請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93539完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉俊麟 | zh_TW |
| dc.contributor.advisor | Chun-Lin Liu | en |
| dc.contributor.author | 蘇昭憲 | zh_TW |
| dc.contributor.author | Zhao-Xian Su | en |
| dc.date.accessioned | 2024-08-05T16:26:18Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | [1] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim, E. De Poorter, and I. Moer- man, “A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3060–3097, 2018.
[2] A. L. Swindlehurst and P. Stoica, “Maximum likelihood methods in radar array signal processing,” Proceedings of the IEEE, vol. 86, no. 2, pp. 421–441, 1998. [3] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition, 3rd ed. Wiley- Interscience, 2005. [4] H. L. V. Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. John Wiley and Sons, Ltd, 2002. [5] J. Zhang, X. Yu, and K. B. Letaief, “Hybrid beamforming for 5G and beyond millimeter-wave systems: A holistic view,” IEEE Open Journal of the Communi- cations Society, vol. 1, pp. 77–91, 2020. [6] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969. [7] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986. [8] S. S. Reddi, “Multiple source location-a digital approach,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-15, no. 1, pp. 95–105, 1979. [9] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational in- variance techniques,” IEEE Transactions on Acoustics, Speech, and Signal Process- ing, vol. 37, no. 7, pp. 984–995, 1989. [10] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on Antennas and Propagation, vol. 16, no. 2, pp. 172–175, 1968. [11] P. Pal and P. P. Vaidyanathan, “Beamforming using passive nested arrays of sen- sors,” in Proceedings of 2010 IEEE International Symposium on Circuits and Sys- tems, 2010, pp. 2840–2843. [12] ——, “Nested arrays: A novel approach to array processing with enhanced degrees of freedom,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4167 – 4181, Aug. 2010. [13] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and arrays,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 573 – 586, 2010. [14] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” in 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), 2011, pp. 289–294. [15] C. Liu and P. P. Vaidyanathan, “Composite Singer arrays with hole-free coarrays and enhanced robustness,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 4120–4124. [16] F. Schwartau, Y. Schröder, L. Wolf, and J. Schoebel, “Large minimum redundancy linear arrays: Systematic search of perfect and optimal rulers exploiting parallel pro- cessing,” IEEE Open Journal of Antennas and Propagation, vol. 2, pp. 79–85, 2021. [17] R. Rajamäki, M. C. Hücümenoğlu, P. Sarangi, and P. Pal, “Effect of beampattern on matrix completion with sparse arrays,” in ICASSP 2024 - 2024 IEEE Interna- tional Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, pp. 13 451–13 455. [18] F. S. Rawnaque and J. R. Buck, “Comparing the effect of aperture extension on the peak sidelobe level of sparse arrays,” The Journal of the Acoustical Society of America, vol. 142, no. 5, pp. EL467–EL472, 11 2017. [Online]. Available: https://doi.org/10.1121/1.5009112 [19] Z. Wang, W. Q. Wang, Z. Zheng, and H. Shao, “Nested array sensor with grating lobe suppression and arbitrary transmit–receive beampattern synthesis,” IEEE Access, vol. 6, pp. 9227–9237, 2018. [20] K. Adhikari, “Beamforming with semi-coprime arrays,” The Journal of the Acoustical Society of America, vol. 145, no. 5, pp. 2841–2850, 05 2019. [Online]. Available: https://doi.org/10.1121/1.5100281 [21] K. Adhikari, J. R. Buck, and K. E. Wage, “Beamforming with extended co-prime sensor arrays,” in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 4183–4186. [22] H. Lebret and S. Boyd, “Antenna array pattern synthesis via convex optimization,” IEEE Transactions on Signal Processing, vol. 45, no. 3, pp. 526–532, 1997. [23] C. Weng and P. P. Vaidyanathan, “Nonuniform sparse array design for active sens- ing,” pp. 1062–1066, Nov 2011. [24] R. J. Proctor, G. K. Skinner, and A. P. Willmore, “The design of optimum coded mask X-ray telescopes,” Monthly Notices of the Royal Astronomical Society, vol. 187, no. 3, pp. 633–643, 07 1979. [Online]. Available: https: //doi.org/10.1093/mnras/187.3.633 [25] P. M. Shutler, S. V. Springham, and A. Talebitaher, “Periodic wrappings in coded aperture imaging,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 738, pp. 132–148, 2014. [26] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques, ser. Prentice-Hall signal processing series. P T R Prentice Hall, 1993. [Online]. Available: https://books.google.com.tw/books?id=v_NSAAAAMAAJ [27] “NIST Digital Library of Mathematical Functions,” https://dlmf.nist.gov/, Release 1.2.0 of 2024-03-15, f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. [Online]. Available: https://dlmf.nist.gov/ [28] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array process- ing with enhanced degrees of freedom,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4167–4181, 2010. [29] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & systems (2nd ed.). USA: Prentice-Hall, Inc., 1996. [30] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra. Pearson Education, 2014. [Online]. Available: https://books.google.com.tw/books?id= KyB0DAAAQBAJ [31] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The Johns Hopkins University Press, 1996. [32] C. Liu and P. P. Vaidyanathan, “Remarks on the spatial smoothing step in coarray MUSIC,” IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1438–1442, 2015. [33] T. M. Apostol, Mathematical Analysis, ser. Addison-Wesley series in mathematics. Addison-Wesley, 1974. [Online]. Available: https://books.google.com.tw/books? id=Le5QAAAAMAAJ [34] J. W. Singer, “A theorem in finite projective geometry and some applications to number theory,” Transactions of the American Mathematical Society, vol. 43, pp. 377–385, 1938. [35] J. Leech, “On the representation of 1, 2, …, n by differences,” Journal of the London Mathematical Society, vol. s1-31, no. 2, pp. 160–169, 1956. [36] D. R. Stinson, Combinatorial Designs: Constructions and Analysis. New York: Springer, 2004. [37] F. J. MacWilliams and N. J. A. Sloane, “Pseudo-random sequences and arrays,” Pro- ceedings of the IEEE, vol. 64, no. 12, pp. 1715–1729, 1976. [38] C. Chen, B. Bai, and X. Wang, “Construction of nonbinary quasi-cyclic LDPC cycle codes based on Singer perfect difference set,” IEEE Communications Letters, vol. 14, no. 2, pp. 181–183, 2010. [39] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 10.3), 2024, https://www.sagemath.org. [40] P. Xia, S. Zhou, and G. Giannakis, “Achieving the Welch bound with difference sets,” IEEE Transactions on Information Theory, vol. 51, no. 5, pp. 1900–1907, 2005. [41] A. Busboom, H. Elders-Boll, and H. D. Schotten, “Uniformly redundant arrays,” Experimental Astronomy, vol. 8, no. 2, pp. 97–123, Jun 1998. [Online]. Available: https://doi.org/10.1023/A:1007966830741 [42] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan- nery, Numerical Recipes 3rd Edition: The Art of Scientific Com- puting, 3rd ed. Cambridge University Press, 2007. [Online]. Avail- able: http://www.amazon.com/Numerical-Recipes-3rd-Scientific-Computing/dp/ 0521880688/ref=sr_1_1?ie=UTF8&s=books&qid=1280322496&sr=8-1 [43] C. Liu and P. P. Vaidyanathan, “Hourglass arrays and other novel 2-D sparse arrays with reduced mutual coupling,” IEEE Transactions on Signal Processing, vol. 65, no. 13, pp. 3369–3383, 2017. [44] W. K. Nicholson, Introduction to Abstract Algebra. Wiley, 2006. [Online]. Available: https://books.google.com.tw/books?id=_Ld5QgAACAAJ | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93539 | - |
| dc.description.abstract | 在陣列信號處理中,來向角(DoA)估計和波束成形是兩個重要主題。在 DoA 估計中,線性稀疏陣列因其在差協同陣列中具有較大的中央均勻線性陣列 (ULA)段而具有優勢。在波束成形中,陣列的性能由其輻射方向圖決定。輻射方 向圖可以使用能量圖形來表示。然而,像嵌套陣列(NA)和互質陣列(CA)這 樣的稀疏陣列的能量圖形通常會表現出較高的旁瓣高度。這些較高的旁瓣高度會 導致波束成形性能下降。為了抑制稀疏陣列的高旁瓣高度,一些研究人員使用了 數位波束成形或最佳化方法去處理。然而,這些方法需要額外的實施成本。另一 方面,我們可以尋找具有低旁瓣高度的稀疏陣列。
在本論文中,我們分析了具有 N 個物理感測器的擴充辛格陣列(ESA)的差 協同陣列和能量圖形。ESA 的差協同陣列也具有一個大的中央 ULA 段,類似於 其他稀疏陣列。我們證明了ESA 的中央 ULA 段的大小是 O(N2 )。相較於 ULA, ULA 的中央 ULA 段的大小則是 O(N)。ESA 在 DoA 估計的優勢會在實驗模擬當 中說明。 在能量圖形方面,我們在特定角度時有一些保證值。然後我們證明了ESA 的零到零波束寬度(NNBW)是 O( 1 N2 )、平均旁瓣高度(MSLL)是 O( 1 N )。我 們還將 ESA 與 NA、CA 和 ULA 在能量圖形方面進行了比較。ULA 的 NNBW 是 O( 1 N ),而 NA、CA 的 NNBW 在特定情況下亦是 O( 1 N )。因此,ESA 擁有較窄的波束寬度和空間解析度上的優勢。在實驗模擬當中,ESA 的峰值旁瓣高 度(PSLL)介於-9 到-15 分貝之間。另一方面,ULA 的 PSLL 是-13 分貝、NA 的 PSLL 大約是-6 分貝,而 CA 的大約是-5.5 分貝。 在陣列信號處理中,平面(2D)陣列是另一個值得注意的技術。這些陣列可 以看作是線性(1D)陣列的變化。一些 ESA 可以調整成為平面稀疏陣列,稱為 2D ESA。2D ESA 在二維差協同陣列和二維能量圖形方面保留了與 ESA 相似的 可證明性質。2D ESA 的二維差協同陣列也包含了一個較大的中央連續部分。2D ESA 的二維能量圖形在特定角度下也有保證值。 | zh_TW |
| dc.description.abstract | In array signal processing, Direction of Arrival (DoA) estimation and beamforming are two prominent topics. In DoA estimation, linear sparse arrays offer an advantage due to their large central Uniform Linear Array (ULA) segment in the difference coarray. In beamforming, the performance of arrays is determined by their radiation patterns. The radiation pattern can be described by the power pattern. However, the power patterns of sparse arrays like Nested Arrays (NAs) and Coprime Arrays (CAs) often exhibit high sidelobe levels. These higher sidelobe levels can result in degraded performance in beamforming. To suppress the high sidelobe levels of sparse arrays, some researchers have applied digital beamforming or min processing techniques. Nevertheless, these methods require additional implementation costs. On the other hand, we might explore a sparse array with a low sidelobe level.
In this thesis, we analyze the difference coarray and power pattern of the Extended Singer Array (ESA) with N physical sensors. The difference coarray of the ESA also has a large central ULA segment, similar to other sparse arrays. We prove that the size of the central ULA segment of the ESA is of O(N2 ). Compared to the ULA, the size of the central ULA segment of the ULA is of O(N). The advantage of the ESA on DoA estimation is demonstrated in simulation. On the power pattern, we have some guaranteed values at specific angles. Then we show that the Null-to-Null BeamWidth (NNBW) of the ESA is of O( 1 N2 ) and the Mean SideLobe Level (MSLL) of the ESA is of O( 1 N ). We also compare the ESA with the NA, CA, and ULA in terms of their power patterns. The NNBW of the ULA is of O( 1 N ), and those of the NA and CA are also of O( 1 N ) in certain situation. Hence, the ESA features a narrower beam width and has an advantage in spatial resolution. In simulation, the Peak Sidelobe Level (PSLL) of the ESA fluctuates between -9 dB and -15 dB. On the other hands, the PSLL of the ULA is -13 dB, the PSLL of the NA is about -6 dB and that of the CA is about -5.5 dB. In array signal processing, planar (2D) arrays represent another noteworthy technique. These arrays can be viewed as a variation of linear (1D) arrays. Some ESAs can be adapted into planar sparse arrays, referred to as 2D ESAs. 2D ESAs retain similar provable properties to ESAs in terms of the 2D difference coarray and the 2D power pattern. The 2D difference coarray of the 2D ESA also contains a larger central contiguous part. The 2D power pattern of the 2D ESA also has guaranteed values at specific angles. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:26:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:26:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 vii Abstract ix Contents xiii List of Figures xvii List of Tables xxi Chapter 1 Introduction 1 1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Preliminary 7 2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 The Difference Coarray . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 DoA Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.1 The Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.2 The ESPRIT Estimator . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.3 Coarray Based ESPRIT . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5 Sparse Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.1 Sparse ULAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.2 The Nested Array . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5.3 The Coprime Array . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.6 The Singer Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Chapter 3 The Extended Singer Array 65 3.1 The Array Configuration of the ESA . . . . . . . . . . . . . . . . . . 65 3.2 The Difference Coarray of the ESA . . . . . . . . . . . . . . . . . . 67 3.3 The Power Pattern of the ESA . . . . . . . . . . . . . . . . . . . . . 69 3.3.1 The NNBW of the ESA . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.2 The MSLL of the ESA . . . . . . . . . . . . . . . . . . . . . . . . 79 3.4 Proof of Theorem 3.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.5 Proof of Theorem 3.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.6.1 The Parameters of the Power Patterns . . . . . . . . . . . . . . . . 94 3.6.1.1 NNBW and HPBW . . . . . . . . . . . . . . . . . . . 96 3.6.1.2 MSLL and PSLL . . . . . . . . . . . . . . . . . . . . 99 3.6.1.3 MSLLs of Varying Cutoff Angle . . . . . . . . . . . . 103 3.6.2 The Ratio of Sidelobes Under a Threshold . . . . . . . . . . . . . . 106 3.6.3 DoA Estimation Performance . . . . . . . . . . . . . . . . . . . . . 112 3.7 Conclusion on the ESA . . . . . . . . . . . . . . . . . . . . . . . . . 113 Chapter 4 Two Dimensional ESA 115 4.1 Preliminary of Two Dimensional Planar Arrays . . . . . . . . . . . . 115 4.2 The Two Dimensional SA . . . . . . . . . . . . . . . . . . . . . . . 122 4.3 The Two Dimensional ESA . . . . . . . . . . . . . . . . . . . . . . 128 4.4 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.5 Proof of Theorem 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.6 Remarks on the Higher Dimensional ESA . . . . . . . . . . . . . . . 141 4.7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.8 Conclusion on the Two Dimensional ESA . . . . . . . . . . . . . . . 147 Chapter 5 Conclusion 149 References 151 Appendix A — The Power Pattern of the NA 157 A.1 Proof of Lemma 2.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . 157 A.2 Proof of Lemma 2.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . 158 A.3 Proof of Lemma 2.5.4 . . . . . . . . . . . . . . . . . . . . . . . . . 161 Appendix B — The Power Pattern of the CA 163 B.1 Proof of Lemma 2.5.5 . . . . . . . . . . . . . . . . . . . . . . . . . 163 B.2 Proof of Lemma 2.5.6 . . . . . . . . . . . . . . . . . . . . . . . . . 164 B.3 Proof of Lemma 2.5.7 . . . . . . . . . . . . . . . . . . . . . . . . . 167 Appendix C — The Decreasing Behavior of G(x) 169 | - |
| dc.language.iso | en | - |
| dc.subject | 來向角估計 | zh_TW |
| dc.subject | 稀疏陣列 | zh_TW |
| dc.subject | 旁瓣高度 | zh_TW |
| dc.subject | 辛格集合 | zh_TW |
| dc.subject | 波束成形 | zh_TW |
| dc.subject | beamforming | en |
| dc.subject | Singer set | en |
| dc.subject | sidelobe level | en |
| dc.subject | DoA estimation | en |
| dc.subject | Sparse array | en |
| dc.title | 對擴充辛格陣列的差協同陣列和能量圖形的分析 | zh_TW |
| dc.title | On the Analysis of the Difference Coarray and the Power Pattern of Extended Singer Arrays | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林源倍;黃彥銘 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Pei Lin;Yen-Ming Huang | en |
| dc.subject.keyword | 稀疏陣列,來向角估計,波束成形,辛格集合,旁瓣高度, | zh_TW |
| dc.subject.keyword | Sparse array,DoA estimation,beamforming,Singer set,sidelobe level, | en |
| dc.relation.page | 171 | - |
| dc.identifier.doi | 10.6342/NTU202401748 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
