請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93538完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃慶怡 | zh_TW |
| dc.contributor.advisor | Ching-I Huang | en |
| dc.contributor.author | 蔡承瑋 | zh_TW |
| dc.contributor.author | Cheng-Wei Cai | en |
| dc.date.accessioned | 2024-08-05T16:25:57Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-29 | - |
| dc.identifier.citation | 1. https://www.joboneforhumanity.org/what_is_global_warming_sign_up What Is Global Warming? 2023.
2. https://www.cbsnews.com/news/climate-change-carbon-dioxide-highest-level-million-years/Carbon Dioxide levels are higher than they've been at any point in the last 3.6 million years. 2021. 3. Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie, B.; Toe, C.Y.; Zhu, X,; Wang, J.; Huang, L.; Gao, Y.; Wang, Z.; Jo, C.; Wang, Q.; Wang, L.; Liu, Y.; Louis, B.; Scott, J.; Roger, A.C.; Amal, R.; He, H.; Park, S.E. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686. 4. D'Alessandro, D.M.; Smit, B.; Long, J.R. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition, 2010, 49, 6058-6082. 5. Bachu, S. CO2 storage in geological media: Role, means, status and barriers to deployment. Progress in Energy and Combustion Science, 2008, 34, 254-273. 6. Kelemen, P.; Benson, S.M.; Pilorgé, H.; Psarras, P.; Wilcox, J. An overview of the status and challenges of CO2 storage in minerals and geological formations. Frontiers in Climate, 2019, 1, 482595. 7. Sahara, G.; Ishitani, O. Efficient photocatalysts for CO2 reduction. Inorganic Chemistry, 2015, 54, 5096-5104. 8. Zhang, S.; Fan, Q.; Xia, R.; Meyer, T.J. CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Accounts of Chemical Research, 2020, 53, 255-264. 9. Tang, G.; Li, J.; Lu, Y.; Song, T.; Yin, S.; Mao, G.; Long, B.; Ali, A.; Deng, G.J. Donor-acceptor organic polymer with sulfur bridge for superior photocatalytic CO2 reduction to CH4 under visible light illumination. Chemical Engineering Journal, 2023, 451, 138744. 10. Cheng, Y.Z.; Ding, X.; Han, B.H. Porous organic polymers for photocatalytic carbon dioxide reduction. ChemPhotoChem, 2021, 5, 406-417. 11. Nguyen, T.P.; Nguyen, D.L.T.; Nguyen V.H.; Le, T.H.; Vo, D.V.N.; Trinh, Q.T.; Bae, S.R.; Chae, S.Y.; Kim, S.Y.; Le, Q.V. Recent advances in TiO2-based photocatalysts for reduction of CO2 to fuels. Nanomaterials, 2020, 10, 337. 12. Habisreutinger, S.N.; Schmidt‐Mende, L.; Stolarczyk, J.K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52, 7372-7408. 13. Moma, J.; Baloyi, J. Modified titanium dioxide for photocatalytic applications. Photocatalysts-Applications and Attributes, 2019, 18, 5772. 14. Liu, L.; Zhao, H.; Andino, J.M.; Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catalysis, 2012, 2, 1817-1828. 15. Asadi, M.; Motevaselian, M.H.; Moradzadeh, A.; Majidi, L.; Esmaeilirad, M.; Sun, T.V.; Liu, C.; Bose, R.; Abbasi, P.; Zapol, P.; Khodadoust, A.P.; Curtiss, L.A.; Aluru, N.R.; Salehi-Khojin, A. Highly Efficient Solar‐Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride‐Based Electrolyte. Advanced Energy Materials, 2019, 9, 1803536. 16. Chen, X.; Zhou, Y.; Liu, Q.; Li, Z.; Liu, J.; Zou, Z. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Applied Materials & Interfaces, 2012, 4, 3372-3377. 17. Zhang, T.; Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 2014, 43, 5982-5993. 18. Vasileff, A.; Zheng, Y.; Qiao, S.Z. Carbon solving carbon's problems: recent progress of nanostructured carbon‐based catalysts for the electrochemical reduction of CO2. Advanced Energy Materials, 2017, 7, 1700759. 19. Pan, F.; Yang, X.; O'Carroll, T.; Li, H.; Chen, K.J.; Wu, G. Carbon catalysts for electrochemical CO2 reduction toward multicarbon products. Advanced Energy Materials, 2022, 12, 2200586. 20. Chen, Z.; Zhang, S.; Liu, Y.; Alharbi, N.S.; Rabah, S.O.; Wang, S.; Wang, X. Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants. Science of the Total Environment, 2020, 731, 139054. 21. Ye, S.; Wang, R.; Wu, M.Z.; Yuan, Y.P. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Applied Surface Science, 2015, 358, 15-27. 22. Sun, Z.; Wang, H.; Wu, Z.; Wang, L. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catalysis Today, 2018, 300, 160-172. 23. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti1, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials, 2009, 8, 76-80. 24. Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Advanced Materials, 2015, 27, 2150-2176. 25. Zheng, Y.; Lin, L.; Wang, B.; Wang, X. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angewandte Chemie International Edition, 2015, 54, 12868-12884. 26. Niu, P.; Qiao, M.; Li, Y.; Huang, L.; Zhai, T. Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy, 2018, 44, 73-81. 27. Wang, K.; Feng, X.; Shangguan, Y.; Wu, X.; Chen, H. Selective CO2 photoreduction to CH4 mediated by dimension-matched 2D/2D Bi3NbO7/g-C3N4 S-scheme heterojunction. Chinese Journal of Catalysis, 2022, 43, 246-254. 28. Xu, Q.; Xia, Z.; Zhang, J.; Wei, Z.; Guo, Q.; Jin, H.; Tang, H.; Li, S.; Pan, X.; Su, Z.; Wang, S. Recent advances in solar‐driven CO2 reduction over g‐C3N4‐based photocatalysts. Carbon Energy, 2023, 5, e205. 29. Che, H.; Che, G.; Zhou, P.; Liu, C.; Dong, H.; Li, C.; Song, N.; Li, C. Nitrogen doped carbon ribbons modified g-C3N4 for markedly enhanced photocatalytic H2-production in visible to near-infrared region. Chemical Engineering Journal, 2020, 382, 122870. 30. Li, J.; He, C.; Xu, N.; Wu, K.; Huang, Z.; Zhao, X.; Nan, J.; Xiao, X. Interfacial bonding of hydroxyl-modified g-C3N4 and Bi2O2CO3 toward boosted CO2 photoreduction: Insights into the key role of OH groups. Chemical Engineering Journal, 2023, 452, 139191. 31. Dai, C.; Zhong, L.; Gong, X.; Zeng, L.; Xue, C.; Li, S.; Liu, B. Triphenylamine based conjugated microporous polymers for selective photoreduction of CO2 to CO under visible light. Green Chemistry, 2019, 21, 6606-6610. 32. Wang, Y.; Yang, Y.; Deng, Q.; Chen, W.; Zhang, Y.; Zhou, Y.; Zou, Z. Recent progress of amorphous porous organic polymers as heterogeneous photocatalysts for organic synthesis. Advanced Functional Materiels, 2023, 33, 2307179. 33. Li, L.; Cai, Z.; Wu, Q.; Lo, W.Y.; Zhang, N.; Chen, L.X.; Yu, L. Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 7681-7686. 34. Bao, Y.; Liu, J.; Zhang, Y.; Zheng, L.; Ma, J.; Zhang, F.; Xiong, Y.; Meng, X.; Dai, Z.; Xiao, F.S. Porous organic polymers with diverse quaternary phosphonium units for chemical fixation of CO2 with low concentration. Fuel, 2023, 331, 125909. 35. Wang, Y.; Liu, H.; Pan, Q.; Ding, N.; Yang, C.; Zhang, Z.; Jia, C.; Li, Z.; Liu, J.; Zhao, Y. Construction of thiazolo [5, 4-d] thiazole-based two-dimensional network for efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2020, 12, 46483-46489. 36. Dai, C.; Zhong, L.; Wu, W.; Zeng, C.; Deng, Y.; Li, S. 1, 3, 5‐Triphenylbenzene Based Porous Conjugated Polymers for Highly Efficient Photoreduction of Low‐Concentration CO2 in the Gas‐Phase System. Solar RRL, 2022, 6, 2100872. 37. Barman, S.; Singh, A.; Rahimi, F.A.; Maji, T.K. Metal-free catalysis: a redox-active donor–acceptor conjugated microporous polymer for selective visible-light-driven CO2 reduction to CH4. Journal of the American Chemical Society, 2021, 143, 16284-16292. 38. Huang, N.; Wang, P.; Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nature Reviews Materials, 2016, 1, 1-19. 39. Zhou, T.; Wang, L.; Huang, X.; Unruangsri, J.; Zhang, H.; Wang, R.; Song, Q.; Yang, Q.; Li, W.; Wang, C.; Takahashi, K.; Xu, H.; Guo, J. PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nature Communications, 2021, 12, 3934. 40. Cote, A.P.; Benin, A.I.; Ockwig, N.W.; O'Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science, 2005, 310, 1166-1170. 41. Gong, Y.N.; Guan, X.; Jiang, H.L. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coordination Chemistry Reviews, 2023, 475, 214889. 42. Li, W.; Huang, X.; Zeng, T.; Liu, Y.A.; Hu, W.; Yang, H.; Zhang, Y.B.; Wen, K. Thiazolo [5, 4‐d] thiazole‐based donor–acceptor covalent organic framework for sunlight‐driven hydrogen evolution. Angewandte Chemie International Edition, 2021, 60, 1869-1874. 43. Wang, L.J.; Wang, R.L.; Zhang, X.; Mu, J.L.; Zhou, Z.Y.; Su, Z.M. Improved photoreduction of CO2 with water by tuning the valence band of covalent organic frameworks. ChemSusChem, 2020, 13, 2973-2980. 44. Medina, D.D.; Sick, T.; Bein, T. Photoactive and conducting covalent organic frameworks. Advanced Energy Materials, 2017, 7, 1700387. 45. Nguyen, H.L.; Alzamly, A. Covalent organic frameworks as emerging platforms for CO2 photoreduction. ACS Catalysis, 2021, 11, 9809-9824. 46. Kim, Y.H.; Kim, N.; Seo, J.M.; Jeon, J.P.; Noh, H.J.; Kweon. D.H.; Ryu, J.; Baek, J.B. Benzothiazole-based covalent organic frameworks with different symmetrical combinations for photocatalytic CO2 conversion. Chemistry of Materials, 2021, 33, 8705-8711. 47. Peng, L.; Chang, S.; Liu, Z.; Fu, Y.; Ma, R.; Lu, X.; Zhang, F.; Zhu, W.; Konga, L.; Fan, M. Visible-light-driven photocatalytic CO2 reduction over ketoenamine-based covalent organic frameworks: role of the host functional groups. Catalysis Science & Technology, 2021, 11, 1717-1724. 48. Zhong, X.; Ling, Q.; Kuang, P.; Hu, B. The role of functional-group-tuning in adsorption-photoreduction of U (VI) onto β-ketoenamine covalent organic frameworks photosystem. Chemical Engineering Journal, 2023, 467, 143415. 49. Wang, S.H.; Chen, P.Z.; Chen Y.Y.; Khurshid, F.; Cai, C.W.; Lai, Y.Y.; Chung, P.W.; Jeng, R.J.; Rwei, S.P.; Wang, L. Naphthalene Diimide-Based Donor-Acceptor-Donor Small Molecules as Metal-Free Organocatalysts for Photocatalytic CO₂ Reaction. ACS Applied Materials & Interfaces, 2022, 14, 43109-43115. 50. Lan, Z.A.; Zhang, G.; Chen, X.; Zhang, Y.; Zhang, K.A.I.,; Wang, X. Reducing the exciton binding energy of donor-acceptor‐based conjugated polymers to promote charge‐induced reactions. Angewandte Chemie International Edition, 2019, 58, 10236-10240. 51. Wang, S.H.; Khurshid, F.; Chen, P.Z.; Lai, Y.R.; Cai, C.W.; Chung, P.W.; Hayashi, M.; Jeng, R.J.; Rwei, S.P.; Wang, L. Solution-processable naphthalene diimide-based conjugated polymers as organocatalysts for photocatalytic CO2 reaction with extremely stable catalytic activity for over 330 hours. Chemistry of Materials, 2022, 34, 4955-4963. 52. Zhang, S.; Hou, Y.; Zhang, L.; Zhu, H.; Xiong, J.; Wang, S.; Liu, T. A Novel Non‐Fullerene D‐A Interface with Two Asymmetrical Electron Acceptors Facilitates Charge and Energy Transfer for Effective Carbon Dioxide Reduction. Small, 2024, 2311816. 53. Guo, Z.; Liu, X.M.; Ma, L.; Li, J.; Zhang, H.; Gao, Y.P.; Yuan, Y. Effects of particle morphology, pore size and surface coating of mesoporous silica on Naproxen dissolution rate enhancement. Colloids and Surfaces B: Biointerfaces, 2013, 101, 228-235. 54. Sprick, R.S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N.J.; Slater, B.J.; Blanc, F.; Zwijnenburg, M.A.; Adams, D.J.; Cooper, A.I. Visible‐light‐driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angewandte Chemie International Edition, 2016, 55, 1792-1796. 55. Aitchison, C.M.; Sachs, M.; Little, M.A.; Wilbraham, L.; Brownbill, N.J; Kane, C.M.; Blanc, F.; Zwijnenburg, M.A.; Durrant, J.R.; Sprick, R.S.; Cooper, A.I. Structure–activity relationships in well-defined conjugated oligomer photocatalysts for hydrogen production from water. Chemical Science, 2020, 11, 8744-8756. 56. Zhao, Y.; Ma, W.; Xu, Y.; Zhang, C.; Wang, Q.; Yang, T.; Gao, X.; Wang, F.; Yan, C.; Jiang, J.X. Effect of linking pattern of dibenzothiophene-S, S-dioxide-containing conjugated microporous polymers on the photocatalytic performance. Macromolecules, 2018, 51, 9502-9508. 57. Sachs, M.; Sprick, R.S.; Pearce, D.; Hillman, S.A.J.; Monti, A.; Guilbert, A.A.Y.; Brownbill, N.J.; Dimitrov, S.; Shi, X.; Blanc, F.; Zwijnenburg, M.A.; Nelson, J.; Durrant, J.R.; Cooper, A.I. Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. Nature Communications, 2018, 9, 4968. 58. Wang, J.L.; Ouyang, G.; Wang, D.; Li, J.; Yao, J.; Li, W.S.; Li, H. Enhanced photocatalytic performance of donor-acceptor-type polymers based on a thiophene-contained polycyclic aromatic unit. Macromolecules, 2021, 54, 2661-2666. 59. Wang, X.; Chen, L.; Chong, S.Y.; Little, M.A.; Wu, Y.; Zhu, W.H.; Clowes, R.; Yan, Y.; Zwijnenburg, M.A.; Sprick, R.S.; Cooper, A.I. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chemistry, 2018, 10, 1180-1189. 60. Fu, Z.; Vogel, A.; Zwijnenburg, M.A.; Cooper, A.I.; Sprick, R.S. Photocatalytic syngas production using conjugated organic polymers. Journal of Materials Chemistry A, 2021, 9, 4291-4296. 61. Wang, S.H.; Raja, R.; Hsiow, C.Y.; Khurshid, F.; Yang H.R.; Chung, P.W.; Lai, Y.Y.; Jeng, R.J.; Wang, L. Chromatic Fulleropyrrolidine as Long‐Lived Metal‐Free Catalyst for CO2 Photoreduction Reaction. ChemSusChem, 2022, 15, e202102476. 62. Ran, J;, Jaroniec, M.; Qiao, S.Z. Cocatalysts in semiconductor‐based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Advanced Materials, 2018, 30, 1704649. 63. Das, R.; Chakraborty, S.; Peter, S.C. Systematic assessment of solvent selection in photocatalytic CO2 reduction. ACS Energy Letters, 2021, 6, 3270-3274. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93538 | - |
| dc.description.abstract | 本研究的主要目的在於設計與合成可溶性之共軛高分子,並將其做為光催化劑應用於二氧化碳還原反應以產出高經濟價值之太陽能燃料。
首先,我將碸基結構與噻吩環進行結合,合成出了具備碸基基團的最小共軛單元 thiophene-1,1-dioxide (TO) ,並將其做為單軆,與噻吩進行共聚合反應,得到了以碸基單元做為結構中電子受體的線性共軛聚合物,簡稱為 P3HTO-T ,同時合成了不具碸基基團的聚噻吩 P3HT-T 來進行性質的比較。此外,我在 dibenzothiophene-5,5-dioxide (DBTO) 單元導入具備推電子能力的辛氧基基團,再與噻吩環進行偶合反應而獲得高溶解性之線性共軛高分子,命名為 PDBTOOOc-T ,並將其與 P3HTO-T 進行比較,藉此探討不同含碸基之電子受體,對於二氧化碳還原的催化性能差異。 所有的合成產物均利用核磁共振技術 (NMR) 來鑑定它們的結構;透過凝膠滲透層析法 (GPC) 來分析高分子產物之分子量特徵;以紫外-可見光光譜儀與循環伏安儀來測量材料的吸收光譜、能隙與能階位置。然後,將 P3HT-T 、 P3HTO-T 與 PDBTOOOc-T 分別塗佈於玻璃片或分子篩上,做為二氧化碳光化學反應之催化劑。 GC 圖譜分析顯示三者皆能將 CO2 還原成 CO ,而且產物選擇性幾近100 %。它們在玻璃片上的CO產率分別為11.4、41.4 和 47.9 µmole·g-1·hr-1;在分子篩上的產率則為 27.0、134.2 與 256.3 µmole·g-1·hr-1。使用 C18O2 與 H218O 取代一般的 CO2 與 H2O 做為反應物的同位素實驗,產物之質譜分析證實 CO 確實源自於 CO2 的光還原反應。時間解析螢光光譜實驗測得 PDBTOOOc-T 的激子生命期長達 5.66 奈秒,遠比 P3HTO-T 的 1.83 奈秒與 P3HT-T 的 1.37 奈秒長;電化學阻抗儀分析證明 PDBTOOOc-T 具有較小的介面電阻;光生電流密度量測則顯示產出最高光電流密度的大小順序為 PDBTOOOc-T > P3HTO-T > P3HT-T 。此等順序均與 CO 的產率多寡一致。本研究說明在共軛高分子中引入碸基基團可有效提升其催化活性,而且 DBTO 的效能高於 3HTO 單元。 | zh_TW |
| dc.description.abstract | This work aims to design and synthesize soluble conjugated polymers and use them as catalysts in photocatalytic CO2 reduction reactions to produce solar fuels with high commercial value.
Firstly, 2,5-dibromo-3-hexylthiophene was oxidized to form 2,5-dibromo-3-hexylthiophene 1,1-dioxide, which was then copolymerized with 2,5-bis(trimethylstannyl)thiophene to yield a soluble conjugated polymer, abbreviated as P3HTO-T. For comparison, a copolymer comprising 3-hexylthiophene and thiophene units, abbreviated as P3HT-T, was also prepared. Additionally, two electron-donating octyloxy groups were anchored to dibenzothiophene-5,5-dioxide (DBTO) unit, which was then copolymerized with thiophene to obtain a highly soluble linear conjugated polymer, named PDBTOOOc-T. The catalytic activities of these three polymers in photocatalytic CO2 reduction reactions were evaluated and compared. The chemical structures of all synthesized products were characterized by nuclear magnetic resonance (NMR) spectroscopy; gel permeation chromatography (GPC) was used to analyze the molecular weight characteristics of polymer products; UV-visible spectroscopy and cyclic voltammetry were employed to measure the absorption spectrum, band gap and energy levels of the materials. The photochemical reaction of CO2 was carried out in a air-tight chamber in the presence of P3HT-T, P3HTO-T or PDBTOOOc-T, which were coated on top of either glass slide or molecular sieve. GC spectrum analysis shows that all three polymers can reduce CO2 to CO, and the product selectivity is nearly 100%. Their CO yields on glass slide were 11.4, 41.4 and 47.9 µmole·gcat-1·hr-1, respectively; their yields on molecular sieves were 27.0, 134.2 and 256.3 µmole·gcat-1·hr-1. The isotope experiments were performed using C18O2 and H218O instead of the usual CO2 and H2O as reactants, and the mass spectrometry analysis of the product confirmed that CO does indeed originate from the photoreduction reaction of CO2. As measured from the time-resolved fluorescence spectroscopy experiment, PDBTOOOc-T has an exciton lifetime of 5.66 ns, which is much longer than the 1.83 ns of P3HTO-T and the 1.37 ns of P3HT-T. Electrochemical impedance analysis indicated that PDBTOOOc-T has the smallest interfacial resistance; the photocurrent density measurement showed that it decreases in the order of PDBTOOOc-T > P3HTO-T > P3HT-T. All these three results are consistent with the sequence of the CO yields. This study demonstrates that the incorporation of sulfonyl groups into conjugated polymers is an effective way to improve their catalytic activity, and DBTO is more effective than 3HTO in catalyzing CO2 photoreduction reactions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:25:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:25:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract IV 目次 VI 圖次 XI 表次 XV 第一章 緒論 1 1.1 溫室效應 1 1.2 二氧化碳減量 2 1.3 二氧化碳還原反應之機制 2 1.4 催化劑之種類 3 1.4.1 石墨碳氮化合物 (g-C3N4) 4 1.4.2 多孔共軛聚合物 (Porous conjugated polymer, PCP) 6 1.4.3 線性共軛聚合物 (Linear conjugated polymer, LCP) 11 1.5 實驗動機 12 第二章 實驗 15 2.1 實驗所使用化學藥品列表 15 2.2 實驗儀器與設備 18 2.2.1 NMR (Nuclear magnetic resonance spectroscopy) 18 2.2.2 有機溶劑純化系統 (Solvent purification system) 18 2.2.3 手套箱 (Glove box) 18 2.2.4 微波反應器 (Microwave reactor) 18 2.2.5 氣相層析儀, GC (Gas chromatography) 19 2.2.6 太陽光模擬器 (Solar simulator) 19 2.2.7 凝膠滲透層析, GPC (Gel permeation chromatography) 19 2.2.8 紫外-可見光光譜儀, UV-Vis (Ultraviolet-visible spectrometer) 19 2.2.9 循環伏安法, CV (Cyclic voltammetry) 20 2.2.10 氣相層析質譜儀, GC-MS (Gas chromatography-mass spectrometry) 20 2.2.11 感應耦合電漿質譜, ICP-MS (Inductively coupled plasma mass spectrometry) 20 2.2.12 時間解析光激螢光光譜, TRPL (Time-resolved photoluminescence) 20 2.2.13 電化學阻抗圖譜, EIS (Electrochemical impedance spectroscopy) 20 2.2.14 光生電流量測儀 (Photocurrent) 21 2.2.15 螢光分光光譜儀 (Photoluminescence) 21 2.3 材料合成 22 2.3.1 2,5-Dibromo-3-hexylthiophene 1,1-dioxide (1) 22 2.3.2 2,5-Bis(trimethylstannyl)thiophene (2) 23 2.3.3 P3HTO-T (3) 24 2.3.4 P3HT-T (4) 25 2.3.5 2,8-Dibromodibenzo[b,d]thiophene (5) 26 2.3.6 2,8-Dimethoxydibenzo[b,d]thiophene (6) 27 2.3.7 Dibenzo[b,d]thiophene-2,8-diol (7) 28 2.3.8 2,8-Bis(octyloxy)dibenzo[b,d]thiophene (8) 29 2.3.9 2,8-Bis(octyloxy)dibenzo[b,d]thiophene 5,5-dioxide (9) 30 2.3.10 3,7-Dibromo-2,8-bis(octyloxy)dibenzo[b,d]thiophene 5,5-dioxide (10) 31 2.3.11 PDBTOOOc-T (11) 32 2.4 光催化系統之實驗方法 33 2.4.1 樣品之製備 33 2.4.2 二氧化碳還原之實驗步驟 33 2.4.3 產物之定性及定量 34 2.4.4 產率之計算 36 第三章 結果與討論 37 3.1 建構含碸基噻吩環之線性可溶性共軛高分子作為光催化劑應用於二氧化碳還原反應 37 3.1.1 結構設計 37 3.1.2 材料合成與基本性質鑑定 38 3.1.3 材料之光學性質分析 44 3.1.4 材料之能階分析 46 3.1.5 光催化二氧化碳還原實驗 48 3.1.6 同位素實驗分析 50 3.1.7 材料之金屬殘留量分析 51 3.1.8 材料之時間解析螢光光譜分析 52 3.1.9 材料之電化學性分析 53 3.1.10 結論 55 3.2 二苯并噻吩碸之衍生物做為共軛高分子中之電子受體並應用於二氧化碳光催化反應 57 3.2.1 實驗動機 57 3.2.2 材料合成與基本性質鑑定 59 3.2.3 材料之光學性質分析 62 3.2.4 材料之能階分析 64 3.2.5 材料之時間解析螢光光譜分析 66 3.2.6 材料之螢光分光光譜分析 67 3.2.7 光催化二氧化碳還原實驗 68 3.2.8 同位素實驗分析 70 3.2.9 材料之金屬殘留量分析 71 3.2.10 材料之電化學性分析 71 3.2.11 外部量子效率計算 73 3.2.12 結論 75 第四章 總結 77 第五章 參考文獻 80 附錄 89 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 共軛高分子 | zh_TW |
| dc.subject | 噻吩碸 | zh_TW |
| dc.subject | 二氧化碳還原 | zh_TW |
| dc.subject | 碸基基團 | zh_TW |
| dc.subject | 有機光催化劑 | zh_TW |
| dc.subject | 二苯并噻吩碸 | zh_TW |
| dc.subject | CO2 photo-reduction | en |
| dc.subject | sulfonyl groups | en |
| dc.subject | organic photocatalysts | en |
| dc.subject | thiophene sulfone | en |
| dc.subject | dibenzothiophene sulfone | en |
| dc.subject | conjugated polymers | en |
| dc.title | 新型可溶性含碸基共軛高分子應用為二氧化碳還原反應之光觸媒 | zh_TW |
| dc.title | Novel Soluble Sulfonyl-based Conjugated Polymers as Photocatalysts for CO2 Reduction Reaction | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 王立義 | zh_TW |
| dc.contributor.coadvisor | Leeyih Wang | en |
| dc.contributor.oralexamcommittee | 賴育英;郭昌恕 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Ying Lai;Changshu Kuo | en |
| dc.subject.keyword | 二氧化碳還原,共軛高分子,有機光催化劑,碸基基團,二苯并噻吩碸,噻吩碸, | zh_TW |
| dc.subject.keyword | CO2 photo-reduction,conjugated polymers,organic photocatalysts,sulfonyl groups,dibenzothiophene sulfone,thiophene sulfone, | en |
| dc.relation.page | 100 | - |
| dc.identifier.doi | 10.6342/NTU202402358 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
