Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93535
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳柏鋒zh_TW
dc.contributor.advisorPo-Feng Wuen
dc.contributor.author董沛承zh_TW
dc.contributor.authorPei-Cheng Tungen
dc.date.accessioned2024-08-05T16:24:55Z-
dc.date.available2024-08-06-
dc.date.copyright2024-08-05-
dc.date.issued2024-
dc.date.submitted2024-07-24-
dc.identifier.citationAnderson, Lauren et al. (Apr. 2014). “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples”. In: Monthly Notices of the Royal Astronomical Society 441.1, pp. 24–62. ISSN: 0035-8711. DOI: 10.1093/mnras/stu523. URL: http://dx.doi.org/10.1093/mnras/stu523.
Bode, Paul, Jeremiah P. Ostriker, and Guohong Xu (June 2000). “The Tree Particle‐ Mesh N ‐Body Gravity Solver”. In: The Astrophysical Journal Supplement Series 128.2, pp. 561–569. ISSN: 1538-4365. DOI: 10.1086/313398. URL: http://dx.doi.org/10.1086/313398.
Bondi, H. (Jan. 1952). “On spherically symmetrical accretion”. In: 112, p. 195. DOI: 10.1093/mnras/112.2.195.
Bourne, Martin A., Kastytis Zubovas, and Sergei Nayakshin (Aug. 2015). “The resolution bias: low-resolution feedback simulations are better at destroying galaxies”. In: Monthly Notices of the Royal Astronomical Society 453.2, pp. 1829–1842. ISSN: 1365-2966. DOI: 10.1093/mnras/stv1730. URL: http://dx.doi.org/10.1093/mnras/stv1730.
Brüns, C. et al. (May 2000). “The head-tail structure of high-velocity clouds. A survey of the northern sky”. In: 357, pp. 120–128. DOI: 10.48550/arXiv.astro-ph/0003110. arXiv: astro-ph/0003110 [astro-ph].
Bryan, Greg L. et al. (Mar. 2014). “ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS”. In: The Astrophysical Journal Supplement Series211.2, p. 19. ISSN: 1538-4365. DOI: 10.1088/0067-0049/211/2/19. URL: http://dx.doi.org/10.1088/0067-0049/211/2/19.
Cattaneo, A et al. (July 2020). “GalICS 2.1: a new semianalytic model for cold accretion, cooling, feedback, and their roles in galaxy formation”. In: Monthly Notices of the Royal Astronomical Society 497.1, pp. 279–301. ISSN: 0035-8711. DOI: 10.1093/mnras/staa1832. eprint: https://academic.oup.com/mnras/article- pdf/497/1/279/33524793/staa1832.pdf. URL: https://doi.org/10.1093/mnras/staa1832.
Colbrook, Matthew J. et al. (Feb. 2017). “Scaling laws of passive-scalar diffusion in the interstellar medium”. In: Monthly Notices of the Royal Astronomical Society 467.2, pp. 2421–2429. ISSN: 1365-2966. DOI: 10.1093/mnras/stx261. URL: http://dx.doi.org/10.1093/mnras/stx261.
Crain, Robert A. and Freeke van de Voort (Aug. 2023). “Hydrodynamical Simulations of the Galaxy Population: Enduring Successes and Outstanding Challenges”. In: Annual Review of Astronomy and Astrophysics 61.1, pp. 473–515. ISSN: 1545-4282. DOI: 10.1146/annurev-astro-041923-043618. URL: http://dx.doi.org/10.1146/annurev-astro-041923-043618.
Dekel, Avishai and Yuval Birnboim (May 2006). “Galaxy bimodality due to cold flows and shock heating”. In: 368.1, pp. 2–20. DOI: 10.1111/j.1365-2966.2006.10145.x. arXiv: astro-ph/0412300 [astro- ph].
Dekel, Avishai and Joanna Woo (Oct. 2003). “Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies”. In: Monthly Notices of the Royal Astronomical Society 344.4, pp. 1131–1144. ISSN: 0035-8711. DOI: 10.1046/j.1365-8711.2003.06923.x. eprint: https://academic.oup.com/mnras/article- pdf/344/4/1131/2913771/344-4-1131.pdf. URL: https://doi.org/10.1046/j.1365-8711.2003.06923.x.Di Matteo, Tiziana, Volker Springel, and Lars Hernquist (Feb. 2005). “Energy input from quasars regulates the growth and activity of black holes and their host galaxies”. In: 433.7026, pp. 604–607. DOI: 10.1038/nature03335. arXiv: astro-ph/0502199 [astro-ph].
Efstathiou, G. et al. (Feb. 1985). “Numerical techniques for large cosmological N-body simulations”. In: 57, pp. 241–260. DOI: 10.1086/191003.
Faucher-Giguère, Claude-André (Jan. 2020). “A cosmic UV/X-ray background model update”. In: Monthly Notices of the Royal Astronomical Society 493.2, pp. 1614–1632. ISSN: 1365-2966. DOI: 10.1093/mnras/staa302. URL: http://dx.doi.org/10.1093/mnras/staa302.
Ford, Amanda Brady et al. (June 2013). “Hydrogen and metal line absorption around low-redshift galaxies in cosmological hydrodynamic simulations”. In: Monthly Notices of the Royal Astronomical Society 432.1, pp. 89–112. DOI: 10.1093/mnras/stt393. arXiv: 1206.1859 [astro-ph.CO].
Hernquist, Lars (Aug. 1987). “Performance Characteristics of Tree Codes”. In: 64, p. 715. DOI: 10.1086/191215.
Hockney, R. W. and J. W. Eastwood (1981). Computer Simulation Using Particles. — (1988). Computer simulation using particles.
Hopkins, Philip F, Andrew Wetzel, Dušan Kereš, Claude-André Faucher-Giguère, Eliot Quataert, Michael Boylan-Kolchin, Norman Murray, Christopher C Hayward, and Kareem El-Badry (Mar. 2018). “How to model supernovae in simulations of star and galaxy formation”. In: Monthly Notices of the Royal Astronomical Society 477.2, pp. 1578–1603. ISSN: 1365-2966. DOI: 10.1093/mnras/sty674. URL: http://dx.doi.org/10.1093/mnras/sty674.
Hopkins, Philip F, Andrew Wetzel, Dušan Kereš, Claude-André Faucher-Giguère, Eliot Quataert, Michael Boylan-Kolchin, Norman Murray, Christopher C Hayward, Shea Garrison-Kimmel, et al. (June 2018). “FIRE-2 simulations: physics versus numerics in galaxy formation”. In: Monthly Notices of the Royal Astronomical Society 480.1, pp. 800–863. ISSN:1365-2966. DOI: 10.1093/mnras/sty1690. URL: http://dx.doi.org/10.1093/mnras/sty1690.
Hopkins, Philip F, Andrew Wetzel, Coral Wheeler, et al. (Dec. 2022). “FIRE-3: updated stellar evolution models, yields, and microphysics and fitting functions for applications in galaxy simulations”. In: Monthly Notices of the Royal Astronomical Society 519.2, pp. 3154–3181. ISSN: 1365-2966. DOI: 10.1093/mnras/stac3489. URL: http://dx.doi.org/10.1093/mnras/stac3489.
Hopkins, Philip F. (Apr. 2015). “A new class of accurate, mesh-free hydrodynamic simulation methods”. In: Monthly Notices of the Royal Astronomical Society 450.1, pp. 53–110. ISSN: 1365-2966. DOI: 10.1093/mnras/stv195. URL: http://dx.doi.org/10.1093/mnras/stv195.
Hopkins, Philip F., Dušan Kereš, et al. (Sept. 2014). “Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation”. In: Monthly Notices of the Royal Astronomical Society 445.1, pp. 581–603. ISSN: 1365-2966. DOI: 10.1093/mnras/stu1738. URL: http://dx.doi.org/10.1093/mnras/stu1738.
Hopkins, Philip F., Desika Narayanan, and Norman Murray (May 2013). “The meaning and consequences of star formation criteria in galaxy models with resolved stellar feedback”. In: Monthly Notices of the Royal Astronomical Society 432.4, pp. 2647–2653. ISSN: 1365-2966. DOI: 10.1093/mnras/stt723. URL: http://dx.doi.org/10.1093/mnras/stt723.
Hopkins, Philip F., Paul Torrey, et al. (May 2016). “Stellar and quasar feedback in concert: effects on AGN accretion, obscuration, and outflows”. In: 458.1, pp. 816–831. DOI: 10.1093/mnras/stw289. arXiv: 1504.05209 [astro-ph.GA].
Hui, Lam and Nickolay Y. Gnedin (Nov. 1997). “Equation of state of the photoionized intergalactic medium”. In: 292.1, pp. 27–42. DOI: 10.1093/mnras/292.1.27. arXiv: astro-ph/9612232 [astro-ph].
Kereš, Dušan et al. (Oct. 2005). “How do galaxies get their gas?” In: Monthly Notices of the Royal Astronomical Society 363.1, pp. 2–28. DOI:10.1111/j.1365-2966.2005.09451.x. arXiv: astro-ph/0407095 [astro-ph].
Kim, Ji-hoon et al. (Dec. 2016). “The AGORA High-resolution Galaxy Simulations Comparison Project. II. Isolated Disk Test”. In: 833.2, 202, p. 202. DOI: 10.3847/1538-4357/833/2/202. arXiv: 1610.03066 [astro-ph.GA].
Kimm, Taysun and Renyue Cen (June 2014). “Escape Fraction of Ionizing Photons during Reionization: Effects due to Supernova Feedback and Runaway OB Stars”. In: 788.2, 121, p. 121. DOI: 10.1088/0004-637X/788/2/121. arXiv: 1405.0552 [astro-ph.GA].
Krumholz, Mark R. and Nickolay Y. Gnedin (Mar. 2011). “A Comparison of Methods for Determining the Molecular Content of Model Galaxies”. In: 729.1, 36, p. 36. DOI: 10.1088/0004-637X/729/1/36. arXiv: 1011.4065 [astro-ph.CO].
Larson, R. B., B. M. Tinsley, and C. N. Caldwell (May 1980). “The evolution of disk galaxies and the origin of S0 galaxies”. In: 237, pp. 692–707. DOI: 10.1086/157917.
Larson, Richard B. (Mar. 1972). “Effect of infalling matter on the heavy element content of a galaxy”. In: Nature Physical Science 236, pp. 7–8. URL: https://www.nature.com/articles/physci236007a0#preview.
Leer, Bram van (1984). “On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe”. In: SIAM Journal on Scientific and Statistical Computing 5.1, pp. 1–20. DOI: 10.1137/0905001. eprint: https://doi.org/10.1137/0905001. URL: https://doi.org/10.1137/0905001.
Martizzi, Davide, Claude-André Faucher-Giguère, and Eliot Quataert (June 2015). “Supernova feedback in an inhomogeneous interstellar medium”. In: 450.1, pp. 504–522. DOI: 10.1093/mnras/stv562. arXiv: 1409.4425 [astro-ph.GA].
Nelson, Dylan, Annalisa Pillepich, et al. (Aug. 2019). “First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback”. In: Monthly Notices of the Royal Astronomical Society 490.3, pp. 3234–3261. ISSN:1365-2966. DOI: 10.1093/mnras/stz2306. URL: http://dx.doi.org/10.1093/mnras/stz2306.
Nelson, Dylan, Volker Springel, et al. (2021). The IllustrisTNG Simulations: Public Data Release. arXiv: 1812.05609 [astro-ph.GA].
Onorbe, J. et al. (Nov. 2013). “How to zoom: bias, contamination and Lagrange volumes in multimass cosmological simulations”. In: Monthly Notices of the Royal Astronomical Society 437.2, pp. 1894–1908. ISSN: 1365-2966. DOI: 10.1093/mnras/stt2020. URL: http://dx.doi.org/10.1093/mnras/stt2020.
Oñorbe, Jose, Joseph F. Hennawi, and Zarija Lukić (Mar. 2017). “Self-consistent Modeling of Reionization in Cosmological Hydrodynamical Simulations”. In: The Astrophysical Journal 837.2, p. 106. ISSN: 1538-4357. DOI: 10.3847/1538-4357/aa6031. URL: http://dx.doi.org/10.3847/1538-4357/aa6031.
Perret, Valentin (July 2016). DICE: Disk Initial Conditions Environment. Astrophysics Source Code Library, record ascl:1607.002.
Pillepich, Annalisa et al. (Sept. 2019). “First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time”. In: Monthly Notices of the Royal Astronomical Society 490.3, pp. 3196–3233. ISSN: 1365-2966. DOI: 10.1093/mnras/stz2338. URL: http://dx.doi.org/10.1093/mnras/stz2338.
Price, D. J. and J. J. Monaghan (Feb. 2007). “An energy-conserving formalism for adaptive gravitational force softening in smoothed particle hydrodynamics and N-body codes”. In: 374.4, pp. 1347–1358. DOI: 10.1111/j.1365-2966.2006.11241.x. arXiv: astro-ph/0610872 [astro- ph].
Rennehan, Douglas et al. (Dec. 2018). “Dynamic localized turbulent diffusion and its impact on the galactic ecosystem”. In: Monthly Notices of the Royal Astronomical Society 483.3, pp. 3810–3831. ISSN:1365-2966. DOI: 10.1093/mnras/sty3376. URL: http://dx.doi.org/10.1093/mnras/sty3376.
Revaz, Yves et al. (2016). “Computational issues in chemo-dynamical modelling of the formation and evolution of galaxies”. In: AA 588, A21. DOI: 10.1051/0004-6361/201526438. URL: https://doi.org/10.1051/0004-6361/201526438.
Shen, Sijing et al. (Feb. 2013). “THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES ATz 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS”. In: The Astrophysical Journal 765.2, p. 89. ISSN: 1538-4357. DOI: 10.1088/0004-637x/765/2/89. URL: http://dx.doi.org/10.1088/0004-637X/765/2/89.
Shen, Xuejian et al. (Jan. 2020). “The bolometric quasar luminosity function at z = 0–7”. In: Monthly Notices of the Royal Astronomical Society 495.3, pp. 3252–3275. ISSN: 1365-2966. DOI: 10.1093/mnras/staa1381. URL: http://dx.doi.org/10.1093/mnras/staa1381.
Smagorinsky, J. (Jan. 1963). “General Circulation Experiments with the Primitive Equations”. In: Monthly Weather Review 91.3, p. 99. DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
Springel, Volker, Tiziana Di Matteo, and Lars Hernquist (Aug. 2005). “Modelling feedback from stars and black holes in galaxy mergers”. In: Monthly Notices of the Royal Astronomical Society 361.3, pp. 776–794. ISSN: 1365-2966. DOI: 10.1111/j.1365-2966.2005.09238.x. URL: http://dx.doi.org/10.1111/j.1365-2966.2005.09238.x.
Springel, Volker and Lars Hernquist (Feb. 2003). “Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation”. In: 339.2, pp. 289–311. DOI: 10.1046/j.1365-8711.2003.06206.x. arXiv: astro-ph/0206393 [astro-ph].
Springel, Volker, Simon D. M. White, et al. (Dec. 2001). “Populating a cluster of galaxies - I. Results at z=0”. In: Monthly Notices of the Royal Astronomical Society 328.3,pp. 726–750. ISSN: 1365-2966. DOI: 10.1046/j.1365-8711.2001.04912.x. URL: http://dx.doi.org/10.1046/j.1365-8711.2001.04912.x.
Springel, Volker, Naoki Yoshida, and Simon D.M. White (Apr. 2001). “GADGET: a code for collisionless and gasdynamical cosmological simulations”. In: New Astronomy 6.2, pp. 79–117. ISSN: 1384-1076. DOI: 10.1016/s1384-1076(01)00042-2. URL: http://dx.doi.org/10.1016/S1384-1076(01)00042-2.
Stinson, G. S. et al. (Aug. 2012). “magicc haloes: confronting simulations with observations of the circumgalactic medium at z=0: magicc haloes”. In: Monthly Notices of the Royal Astronomical Society 425.2, pp. 1270–1277. ISSN: 0035-8711. DOI: 10.1111/j.1365-2966.2012.21522.x. URL: http://dx.doi.org/10.1111/j.1365-2966.2012.21522.x.
Suresh, Joshua et al. (Mar. 2017). “On the OVI abundance in the circumgalactic medium of low-redshift galaxies”. In: Monthly Notices of the Royal Astronomical Society 465.3, pp. 2966–2982. DOI: 10.1093/mnras/stw2499. arXiv: 1511.00687 [astro-ph.GA].
Teyssier, R. (Apr. 2002). “Cosmological hydrodynamics with adaptive mesh refinement: A new high resolution code called RAMSES”. In: Astronomy amp; Astrophysics 385.1, pp. 337–364. ISSN: 1432-0746. DOI: 10.1051/0004-6361:20011817. URL: http://dx.doi.org/10.1051/0004-6361:20011817.
Tinsley, B. M. (Jan. 1980). “Evolution of the Stars and Gas in Galaxies”. In: 5, pp. 287–388. DOI: 10.48550/arXiv.2203.02041. arXiv: 2203.02041 [astro- ph.GA].
Tollet, E et al. (July 2022). “Cold-mode and hot-mode accretion in galaxy formation: an entropy approach”. In: Monthly Notices of the Royal Astronomical Society 515.3, pp. 3453–3471. ISSN: 1365-2966. DOI: 10.1093/mnras/stac1867. URL: http://dx.doi.org/10.1093/mnras/stac1867.
Toro, E.F. (2009). Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Berlin Heidelberg. ISBN: 9783540498346. URL: https://books.google.com.tw/books?id=SqEjX0um8o0C.Tremmel, M. et al. (June 2015). “Off the beaten path: a new approach to realistically model the orbital decay of supermassive black holes in galaxy formation simulations”. In: Monthly Notices of the Royal Astronomical Society 451.2, pp. 1868–1874. ISSN: 0035-8711. DOI: 10.1093/mnras/stv1060. URL: http://dx.doi.org/10.1093/mnras/stv1060.
Tumlinson, Jason, Molly S. Peeples, and Jessica K. Werk (Aug. 2017). “The Circumgalactic Medium”. In: 55.1, pp. 389–432. DOI: 10.1146/annurev-astro-091916-055240. arXiv: 1709.09180 [astro- ph.GA].
Wadsley, J.W., J. Stadel, and T. Quinn (Feb. 2004). “Gasoline: a flexible, parallel implementation of TreeSPH”. In: New Astronomy 9.2, pp. 137–158. ISSN: 1384-1076. DOI: 10.1016/j.newast.2003.08.004. URL: http://dx.doi.org/10.1016/j.newast.2003.08.004.
Walker, Matthew (2013). “Dark Matter in the Galactic Dwarf Spheroidal Satellites”. In: Planets, Stars and Stellar Systems. Springer Netherlands, pp. 1039–1089. DOI: 10.1007/978-94-007-5612-0_20. URL: http://dx.doi.org/10.1007/978-94-007-5612-0_20.
Xu, Guohong (May 1995). “A New Parallel N-Body Gravity Solver: TPM”. In: 98, p. 355. DOI: 10.1086/192166. arXiv: astro-ph/9409021 [astro-ph].
Zhu, Jingyao et al. (2024). It’s a Breeze: The Circumgalactic Medium of a Dwarf Galaxy is Easy to Strip. arXiv: 2404.00129 [id='astro-ph.GA' fullname =′ AstrophysicsofGalaxies′isactive = Truealtname = Noneinarchive =′ astro − ph′isgeneral = Falsedescription =′ PhenomenapertainingtogalaxiesortheMilkyWay.Starclusters,HIIregionsandplanetarynebu
Zhu, Weishan, Fupeng Zhang, and Long-Long Feng (Jan. 2022). “Impact of Cosmic Filaments on the Gas Accretion Rate of Dark Matter Halos”. In: The Astrophysical Journal 924.2, p. 132. ISSN: 1538-4357. DOI: 10.3847/1538-4357/ac37b9. URL: http://dx.doi.org/10.3847/1538-4357/ac37b9.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93535-
dc.description.abstract根據現代宇宙學,宇宙從較小的結構逐漸形成較大的結構。因此,研究矮星系的演化對於理解像銀河系這樣更大質量星系的形成和演化至關重要。在星系的演化歷史中,星系與其周圍的星系周介質(CGM)和星系際介質(IGM)之間的相互作用起著重要作用。從CGM和IGM吸積的氣體冷卻並流入星系,促進恆星形成。與此同時,來自恆星和中心超大質量黑洞(SMBH)的回饋將能量和物質返回CGM和IGM,形成一個包含各種氣體相態的動態生態系統。
在本研究中,我們集中研究了在紅移(z)為0、1和2的星形成矮星系中從周圍環境吸積氣體。我們使用Gizmo程式中的無網格方法進行了包含多種物理的3D、N體和流體動力學模擬。為了現實地解決這個問題,我們採用了最新宇宙學模擬IllustrisTNG的結果作為我們模擬的初始條件。我們檢查了吸積CGM氣體的物理性質,並研究了它如何影響不同環境中的矮星系演化。
我們的結果顯示,來自CGM的氣體可以顯著影響星系的重子含量,有助於總質量和恆星形成的增長。同一紅移下,來自CGM的貢獻也顯示出一致性。然而,來自IGM的氣體吸積在z∼2時顯著。這種來自IGM的強吸積流也觸發了星系中心的強烈AGN活動和緻密恆星形成。
zh_TW
dc.description.abstractAccording to modern cosmology, the universe forms hierarchically from smaller structures to larger ones. Therefore, studying the evolution of dwarf galaxies is crucial for understanding the formation and evolution of more massive galaxies, such as the Milky Way. Throughout a galaxy’s evolutionary history, the interactions between the galaxy, its circumgalactic medium (CGM), and the intergalactic medium (IGM) play important roles. Gas accreted from the CGM and IGM cools and flows into a galaxy, fueling star forma- tion. Meanwhile, feedback from stars and the central supermassive black hole (SMBH) returns energy and matter to the CGM and IGM, resulting in a dynamic ecosystem with various gas phases.
In this research, we focus on the accretion of gas from the surrounding environment to star-forming dwarf galaxies at redshifts (z) of 0, 1, and 2. We present 3D N-body and hydrodynamical simulations with multi-physics using the meshless method in the Gizmo code. To address the question realistically, we adopt the results from the state-of-the-art cosmology simulation, IllustrisTNG, as the initial conditions for our simulations. We have examined the physical properties of the accreting CGM gas and studied how it affects the evolution of dwarf galaxies in different environments.
Our results demonstrate that gas from the CGM can significantly impact the galaxy’s baryon content, contributing to growth in total mass and star formation. The contribution from the CGM also shows consistency at the same redshift. However, gas accretion from the IGM is significant at z ∼ 2. This strong accretion flow from the IGM also triggers intense AGN activity and compact star formation at the galaxy’s center.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:24:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-05T16:24:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xv
Denotation xvii

Chapter 1: Introduction 1

Chapter 2: Methodology 5
2.1 Hydrodynamics 5
2.1.1 Governing equations 7
2.1.2 Time Integration 10
2.1.3 Turbulent Mixing 10
2.1.4 Super-Lagrangian Refinement 11
2.2 Gravity 12
2.2.1 Softening Length 13
2.3 Cooling 14
2.4 Star Formation and Stellar Feedback 15
2.5 Supermassive Black Hole 16
2.6 Simulation Setup 18
2.6.1 Initial Conditions 18
2.6.2 Resolution 21
2.6.3 Simulation Settings 22

Chapter 3: Results 25
3.1 Basic Properties and Evolution of the Dwarf Galaxies 25
3.1.1 Star Formation Rate, Accretion Rate, and SMBH Mass Evolution 25
3.1.2 List of the Basic Properties 28
3.2 Baryon Evolution of the Dwarf Galaxies 30
3.2.1 Gas Morphology and Distribution 30
3.2.2 Newborn Star Distribution 31
3.2.3 Radial Mass Distribution 36
3.3 Phases in Disk, CGM, and IGM 39
3.3.1 Spatial Distribution of Different Gas Temperature 43

Chapter 4: Discussion 45
4.1 Metal Enrichment and Mixing in CGM 45
4.2 Phases Difference Comparing to Cosmological Simulation 46
4.3 Gas Accretion Contribution 49
4.3.1 Contribution to Star Formation 50
4.3.2 Contribution to Total Gas content 51
4.4 Comparison with More Massive Galaxies 56

Chapter 5: Conclusion 59

References 61
Appendix A — Numerical Details 71
Convergence Test 71
-
dc.language.isoen-
dc.title矮星系及其環繞星系介質在宇宙時間下的共同演化zh_TW
dc.titleThe Co-evolution of Dwarf Galaxies and Their Circumgalactic Medium Across Cosmic Timeen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor陳科榮zh_TW
dc.contributor.coadvisorKe-Jung Chenen
dc.contributor.oralexamcommittee黃崇源;胡家瑜zh_TW
dc.contributor.oralexamcommitteeChorng-Yuan Hwang;Chia-Yu Huen
dc.subject.keyword計算天文物理,矮星系,冷吸積,環繞星際物質,星系際介質,zh_TW
dc.subject.keywordComputational astrophysics,Dwarf galaxy,Cold accretion,Circumgalactic medium,Intergalactic medium,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202400841-
dc.rights.note未授權-
dc.date.accepted2024-07-24-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用物理研究所-
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
56.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved