overhead)。
儘管利用壓縮感知(Compressive Sensing, CS)的技術可以減少訓練負擔,但傳統的CS算法在低訓練負擔下無法達到滿意的通道估測效能。在本論文中,我們利用深度展開(Deep Unfolding)技術來結合壓縮感知和深度學習(Deep Learning, DL)的優點。首先,我們提出了一種新型的超網絡輔助學習近似訊息傳遞(Learned Approximate Message Passing, LAMP)網絡,以資料驅動的方式提高通道估計的準確性。此外,我們提出了一種具有列壓縮的雙階段LAMP網絡(RCTS-LAMP),通過分解通道估測過程,實現了更好的復雜度和準確度之間的平衡。此外,RCTS-LAMP網絡還可以應用於直接通道(Direct Channel)和級聯通道(Cascaded Channel)的聯合估測,而無需額外的網絡。最後,通過從多測量向量(Multiple-Measurement Vector, MMV)角度解決多用戶通道估測問題,我們提出的RCTS-LAMP-MMV網絡可以顯著降低IRS輔助多用戶系統的訓練負擔。 | zh_TW |
| dc.description.abstract | To fulfill the performance requirements of the fifth-generation (5G) wireless communication system, a variety of enabling technologies have been developed, such as massive multiple-input multiple-output (MIMO) and millimeter-wave (mmWave) communication. However, implementing these techniques requires increasing energy consumption and hardware cost, which may not be a scalable solution for the sixth-generation (6G) wireless networks. Recently, intelligent reflecting surface (IRS) has emerged as a promising technique to enhance spectral and energy efficiency cost-effectively. By smartly reconfiguring the low-cost reflective elements, IRS can reflect the incident waves toward the desired directions to improve communication capacity and reliability. However, the acquisition of channel state information (CSI) requires large training overhead due to the large number of low-cost passive reflective elements that do not have the capabilities of sensing and signal processing.
Although the training overhead can be reduced with compressive sensing (CS) techniques, conventional CS algorithms cannot achieve satisfactory estimation performance under low training overhead. In this dissertation, we leverage the deep unfolding technique to combine the advantages of CS and deep learning (DL). First, we present a novel hypernetwork-assisted learned approximate message passing (LAMP) network to improve the channel estimation accuracy in a data-driven manner. Furthermore, we propose a two-stage LAMP network with row compression (RCTS-LAMP), which achieves a better trade-off between complexity and accuracy by decomposing the estimation process. Besides, the RCTS-LAMP network can be applied to the joint estimation of direct and cascaded channels without an extra network. Finally, by solving the multi-user channel estimation problem from the multiple-measurement vector (MMV) perspective, the proposed RCTS-LAMP-MMV network can significantly reduce the training overhead for IRS-aided multi-user systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:27:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:27:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要及關鍵詞 II Abstract & Keywords III Table of Contents IV List of Figures VII List of Tables IX Notations X Chapter 1 Introduction 1 1.1 BACKGROUND 1 1.1.1 INTELLIGENT REFLECTING SURFACE-AIDED COMMUNICATION SYSTEMS 1 1.2 CHANNEL ESTIMATION FOR IRS COMMUNICATION SYSTEMS 3 1.2.1 CHALLENGES OF IRS CHANNEL ESTIMATION 3 1.2.2 COMPRESSIVE SENSING FOR IRS CHANNEL ESTIMATION 4 1.2.3 DEEP LEARNING FOR IRS CHANNEL ESTIMATION 7 1.3 MOTIVATION AND DESIGN OBJECTIVE 8 1.3.1 ROBUST AND HARDWARE-FRIEDLY NETWORK DESIGN FOR PRACTICAL DEPLOYMENT 9 1.3.2 HIGH COMPUTATIONAL COMPLEXITY FOR JOINT CS RECOVERY 11 1.3.3 DIRECT CHANNEL ESTIMATION WITHOUT EXTRA NETWORK 11 1.3.4 IMPROVEMENT OF ESTIMATION EFFICIENCY FOR MULTI-USER SYSTEMS 13 1.4 RESEARCH CONTRIBUTIONS 14 1.5 DISSERTATION ORGANIZATION 18 Chapter 2 Review of Related Works 20 2.1 CASCADED CHANNEL ESTIMATION 20 2.1.1 CLASSICAL CHANNEL ESTIMATION SCHEMES 20 2.1.2 CS-BASED METHODS 23 2.2 DEEP UNFOLDING-BASED COMMUNICATION SYSTEM DESIGNS 27 2.3 SUMMARY 29 Chapter 3 Compressive Channel Estimation for IRS-Aided Systems with Hypernetwork-Assisted LAMP Network 30 3.1 SYSTEM MODEL AND PROBLEM FORMULATION 30 3.1.1 SYSTEM MODEL AND CHANNEL MODEL 30 3.1.2 PROBLEM FORMULATION 33 3.2 PROPOSED HYPERNETWORK-ASSISTED RECURRENT LAMP NETWORK 34 3.2.1 LAMP NETWORK 34 3.2.2 HYPERNETWORK ASSISTED DYNAMIC SHRINKAGE PARAMETERS 36 3.2.3 RECURRENT ARCHITECTURE WITH INCREMENTAL WEIGHT SHARING MECHANISM 37 3.3 PERFORMANCE EVALUATION 40 3.3.1 COMPARISON OF ESTIMATION PERFORMANCE FOR PROPOSED NETWORKS 41 3.3.2 COMPARISON OF TRAINING OVERHEAD 43 3.3.3 COMPARISON OF COMPUTATIONAL COMPLEXITY 43 3.4 SUMMARY 44 Chapter 4 Compressive Channel Estimation for IRS-Aided Systems Via Two-Stage LAMP Network with Row Compression 45 4.1 SYSTEM MODEL AND PROBLEM FORMULATION 45 4.1.1 SYSTEM MODEL AND CHANNEL MODEL 45 4.1.2 CHALLENGES OF THE JOINT CS METHOD 48 4.2 PROPOSED TWO-STAGE LAMP NETWORK WITH ROW COMPRESSION 51 4.2.1 PROPOSED TWO-STAGE LAMP NETWORK 52 4.2.2 ROW COMPRESSION BASED ON ROW SPARSITY 54 4.3 PERFORMANCE EVALUATION 56 4.3.1 BENCHMARKS 56 4.3.2 SIMULATION SETTING AND PERFORMANCE METRICS 58 4.3.3 COMPARISON OF CASCADED CHANNEL ESTIMATION PERFORMANCE 59 4.4 SUMMARY 63 Chapter 5 Joint Recovery of Direct and Cascaded Channels via Two-Stage LAMP Network with Row Compression 64 5.1 SYSTEM MODEL AND PROBLEM FORMULATION 64 5.1.1 SYSTEM MODEL AND CHANNEL MODEL 64 5.1.2 PROBLEM FORMULATION 65 5.2 JOINT ESTIMATION OF DIRECT AND CASCADED CHANNELS VIA THE PROPOSED RCTS-LAMP NETWORK 68 5.2.1 PROPOSED THREE-STAGE TRAINING PROCEDURE FOR THE JOINT OPTIMIZATION OF THE DIRECT AND CASCADED CHANNELS 69 5.2.2 WEIGHT-SHARING METHODS FOR THE FIRST LAMP NETWORK 73 5.3 PERFORMANCE EVALUATION 75 5.3.1 SIMULATION SETTING 75 5.3.2 JOINT ESTIMATION PERFORMANCE OF DIRECT AND CASCADED CHANNELS 76 5.4 SUMMARY 79 Chapter 6 Joint Channel Estimation for IRS-Aided Multi-User Communications Based on LAMP-MMV Network 81 6.1 SYSTEM AND CHANNEL MODELS 81 6.2 JOINT CHANNEL ESTIMATION FOR IRS-AIDED MULTI-USER SYSTEMS 84 6.2.1 DIRECT DECOMPOSITION WITH ORTHOGONAL PILOT SEQUENCES 84 6.2.2 PROPOSED RCTS-LAMP-MMV NETWORK 86 6.3 PERFORMANCE EVALUATION 90 6.3.1 COMPARISONS OF ESTIMATION PERFORMANCE AGAINST SNR 91 6.3.2 COMPARISONS OF ESTIMATION PERFORMANCE AGAINST TRAINING OVERHEAD 92 6.4 SUMMARY 94 Chapter 7 Conclusions and Future Works 95 7.1 DESIGN ACHIEVEMENTS 95 7.2 FUTURE WORKS 97 Appendix A Reversing the Order of the RCTS-LAMP Network 100 Appendix B Adaptability of the RCTS-LAMP Network 102 Bibliography 103 | - |
| dc.language.iso | en | - |
| dc.subject | 毫米波 | zh_TW |
| dc.subject | 智慧反射面板 | zh_TW |
| dc.subject | 深度展開 | zh_TW |
| dc.subject | 壓縮感知 | zh_TW |
| dc.subject | 通道估測 | zh_TW |
| dc.subject | channel estimation | en |
| dc.subject | deep unfolding | en |
| dc.subject | millimeter-wave | en |
| dc.subject | Intelligent reflecting surface | en |
| dc.subject | compressive sensing | en |
| dc.title | 基於深度展開之壓縮通道估測用於智慧反射面板輔助之無線通訊 | zh_TW |
| dc.title | Deep Unfolding-Based Compressive Channel Estimation for Intelligent Reflecting Surface-Aided Wireless Communications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 謝欣霖;黃穎聰;闕志達;蔡佩芸;沈中安 | zh_TW |
| dc.contributor.oralexamcommittee | Shin-Lin Shieh;Yin-Tsung Hwang;Tzi-Dar Chiueh;Pei-Yun Tsai;Chung-An Shen | en |
| dc.subject.keyword | 智慧反射面板,毫米波,通道估測,壓縮感知,深度展開, | zh_TW |
| dc.subject.keyword | Intelligent reflecting surface,millimeter-wave,channel estimation,compressive sensing,deep unfolding, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202402708 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
